Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

PPARγ Agonistic Activity of Sulphonylureas

Author(s): Debjani Banerjee, Harnovdeep Singh Bharaj and Moulinath Banerjee*

Volume 19, Issue 4, 2019

Page: [467 - 471] Pages: 5

DOI: 10.2174/1871530319666190103125534

Price: $65

Abstract

Background: Sulphonylureas (SU) are known to cause weight gain. Some investigators have reported increased insulin sensitivity with some sulphonylurea agents.

Objective: To review available evidence of SU agents having PPARγ agonist activity.

Methods: We searched online databases of PubMed®, Embase®, Google Scholar® and Web of Science® as per current guidance, published in English, between 1st January 1970 and 31st December 2017. The search found 6 articles.

Results: None of the 1st generation SU drugs have any demonstrable PPARγ agonist activity. Most of the 2nd generation SU agents had a positive correlation between their concentration and PPARγ agonist activity except Gliclazide. The demonstrated PPARγ agonist activity was maximum in experiments with Glimepiride and Gliquidone and was seen in these in-vitro experiments at concentrations which were pharmacologically achievable in-vivo. The PPARγ agonist activity may be responsible for some sideeffect of the SU agents as weight gain. On the contrary, the clinical efficacy of the thiazolidinediones could theoretically be reduced when used in combination with the SUs with significant PPARγ agonist activity.

Conclusion: The PPARγ agonist activity demonstrated in vitro experiments may have clinical connotations.

Keywords: Sulphonylurea, thiazolidinediones, diabetes, PPARγ, type 2 diabetes, p-amino-sulphonamide-isopropyl-thiodiazole.

Graphical Abstract

[1]
Janbon, M.; Chaptal, J.; Vedel, A.; Schaap, J. Accidents hypoglycémiques graves par un sulfamidothiodiazol (le VK 57 ou 2254 RP). Montp. Med., 1942, 441, 21-22.
[2]
Panten, U.; Schwanstecher, M.; Schwanstecher, C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp. Clin. Endocrinol. Diabetes, 1996, 104(1), 1-9.
[3]
Shigeto, M.; Katsura, M.; Matsuda, M.; Ohkuma, S.; Kaku, K. Nateglinide and mitiglinide, but not sulfonylureas, induce insulin secretion through a mechanism mediated by calcium release from endoplasmic reticulum. J. Pharmacol. Exp. Ther., 2007, 322(1), 1-7.
[4]
Purnell, J.Q.; Weyer, C. Weight effect of current and experimental drugs for diabetes mellitus: from promotion to alleviation of obesity. Treat. Endocrinol., 2003, 2(1), 33-47.
[5]
Kabadi, M.U.; Kabadi, U.M. Effects of glimepiride on insulin secretion and sensitivity in patients with recently diagnosed type 2 diabetes mellitus. Clin. Ther., 2004, 26(1), 63-69.
[6]
Chang, T.C.; Wang, L.M.; Cheng, C.Y.; Kuo, H.F.; Liu, P.C.; Ho, L.T. The action of gliclazide on insulin secretion and insulin sensitivity in non-obese non-insulin dependent diabetic patients. Zhonghua Yi Xue Za Zhi (Taipei), 1990, 46(2), 79-85.
[7]
Ma, A.; Kamp, M.; Bird, D.; Howlett, V.; Cameron, D.P. The effects of long term gliclazide administration on insulin secretion and insulin sensitivity. Aust. N. Z. J. Med., 1989, 19(1), 44-49.
[8]
Groop, L.; Groop, P.H.; Stenman, S.; Saloranta, C.; Tötterman, K.J.; Fyhrquist, F.; Melander, A. Comparison of pharmacokinetics, metabolic effects and mechanisms of action of glyburide and glipizide during long-term treatment. Diabetes Care, 1987, 10(6), 671-678.
[9]
Bolinder, J.; Ostman, J.; Arner, P. Reversal of insulin resistance in adipose tissue of non-insulin-dependent diabetics by treatment with diet and sulphonylurea. Acta Endocrinol. (Copenh.), 1985, 108(1), 85-90.
[10]
Mandarino, L.J.; Gerich, J.E. Prolonged sulfonylurea administration decreases insulin resistance and increases insulin secretion in non-insulin-dependent diabetes mellitus: evidence for improved insulin action at a post receptor site in hepatic as well as extrahepatic tissues. Diabetes Care, 1984, 7(Suppl. 1), 89-99.
[11]
Groop, L.; Wåhlin-Boll, E.; Groop, P.H.; Tötterman, K.J.; Melander, A.; Tolppanen, E.M.; Fyhrqvist, F. Pharmacokinetics and metabolic effects of glibenclamide and glipizide in type 2 diabetics. Eur. J. Clin. Pharmacol., 1985, 28(6), 697-704.
[12]
Gutniak, M.; Karlander, S.G.; Efendić, S. Glyburide decreases insulin requirement, increases beta-cell response to mixed meal, and does not affect insulin sensitivity: effects of short- and long-term combined treatment in secondary failure to sulfonylurea. Diabetes Care, 1987, 10(5), 545-554.
[13]
Tsunekawa, T.; Hayashi, T.; Suzuki, Y.; Matsui-Hirai, H.; Kano, H.; Fukatsu, A.; Nomura, N.; Miyazaki, A.; Iguchi, A. Plasma adiponectin plays an important role in improving insulin resistance with glimepiride in elderly type 2 diabetic subjects. Diabetes Care, 2003, 26(2), 285-289.
[14]
Tyagi, S.; Gupta, P.; Saini, A.S.; Kaushal, C.; Sharma, S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res., 2011, 2(4), 236-240.
[15]
Berger, J.P.; Akiyama, T.E.; Meinke, P.T. PPARs: therapeutic targets for metabolic disease. Trends Pharmacol. Sci., 2005, 26(5), 244-251.
[16]
Akiyama, T.E.; Meinke, P.T.; Berger, J.P. PPAR ligands: potential therapies for metabolic syndrome. Curr. Diab. Rep., 2005, 5(1), 45-52.
[17]
Parulkar, A.A.; Pendergrass, M.L.; Granda-Ayala, R.; Lee, T.R.; Fonseca, V.A. Nonhypoglycemic effects of thiazolidinediones. Ann. Intern. Med., 2001, 134(1), 61-71.
[18]
Fonseca, V. Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am. J. Med., 2003, 115(Suppl. 8A), 42S-48S.
[19]
Atkinson, K.M.; Koenka, A.C.; Sanchez, C.E.; Moshontz, H.; Cooper, H. Reporting standards for literature searches and report inclusion criteria: making research syntheses more transparent and easy to replicate. Res. Synth. Methods, 2015, 6(1), 87-95.
[20]
Inukai, K.; Watanabe, M.; Nakashima, Y.; Takata, N.; Isoyama, A.; Sawa, T.; Kurihara, S.; Awata, T.; Katayama, S. Glimepiride enhances intrinsic peroxisome proliferator-activated receptor-gamma activity in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 2005, 328(2), 484-490.
[21]
Fukuen, S.; Iwaki, M.; Yasui, A.; Makishima, M.; Matsuda, M.; Shimomura, I. Sulfonylurea agents exhibit peroxisome proliferator-activated receptor gamma agonistic activity. J. Biol. Chem., 2005, 280(25), 23653-23659.
[22]
Scarsi, M.; Podvinec, M.; Roth, A.; Hug, H.; Kersten, S.; Albrecht, H.; Schwede, T.; Meyer, U.A.; Rücker, C. Sulfonylureas and glinides exhibit peroxisome proliferator-activated receptor gamma activity: A combined virtual screening and biological assay approach. Mol. Pharmacol., 2007, 71(2), 398-406.
[23]
Nakano, N.; Miyazawa, N.; Sakurai, T.; Kizaki, T.; Kimoto, K.; Takahashi, K.; Ishida, H.; Takahashi, M.; Suzuki, K.; Ohno, H. Gliclazide inhibits proliferation but stimulates differentiation of white and brown adipocytes. J. Biochem., 2007, 142(5), 639-645.
[24]
Lee, K.W.; Ku, Y.H.; Kim, M.; Ahn, B.Y.; Chung, S.S.; Park, K.S. Effects of sulfonylureas on peroxisome proliferator-activated receptor activity and on glucose uptake by thiazolidinediones. Diabetes Metab. J., 2011, 35(4), 340-347.
[25]
Arrault, A.; Rocchi, S.; Picard, F.; Maurois, P.; Pirotte, B.; Vamecq, J. A short series of antidiabetic sulfonylureas exhibit multiple ligand PPARgamma-binding patterns. Biomed. Pharmacother., 2009, 63(1), 56-62.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy