[1]
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281-97.
[2]
Chen X. MicroRNA biogenesis and function in plants. FEBS Lett 2005; 579: 5923-31.
[3]
Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009; 136: 669-87.
[4]
Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006; 15(Spec No 1): R17-29.
[5]
Iwakawa HO, Tomari Y. Molecular insights into microRNA-mediated translational repression in plants. Mol Cell 2013; 52: 591-601.
[6]
Reinhart BJ, Weinstein EG, Rhoades MW, et al. MicroRNAs in plants. Genes Dev 2002; 16: 1616-26.
[7]
Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215-33.
[8]
Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 2006; 57: 19-53.
[9]
Sunkar R, Girke T, Jain PK, et al. Cloning and characterization of microRNAs from rice. Plant Cell 2005; 17: 1397-411.
[10]
Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 2004; 16: 2001-19.
[11]
Lu S, Sun Y-H, Shi R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 2005; 17: 2186-203.
[12]
Lai EC, Tomancak P, Williams RW, et al. Computational identification of Drosophila microRNA genes. Genome Biol 2003; 4: R42.
[13]
Berezikov E, Guryev V, van de Belt J, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005; 120: 21-4.
[14]
Grad Y, Aach J, Hayes GD, et al. Computational and experimental identification of C. elegans microRNAs. Mol Cell 2003; 11: 1253-63.
[15]
Barh D, Khan MS, Davies E. PlantOmics: the omics of plant scienceEd 1, Springer, 2015, pp XXV, 825.
[16]
Dhandapani V, Ramchiary N, Paul P, et al. Identification of potential microRNAs and their targets in Brassica rapa L. Mol Cells 2011; 32: 21-37.
[17]
Wang J, Yang X, Xu H, et al. Identification and characterization of microRNAs and their target genes in Brassica oleracea. Gene 2012; 505: 300-8.
[18]
Zhang B, Wang Q, Wang K, et al. Identification of cotton microRNAs and their targets. Gene 2007; 397: 26-37.
[19]
Zhang B, Pan X, Stellwag EJ. Identification of soybean microRNAs and their targets. Planta 2008; 229: 161-82.
[20]
Xie F, Frazier TP, Zhang B. Identification, characterization and expression analysis of microRNAs and their targets in the potato (Solanum tuberosum). Gene 2011; 473: 8-22.
[21]
Jin W, Li N, Zhang B, et al. Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res 2008; 121: 351-5.
[22]
Song C, Jia Q, Fang J, et al. Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biol 2010; 12: 927-34.
[23]
Xie F, Frazier TP, Zhang B. Identification and characterization of microRNAs and their targets in the bioenergy plant switch grass (Panicum virgatum). Planta 2010; 232: 417-34.
[24]
Wang J, Hou X, Yang X. Identification of conserved microRNAs and their targets in Chinese cabbage (Brassica rapa subsp. pekinensis). Genome 2011; 54: 1029-40.
[25]
Kochert G, Thomas Stalker H, Gimenes M, et al. RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 1996; 83: 1282-91.
[26]
Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 2014; 42: D68-73.
[27]
Li W, Godzik A. CD-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006; 22: 1658-9.
[28]
Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990; 215: 403-10.
[29]
Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol 1981; 147: 195-7.
[30]
Xue C, Li F, He T, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 2005; 6: 310.
[31]
Gao D, Middleton R, Rasko JE, et al. miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics 2013; 29: 3225-6.
[32]
Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res 2003; 31: 3429-31.
[33]
Fahlgren N, Carrington JC. miRNA target prediction in plants. Methods Mol Biol 2010; 592: 51-7.
[34]
Dai X, Zhao PX. psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 2011; 39: W155-9.
[35]
Conesa A, Götz S. Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics 2008; 2008: 619832.
[36]
Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2011; 2: 1-27.
[37]
Zhang BH, Pan XP, Cox SB, et al. Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 2006; 63: 246-54.
[38]
Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA 2003; 9: 277-9.
[39]
Seffens W, Digby D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res 1999; 27: 1578-84.
[40]
Chi X, Yang Q, Chen X, et al. Identification and characterization of microRNAs from peanut (Arachis hypogaea L.) by high-throughput sequencing. PLoS One 2011; 6: e27530.
[41]
Zhao CZ, Xia H, Frazier TP, et al. Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biol 2010; 10: 3.
[42]
Srivastava PK, Moturu TR, Pandey P, et al. A comparison of performance of plant miRNA target prediction tools and the characterization of features for genome-wide target prediction. BMC Genomics 2014; 15: 348.
[43]
Sreevidya VS, Srinivasa Rao C, Sullia SB, et al. Metabolic engineering of rice with soybean isoflavone synthase for promoting nodulation gene expression in rhizobia. J Exp Bot 2006; 57: 1957-69.
[44]
Moore KM, Knauft DA. The inheritance of high oleic acid in peanut. J Hered 1989; 80: 252-3.