Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

Metabolic Association between Leptin and the Corticotropin Releasing Hormone

Author(s): Sofia Gioldasi, Alexia Karvela, Andrea Paola Rojas-Gil, Maria Rodi, Anne-Lise de Lastic, Iason Thomas, Bessie E. Spiliotis and Athanasia Mouzaki*

Volume 19, Issue 4, 2019

Page: [458 - 466] Pages: 9

DOI: 10.2174/1871530319666190206165626

Abstract

Objective: In healthy individuals, leptin is produced from adipose tissue and is secreted into the circulation to communicate energy balance status to the brain and control fat metabolism. Corticotropin- Releasing Hormone (CRH) is synthesized in the hypothalamus and regulates stress responses. Among the many adipokines and hormones that control fat metabolism, leptin and CRH both curb appetite and inhibit food intake. Despite numerous reports on leptin and CRH properties and function, little has been actually shown about their association in the adipose tissue environment.

Methods: In this article, we summarized the salient information on leptin and CRH in relation to metabolism. We also investigated the direct effect of recombinant CRH on leptin secretion by primary cultures of human adipocytes isolated from subcutaneous abdominal adipose tissue of 7 healthy children and adolescents, and measured CRH and leptin levels in plasma collected from peripheral blood of 24 healthy children and adolescents to assess whether a correlation exists between CRH and leptin levels in the periphery.

Results and Conclusion: The available data indicate that CRH exerts a role in the regulation of leptin in human adipocytes. We show that CRH downregulates leptin production by mature adipocytes and that a strong negative correlation exists between CRH and leptin levels in the periphery, and suggest the possible mechanisms of CRH control of leptin. Delineation of CRH control of leptin production by adipocytes may explain unknown pathogenic mechanisms linking stress and metabolism.

Keywords: Leptin, corticotropin-releasing hormone (CRH), adipocytes, expression, signaling, stress, metabolism.

Graphical Abstract

[1]
Belgardt, B.F.; Brüning, J.C. CNS leptin and insulin action in the control of energy homeostasis. Ann. N. Y. Acad. Sci., 2010, 1212, 97-113.
[2]
Halaas, J.L.; Gajiwala, K.S.; Maffei, M.; Cohen, S.L.; Chait, B.T.; Rabinowitz, D.; Lallone, R.L.; Burley, S.K.; Friedman, J.M. Weight-reducing effects of the plasma protein encoded by the obese gene. Science, 1995, 269(5223), 543-546.
[3]
Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505), 425-432.
[4]
Coleman, D.L. A historical perspective on leptin. Nat. Med., 2010, 16(10), 1097-1099.
[5]
Green, E.D.; Maffei, M.; Braden, V.V.; Proenca, R.; DeSilva, U.; Zhang, Y.; Chua, S.C., Jr; Leibel, R.L.; Weissenbach, J.; Friedman, J.M. The human obese (OB) gene: RNA expression pattern and mapping on the physical, cytogenetic, and genetic maps of chromosome 7. Genome Res., 1995, 5(1), 5-12.
[6]
Isse, N.; Ogawa, Y.; Tamura, N.; Masuzaki, H.; Mori, K.; Okazaki, T.; Satoh, N.; Shigemoto, M.; Yoshimasa, Y.; Nishi, S. Structural organization and chromosomal assignment of the human obese gene. J. Biol. Chem., 1995, 270(46), 27728-27733.
[7]
Denver, R.J.; Bonett, R.M.; Boorse, G.C. Evolution of leptin structure and function. Neuroendocrinology, 2011, 94(1), 21-38.
[8]
Huising, M.O.; Kruiswijk, C.P.; Flik, G. Phylogeny and evolution of class-I helical cytokines. J. Endocrinol., 2006, 189(1), 1-25.
[9]
Zhang, F.; Basinski, M.B.; Beals, J.M.; Briggs, S.L.; Churgay, L.M.; Clawson, D.K.; DiMarchi, R.D.; Furman, T.C.; Hale, J.E.; Hsiung, H.M.; Schoner, B.E.; Smith, D.P.; Zhang, X.Y.; Wery, J.P.; Schevitz, R.W. Crystal structure of the obese protein leptin-E100. Nature, 1997, 387(6629), 206-209.
[10]
Frederich, R.C.; Hamann, A.; Anderson, S.; Löllmann, B.; Lowell, B.B.; Flier, J.S. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med., 1995, 1(12), 1311-1314.
[11]
Schwartz, M.W.; Peskind, E.; Raskind, M.; Boyko, E.J.; Porte, D. Jr Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat. Med., 1996, 2(5), 589-593.
[12]
Zhang, Y.; Guo, K.Y.; Diaz, P.A.; Heo, M.; Leibel, R.L. Determinants of leptin gene expression in fat depots of lean mice. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282(1), R226-R234.
[13]
Saladin, R.; De Vos, P.; Guerre-Millo, M.; Leturque, A.; Girard, J.; Staels, B.; Auwerx, J. Transient increase in obese gene expression after food intake or insulin administration. Nature, 1995, 377(6549), 527-529.
[14]
Harris, R.B.; Ramsay, T.G.; Smith, S.R.; Bruch, R.C. Early and late stimulation of ob mRNA expression in meal-fed and overfed rats. J. Clin. Invest., 1996, 97(9), 2020-2026.
[15]
MacDougald, O.A.; Hwang, C.S.; Fan, H.; Lane, M.D. Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. USA, 1995, 92(20), 9034-9037.
[16]
Zhang, Y.; Matheny, M.; Zolotukhin, S.; Tumer, N.; Scarpace, P.J. Regulation of adiponectin and leptin gene expression in white and brown adipose tissues: influence of beta3-adrenergic agonists, retinoic acid, leptin and fasting. Biochim. Biophys. Acta, 2002, 1584(2-3), 115-122.
[17]
Ahima, R.S.; Prabakaran, D.; Mantzoros, C.; Qu, D.; Lowell, B.; Maratos-Flier, E.; Flier, J.S. Role of leptin in the neuroendocrine response to fasting. Nature, 1996, 382(6588), 250-252.
[18]
Rosenbaum, M.; Goldsmith, R.; Bloomfield, D.; Magnano, A.; Weimer, L.; Heymsfield, S.; Gallagher, D.; Mayer, L.; Murphy, E.; Leibel, R.L. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest., 2005, 115(12), 3579-3586.
[19]
Cinti, S.; Frederich, R.C.; Zingaretti, M.C.; De Matteis, R.; Flier, J.S.; Lowell, B.B. Immunohistochemical localization of leptin and uncoupling protein in white and brown adipose tissue. Endocrinology, 1997, 138(2), 797-804.
[20]
Dessolin, S.; Schalling, M.; Champigny, O.; Lönnqvist, F.; Ailhaud, G.; Dani, C.; Ricquier, D. Leptin gene is expressed in rat brown adipose tissue at birth. FASEB J., 1997, 11(5), 382-387.
[21]
Moinat, M.; Deng, C.; Muzzin, P.; Assimacopoulos-Jeannet, F.; Seydoux, J.; Dulloo, A.G.; Giacobino, J.P. Modulation of obese gene expression in rat brown and white adipose tissues. FEBS Lett., 1995, 373(2), 131-134.
[22]
Münzberg, H.; Morrison, C.D. Structure, production and signaling of leptin. Metabolism, 2015, 64(1), 13-23.
[23]
Hassink, S.G.; de Lancey, E.; Sheslow, D.V.; Smith-Kirwin, S.M.; O’Connor, D.M.; Considine, R.V.; Opentanova, I.; Dostal, K.; Spear, M.L.; Leef, K.; Ash, M.; Spitzer, A.R.; Funanage, V.L. Placental leptin: an important new growth factor in intrauterine and neonatal development? Pediatrics, 1997, 100(1), E1.
[24]
Hoggard, N.; Hunter, L.; Duncan, J.S.; Williams, L.M.; Trayhurn, P.; Mercer, J.G. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proc. Natl. Acad. Sci. USA, 1997, 94(20), 11073-11078.
[25]
Masuzaki, H.; Ogawa, Y.; Sagawa, N.; Hosoda, K.; Matsumoto, T.; Mise, H.; Nishimura, H.; Yoshimasa, Y.; Tanaka, I.; Mori, T.; Nakao, K. Nonadipose tissue production of leptin: leptin as a novel placenta-derived hormone in humans. Nat. Med., 1997, 3(9), 1029-1033.
[26]
Spicer, L.J.; Francisco, C.C. The adipose obese gene product, leptin: evidence of a direct inhibitory role in ovarian function. Endocrinology, 1997, 138(8), 3374-3379.
[27]
Ashworth, C.J.; Hoggard, N.; Thomas, L.; Mercer, J.G.; Wallace, J.M.; Lea, R.G. Placental leptin. Rev. Reprod., 2000, 5(1), 18-24.
[28]
Bodner, J.; Ebenbichler, C.F.; Wolf, H.J.; Müller-Holzner, E.; Stanzl, U.; Gander, R.; Huter, O.; Patsch, J.R. Leptin receptor in human term placenta: in situ hybridization and immunohistochemical localization. Placenta, 1999, 20(8), 677-682.
[29]
Señarís, R.; Garcia-Caballero, T.; Casabiell, X.; Gallego, R.; Castro, R.; Considine, R.V.; Dieguez, C.; Casanueva, F.F. Synthesis of leptin in human placenta. Endocrinology, 1997, 138(10), 4501-4504.
[30]
Hoggard, N.; Hunter, L.; Trayhurn, P.; Williams, L.M.; Mercer, J.G. Leptin and reproduction. Proc. Nutr. Soc., 1998, 57(3), 421-427.
[31]
Bado, A.; Levasseur, S.; Attoub, S.; Kermorgant, S.; Laigneau, J.P.; Bortoluzzi, M.N.; Moizo, L.; Lehy, T.; Guerre-Millo, M.; Le Marchand-Brustel, Y.; Lewin, M.J. The stomach is a source of leptin. Nature, 1998, 394(6695), 790-793.
[32]
Wang, J.; Liu, R.; Hawkins, M.; Barzilai, N.; Rossetti, L. A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature, 1998, 393(6686), 684-688.
[33]
Jin, L.; Zhang, S.; Burguera, B.G.; Couce, M.E.; Osamura, R.Y.; Kulig, E.; Lloyd, R.V. Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology, 2000, 141(1), 333-339.
[34]
Smith-Kirwin, S.M.; O’Connor, D.M.; De Johnston, J.; Lancey, E.D.; Hassink, S.G.; Funanage, V.L. Leptin expression in human mammary epithelial cells and breast milk. J. Clin. Endocrinol. Metab., 1998, 83(5), 1810-1813.
[35]
Laharrague, P.; Larrouy, D.; Fontanilles, A.M.; Truel, N.; Campfield, A.; Tenenbaum, R.; Galitzky, J.; Corberand, J.X.; Pénicaud, L.; Casteilla, L. High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J., 1998, 12(9), 747-752.
[36]
Soukas, A.; Cohen, P.; Friedman, J.M. Gene expression profile induced by leptin in white adipose tissue and liver. Nat. Genet., 1999, 23, 75.
[37]
Mouzaki, A.; Panagoulias, I.; Dervilli, Z.; Zolota, V.; Spadidea, P.; Rodi, M.; Panitsas, F.P.; Lagadinou, E.; de Lastic, A.L.; Georgakopoulos, T. Expression patterns of leptin receptor (OB-R) isoforms and direct in vitro effects of recombinant leptin on OB-R, leptin expression and cytokine secretion by human hematopoietic malignant cells. Cytokine, 2009, 48(3), 203-211.
[38]
Lee, M.J.; Fried, S.K. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion. Am. J. Physiol. Endocrinol. Metab., 2009, 296(6), E1230-E1238.
[39]
de la Brousse, F.C.; Shan, B.; Chen, J.L. Identification of the promoter of the mouse obese gene. Proc. Natl. Acad. Sci. USA, 1996, 93(9), 4096-4101.
[40]
Gong, D.W.; Bi, S.; Pratley, R.E.; Weintraub, B.D. Genomic structure and promoter analysis of the human obese gene. J. Biol. Chem., 1996, 271(8), 3971-3974.
[41]
He, Y.; Chen, H.; Quon, M.J.; Reitman, M. The mouse obese gene. Genomic organization, promoter activity, and activation by CCAAT/enhancer-binding protein alpha. J. Biol. Chem., 1995, 270(48), 28887-28891.
[42]
Hwang, C.S.; Mandrup, S.; MacDougald, O.A.; Geiman, D.E.; Lane, M.D. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha. Proc. Natl. Acad. Sci. USA, 1996, 93(2), 873-877.
[43]
Kim, J.B.; Sarraf, P.; Wright, M.; Yao, K.M.; Mueller, E.; Solanes, G.; Lowell, B.B.; Spiegelman, B.M. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest., 1998, 101(1), 1-9.
[44]
Miller, S.G.; De Vos, P.; Guerre-Millo, M.; Wong, K.; Hermann, T.; Staels, B.; Briggs, M.R.; Auwerx, J. The adipocyte specific transcription factor C/EBPalpha modulates human ob gene expression. Proc. Natl. Acad. Sci. USA, 1996, 93(11), 5507-5511.
[45]
Fuke, T.; Yoshizaki, T.; Kondo, M.; Morino, K.; Obata, T.; Ugi, S.; Nishio, Y.; Maeda, S.; Kashiwagi, A.; Maegawa, H. Transcription factor AP-2beta inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. Int. J. Obes., 2010, 34(4), 670-678.
[46]
Wrann, C.D.; Eguchi, J.; Bozec, A.; Xu, Z.; Mikkelsen, T.; Gimble, J.; Nave, H.; Wagner, E.F.; Ong, S.E.; Rosen, E.D. FOSL2 promotes leptin gene expression in human and mouse adipocytes. J. Clin. Invest., 2012, 122(3), 1010-1021.
[47]
Wrann, C.D.; Rosen, E.D. New insights into adipocyte-specific leptin gene expression. Adipocyte, 2012, 1(3), 168-172.
[48]
Lönnqvist, F.; Arner, P.; Nordfors, L.; Schalling, M. Overexpression of the obese (ob) gene in adipose tissue of human obese subjects. Nat. Med., 1995, 1(9), 950-953.
[49]
Maffei, M.; Halaas, J.; Ravussin, E.; Pratley, R.E.; Lee, G.H.; Zhang, Y.; Fei, H.; Kim, S.; Lallone, R.; Ranganathan, S. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med., 1995, 1(11), 1155-1161.
[50]
Fried, S.K.; Ricci, M.R.; Russell, C.D.; Laferrère, B. Regulation of leptin production in humans. J. Nutr., 2000, 130(12), 3127S-3131S.
[51]
Rayner, D.V.; Trayhurn, P. Regulation of leptin production: sympathetic nervous system interactions. J. Mol. Med. (Berl.), 2001, 79(1), 8-20.
[52]
Grunfeld, C.; Zhao, C.; Fuller, J.; Pollack, A.; Moser, A.; Friedman, J.; Feingold, K.R. Endotoxin and cytokines induce expression of leptin, the ob gene product, in hamsters. J. Clin. Invest., 1996, 97(9), 2152-2157.
[53]
Sarraf, P.; Frederich, R.C.; Turner, E.M.; Ma, G.; Jaskowiak, N.T.; Rivet, D.J., III; Flier, J.S.; Lowell, B.B.; Fraker, D.L.; Alexander, H.R. Multiple cytokines and acute inflammation raise mouse leptin levels: potential role in inflammatory anorexia. J. Exp. Med., 1997, 185(1), 171-175.
[54]
Bradley, R.L.; Cheatham, B. Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes, 1999, 48(2), 272-278.
[55]
Buyse, M.; Viengchareun, S.; Bado, A.; Lombès, M. Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. FASEB J., 2001, 15(8), 1357-1366.
[56]
Dagogo-Jack, S. Human leptin regulation and promise in pharmacotherapy. Curr. Drug Targets, 2001, 2(2), 181-195.
[57]
Mueller, W.M.; Gregoire, F.M.; Stanhope, K.L.; Mobbs, C.V.; Mizuno, T.M.; Warden, C.H.; Stern, J.S.; Havel, P.J. Evidence that glucose metabolism regulates leptin secretion from cultured rat adipocytes. Endocrinology, 1998, 139(2), 551-558.
[58]
Wang, J.; Liu, R.; Liu, L.; Chowdhury, R.; Barzilai, N.; Tan, J.; Rossetti, L. The effect of leptin on Lep expression is tissue-specific and nutritionally regulated. Nat. Med., 1999, 5(8), 895-899.
[59]
Lee, M.J.; Yang, R.Z.; Gong, D.W.; Fried, S.K. Feeding and insulin increase leptin translation. Importance of the leptin mRNA untranslated regions. J. Biol. Chem., 2007, 282(1), 72-80.
[60]
Barthel, A.; Kohn, A.D.; Luo, Y.; Roth, R.A. A constitutively active version of the Ser/Thr kinase Akt induces production of the ob gene product, leptin, in 3T3-L1 adipocytes. Endocrinology, 1997, 138(8), 3559-3562.
[61]
Chakrabarti, P.; Anno, T.; Manning, B.D.; Luo, Z.; Kandror, K.V. The mammalian target of rapamycin complex 1 regulates leptin biosynthesis in adipocytes at the level of translation: the role of the 5′-untranslated region in the expression of leptin messenger ribonucleic acid. Mol. Endocrinol., 2008, 22(10), 2260-2267.
[62]
Lynch, C.J.; Gern, B.; Lloyd, C.; Hutson, S.M.; Eicher, R.; Vary, T.C. Leucine in food mediates some of the postprandial rise in plasma leptin concentrations. Am. J. Physiol. Endocrinol. Metab., 2006, 291(3), E621-E630.
[63]
Xu, J.; Ji, J.; Yan, X.H. Cross-talk between AMPK and mTOR in regulating energy balance. Crit. Rev. Food Sci. Nutr., 2012, 52(5), 373-381.
[64]
Slieker, L.J.; Sloop, K.W.; Surface, P.L.; Kriauciunas, A.; LaQuier, F.; Manetta, J.; Bue-Valleskey, J.; Stephens, T.W. Regulation of expression of ob mRNA and protein by glucocorticoids and cAMP. J. Biol. Chem., 1996, 271(10), 5301-5304.
[65]
Szkudelski, T.; Nowicka, E.; Szkudelska, K. Leptin secretion and protein kinase A activity. Physiol. Res., 2005, 54(1), 79-85.
[66]
Cong, L.; Chen, K.; Li, J.; Gao, P.; Li, Q.; Mi, S.; Wu, X.; Zhao, A.Z. Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes. Biochem. J., 2007, 403(3), 519-525.
[67]
Gettys, T.W.; Harkness, P.J.; Watson, P.M. The beta 3-adrenergic receptor inhibits insulin-stimulated leptin secretion from isolated rat adipocytes. Endocrinology, 1996, 137(9), 4054-4057.
[68]
Degerman, E.; Belfrage, P.; Manganiello, V.C. Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). J. Biol. Chem., 1997, 272(11), 6823-6826.
[69]
Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol., 2000, 12(2), 174-179.
[70]
Manganiello, V.C.; Degerman, E.; Smith, C.J.; Vasta, V.; Tornqvist, H.; Belfrage, P. Mechanisms for activation of the rat adipocyte particulate cyclic-GMP-inhibited cyclic AMP phosphodiesterase and its importance in the antilipolytic action of insulin. Adv. Second Messenger Phosphoprotein Res., 1992, 25, 147-164.
[71]
Lin, T.A.; Lawrence, J.C., Jr Control of the translational regulators PHAS-I and PHAS-II by insulin and cAMP in 3T3-L1 adipocytes. J. Biol. Chem., 1996, 271(47), 30199-30204.
[72]
Scott, P.H.; Lawrence, J.C., Jr Attenuation of mammalian target of rapamycin activity by increased cAMP in 3T3-L1 adipocytes. J. Biol. Chem., 1998, 273(51), 34496-34501.
[73]
Graves, L.M.; Bornfeldt, K.E.; Argast, G.M.; Krebs, E.G.; Kong, X.; Lin, T.A.; Lawrence, J.C., Jr cAMP- and rapamycin-sensitive regulation of the association of eukaryotic initiation factor 4E and the translational regulator PHAS-I in aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA, 1995, 92(16), 7222-7226.
[74]
Gauthier, M.S.; Miyoshi, H.; Souza, S.C.; Cacicedo, J.M.; Saha, A.K.; Greenberg, A.S.; Ruderman, N.B. AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J. Biol. Chem., 2008, 283(24), 16514-16524.
[75]
Koh, H.J.; Hirshman, M.F.; He, H.; Li, Y.; Manabe, Y.; Balschi, J.A.; Goodyear, L.J. Adrenaline is a critical mediator of acute exercise-induced AMP-activated protein kinase activation in adipocytes. Biochem. J., 2007, 403(3), 473-481.
[76]
Yin, W.; Mu, J.; Birnbaum, M.J. Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis in 3T3-L1 adipocytes. J. Biol. Chem., 2003, 278(44), 43074-43080.
[77]
Kim, J.M.; Choi, J.S.; Kim, Y.H.; Jin, S.H.; Lim, S.; Jang, H.J.; Kim, K.T.; Ryu, S.H.; Suh, P.G. An activator of the cAMP/PKA/CREB pathway promotes osteogenesis from human mesenchymal stem cells. J. Cell. Physiol., 2013, 228(3), 617-626.
[78]
Yang, D.C.; Tsay, H.J.; Lin, S.Y.; Chiou, S.H.; Li, M.J.; Chang, T.J.; Hung, S.C. cAMP/PKA regulates osteogenesis, adipogenesis and ratio of RANKL/OPG mRNA expression in mesenchymal stem cells by suppressing leptin. PLoS One, 2008, 3(2), e1540.
[79]
Aubry, J.M. CRF system and mood disorders. J. Chem. Neuroanat., 2013, 54, 20-24.
[80]
Eckart, K.; Radulovic, J.; Radulovic, M.; Jahn, O.; Blank, T.; Stiedl, O.; Spiess, J. Actions of CRF and its analogs. Curr. Med. Chem., 1999, 6(11), 1035-1053.
[81]
Elenkov, I.J.; Webster, E.L.; Torpy, D.J.; Chrousos, G.P. Stress, corticotropin-releasing hormone, glucocorticoids, and the immune/inflammatory response: acute and chronic effects. Ann. N. Y. Acad. Sci., 1999, 876, 1-11.
[82]
Kovács, K.J. CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J. Chem. Neuroanat., 2013, 54, 25-33.
[83]
Vale, W.; Spiess, J.; Rivier, C.; Rivier, J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1981, 213(4514), 1394-1397.
[84]
Perrin, M.H.; Vale, W.W. Corticotropin releasing factor receptors and their ligand family. Ann. N. Y. Acad. Sci., 1999, 885, 312-328.
[85]
Potter, E.; Sutton, S.; Donaldson, C.; Chen, R.; Perrin, M.; Lewis, K.; Sawchenko, P.E.; Vale, W. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc. Natl. Acad. Sci. USA, 1994, 91(19), 8777-8781.
[86]
Van Pett, K.; Viau, V.; Bittencourt, J.C.; Chan, R.K.; Li, H.Y.; Arias, C.; Prins, G.S.; Perrin, M.; Vale, W.; Sawchenko, P.E. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J. Comp. Neurol., 2000, 428(2), 191-212.
[87]
Timpl, P.; Spanagel, R.; Sillaber, I.; Kresse, A.; Reul, J.M.; Stalla, G.K.; Blanquet, V.; Steckler, T.; Holsboer, F.; Wurst, W. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet., 1998, 19(2), 162-166.
[88]
Bonfiglio, J.J.; Inda, C.; Refojo, D.; Holsboer, F.; Arzt, E.; Silberstein, S. The corticotropin-releasing hormone network and the hypothalamic-pituitary-adrenal axis: molecular and cellular mechanisms involved. Neuroendocrinology, 2011, 94(1), 12-20.
[89]
Catalano, R.D.; Kyriakou, T.; Chen, J.; Easton, A.; Hillhouse, E.W. Regulation of corticotropin-releasing hormone type 2 receptors by multiple promoters and alternative splicing: identification of multiple splice variants. Mol. Endocrinol., 2003, 17(3), 395-410.
[90]
Bakshi, V.P.; Newman, S.M.; Smith-Roe, S.; Jochman, K.A.; Kalin, N.H. Stimulation of lateral septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to CRF1 receptors in basolateral amygdala. J. Neurosci., 2007, 27(39), 10568-10577.
[91]
Chen, P.; Hover, C.V.; Lindberg, D.; Li, C. Central urocortin 3 and type 2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: critical involvement of the ventromedial hypothalamus. Front. Endocrinol. (Lausanne), 2013, 3, 180.
[92]
Yakabi, K.; Noguchi, M.; Ohno, S.; Ro, S.; Onouchi, T.; Ochiai, M.; Takabayashi, H.; Takayama, K.; Harada, Y.; Sadakane, C.; Hattori, T. Urocortin 1 reduces food intake and ghrelin secretion via CRF(2) receptors. Am. J. Physiol. Endocrinol. Metab., 2011, 301(1), E72-E82.
[93]
Rassouli, O.; Liapakis, G.; Lazaridis, I.; Sakellaris, G.; Gkountelias, K.; Gravanis, A.; Margioris, A.N.; Karalis, K.P.; Venihaki, M. A novel role of peripheral corticotropin-releasing hormone (CRH) on dermal fibroblasts. PLoS One, 2011, 6(7), e21654.
[94]
Slominski, A.; Roloff, B.; Curry, J.; Dahiya, M.; Szczesniewski, A.; Wortsman, J. The skin produces urocortin. J. Clin. Endocrinol. Metab., 2000, 85(2), 815-823.
[95]
Chen, A.; Brar, B.; Choi, C.S.; Rousso, D.; Vaughan, J.; Kuperman, Y.; Kim, S.N.; Donaldson, C.; Smith, S.M.; Jamieson, P.; Li, C.; Nagy, T.R.; Shulman, G.I.; Lee, K.F.; Vale, W. Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle. Proc. Natl. Acad. Sci. USA, 2006, 103(44), 16580-16585.
[96]
Solinas, G.; Summermatter, S.; Mainieri, D.; Gubler, M.; Montani, J.P.; Seydoux, J.; Smith, S.R.; Dulloo, A.G. Corticotropin-releasing hormone directly stimulates thermogenesis in skeletal muscle possibly through substrate cycling between de novo lipogenesis and lipid oxidation. Endocrinology, 2006, 147(1), 31-38.
[97]
Tsatsanis, C.; Dermitzaki, E.; Venihaki, M.; Chatzaki, E.; Minas, V.; Gravanis, A.; Margioris, A.N. The corticotropin-releasing factor (CRF) family of peptides as local modulators of adrenal function. Cell. Mol. Life Sci., 2007, 64(13), 1638-1655.
[98]
Li, J.; Qi, D.; Cheng, H.; Hu, X.; Miller, E.J.; Wu, X.; Russell, K.S.; Mikush, N.; Zhang, J.; Xiao, L.; Sherwin, R.S.; Young, L.H. Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart. Proc. Natl. Acad. Sci. USA, 2013, 110(40), 16133-16138.
[99]
Grammatopoulos, D.K.; Dai, Y.; Randeva, H.S.; Levine, M.A.; Karteris, E.; Easton, A.J.; Hillhouse, E.W. A novel spliced variant of the type 1 corticotropin-releasing hormone receptor with a deletion in the seventh transmembrane domain present in the human pregnant term myometrium and fetal membranes. Mol. Endocrinol., 1999, 13(12), 2189-2202.
[100]
Grammatopoulos, D.K.; Randeva, H.S.; Levine, M.A.; Kanellopoulou, K.A.; Hillhouse, E.W. Rat cerebral cortex corticotropin-releasing hormone receptors: evidence for receptor coupling to multiple G-proteins. J. Neurochem., 2001, 76(2), 509-519.
[101]
Ladds, G.; Davis, K.; Hillhouse, E.W.; Davey, J. Modified yeast cells to investigate the coupling of G protein-coupled receptors to specific G proteins. Mol. Microbiol., 2003, 47(3), 781-792.
[102]
Karteris, E.; Grammatopoulos, D.; Randeva, H.; Hillhouse, E.W. Signal transduction characteristics of the corticotropin-releasing hormone receptors in the feto-placental unit. J. Clin. Endocrinol. Metab., 2000, 85(5), 1989-1996.
[103]
Ulisse, S.; Fabbri, A.; Dufau, M.L. Corticotropin-releasing factor receptors and actions in rat Leydig cells. J. Biol. Chem., 1989, 264(4), 2156-2163.
[104]
Inda, C.; Dos Santos Claro, P.A.; Bonfiglio, J.J.; Senin, S.A.; Maccarrone, G.; Turck, C.W.; Silberstein, S. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J. Cell Biol., 2016, 214(2), 181-195.
[105]
Inda, C.; Bonfiglio, J.J.; Dos Santos Claro, P.A.; Senin, S.A.; Armando, N.G.; Deussing, J.M.; Silberstein, S. cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells. Sci. Rep., 2017, 7(1), 1944.
[106]
Grammatopoulos, D.K. Insights into mechanisms of corticotropin-releasing hormone receptor signal transduction. Br. J. Pharmacol., 2012, 166(1), 85-97.
[107]
Markovic, D.; Punn, A.; Lehnert, H.; Grammatopoulos, D.K. Molecular determinants and feedback circuits regulating type 2 CRH receptor signal integration. Biochim. Biophys. Acta, 2011, 1813(5), 896-907.
[108]
Reutenauer-Patte, J.; Boittin, F.X.; Patthey-Vuadens, O.; Ruegg, U.T.; Dorchies, O.M. Urocortins improve dystrophic skeletal muscle structure and function through both PKA- and Epac-dependent pathways. Am. J. Pathol., 2012, 180(2), 749-762.
[109]
Van Kolen, K.; Dautzenberg, F.M.; Verstraeten, K.; Royaux, I.; De Hoogt, R.; Gutknecht, E.; Peeters, P.J. Corticotropin releasing factor-induced ERK phosphorylation in AtT20 cells occurs via a cAMP-dependent mechanism requiring EPAC2. Neuropharmacology, 2010, 58(1), 135-144.
[110]
Dermitzaki, E.; Liapakis, G.; Androulidaki, A.; Venihaki, M.; Melissas, J.; Tsatsanis, C.; Margioris, A.N. Corticotrophin-Releasing Factor (CRF) and the urocortins are potent regulators of the inflammatory phenotype of human and mouse white adipocytes and the differentiation of mouse 3T3L1 pre-adipocytes. PLoS One, 2014, 9(5), e97060.
[111]
Seres, J.; Bornstein, S.R.; Seres, P.; Willenberg, H.S.; Schulte, K.M.; Scherbaum, W.A.; Ehrhart-Bornstein, M. Corticotropin-releasing hormone system in human adipose tissue. J. Clin. Endocrinol. Metab., 2004, 89(2), 965-970.
[112]
Friedberg, M.; Zoumakis, E.; Hiroi, N.; Bader, T.; Chrousos, G.P.; Hochberg, Z. Modulation of 11 beta-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. J. Clin. Endocrinol. Metab., 2003, 88(1), 385-393.
[113]
Xiong, Y.; Qu, Z.; Chen, N.; Gong, H.; Song, M.; Chen, X.; Du, J.; Xu, C. The local corticotropin-releasing hormone receptor 2 signalling pathway partly mediates hypoxia-induced increases in lipolysis via the cAMP-protein kinase A signalling pathway in white adipose tissue. Mol. Cell. Endocrinol., 2014, 392(1-2), 106-114.
[114]
Costa, A.; Poma, A.; Martignoni, E.; Nappi, G.; Ur, E.; Grossman, A. Stimulation of corticotrophin-releasing hormone release by the obese (ob) gene product, leptin, from hypothalamic explants. Neuroreport, 1997, 8(5), 1131-1134.
[115]
Heiman, M.L.; Ahima, R.S.; Craft, L.S.; Schoner, B.; Stephens, T.W.; Flier, J.S. Leptin inhibition of the hypothalamic-pituitary-adrenal axis in response to stress. Endocrinology, 1997, 138(9), 3859-3863.
[116]
Karvela, A.; Rojas-Gil, A.P.; Samkinidou, E.; Papadaki, H.; Pappa, A.; Georgiou, G.; Spiliotis, B.E. Endocannabinoid (EC) receptor, CB1, and EC enzymes’ expression in primary adipocyte cultures of lean and obese pre-pubertal children in relation to adiponectin and insulin. J. Pediatr. Endocrinol. Metab., 2010, 23(10), 1011-1024.

© 2025 Bentham Science Publishers | Privacy Policy