[1]
Zayed, M.F.; Ahmed, E.A.; Omar, A.M.; Abdelrahim, A.S.; El-Adl, K. Design, synthesis, and biological evaluation studies of novel quinazolinone derivatives as anticonvulsant agents. Med. Chem. Res., 2013, 22, 1529-2050.
[2]
Zayed, M.F.; Hassan, M.H. Design, synthesis and biological evaluation studies of novel quinazoline derivatives as cytotoxic agents. Drug Res., 2013, 63, 210-215.
[3]
Zayed, M.F.; Hassan, M.H. Synthesis and biological evaluation studies of novel quinazolinone derivatives as antibacterial and anti-inflammatory agents. Saudi Pharm. J., 2014, 22, 157-162.
[4]
Laznicek, M.; Beno, P.; Waisser, K.; Kvetina, J. Quantitative chemical structure-pharmacokinetic data relationships. IV. Relationships between pharmacokinetic data and lipophilicity of iodine-substituted aromatic and aryl aliphatic compounds. Cesko-Sloven Farma, 1985, 34, 353-358.
[5]
Crivori, P.; Cruciani, G.; Carrupt, P.A.; Testa, B. Predicting blood- brain barrier permeation from three-dimensional molecular structure. J. Med. Chem., 2000, 11, 2204-2216.
[6]
Tiwary, B.K.; Pradhan, K.; Nanda, A.K.; Chakraborty, R. Implication of Quinazoline-4(3H)-ones in medicinal chemistry: A brief review. J. Chem. Biol. Ther, 2015, 1, 104.
[7]
Welch, W.M.; Ewing, F.E.; Huang, J.; Menniti, F.S.; Pagnozzi, M.J.; Kelly, K.; Seymour, P.A.; Guanowsky, V.; Guhan, S.; Guinn, M.R.; Critchett, D.; Lazzaro, J.; Ganong, A.H.; DeVries, K.M.; Staigers, T.L.; Chenard, B.L. Atropisomeric quinazolin-4-one derivatives are potent noncompetitive alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. Bioorg. Med. Chem. Lett., 2001, 11, 81-177.
[8]
Kumar, P.; Shrivastava, B.K.; Pandeya, S.N.; Stables, J.P. Design, synthesis and potential 6 Hz psychomotor seizure test activity of some novel 2-(substituted)-3-[substituted]aminoquinazolin-4(3H)-one. Eur. J. Med. Chem., 2011, 46, 1006-1018.
[9]
Zayed, M.F. New fluorinated quinazolinone derivatives as anticonvulsant agents. J. Taibah Univ. Med. Sci, 2014, 9, 104-109.
[11]
Ugale, V.G.; Bari, S.B. Structural exploration of Quinazolin-4(3H)-ones as anticonvulsants: Rational design, synthesis, pharmacological evaluation, and molecular docking studies. Arch. Pharm, 2016, 349, 817-888.
[12]
Porter, R.J.; Kupferberg, H.J. The anticonvulsant screening program of the national institute of neurological disorders and stroke, NIH: History and contributions to clinical care in the twentieth century and beyond. Neurochem. Res., 2017, 42, 1889-1893.
[13]
Jain, D.K.; Singh, A.; Patel, V.K.; Veerasamy, R.; Aggarwal, N.; Rajak, H. Drug design strategies for the discovery of novel anticonvulsants concerned with four site binding pharmacophoric model studies. Cent. Nerv. Syst. Agents Med. Chem., 2017, 17, 30.
[14]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[15]
Wang, Y.; Xiao, J.; Suzek, T.O.; Zhang, J.; Wang, J.; Bryant, S.H. PubChem: A public information system for analyzing bioactivities of small molecules. Nucleic Acids Res., 2009, 37, W623-W633.
[16]
Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, i, 1466-1474.
[17]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52, 3099-3105.
[18]
Lipinski, C.A.; Lombardo, L.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46, 3-26.
[19]
Pandeya, S.N.; Yogeeswari, P.; Stables, J.P. Synthesis and anticonvulsant activity of 4-bromophenyl substituted aryl semicarbazones. Eur. J. Med. Chem., 2000, 35, 879-886.
[20]
Vogel, H.G. Drug Discovery and evaluation: Pharmacological assay, Berlin; Springer-Verlag: New York, 2002, pp. 696-716.
[21]
Nishi, A.; Liu, F.; Matsuyama, S.; Hamada, M.; Higashi, H.; Nairn, A.C.; Greengard, P. Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc. Natl. Acad. Sci. USA, 2003, 100, 1322-1327.
[22]
McGeer, E.G.; Ikeda, H.; Asakura, T.; Wada, J.A. Lack of abnormality in brain aromatic amines in rats and mice susceptible to audiogenic seizure. J. Neurochem., 1969, 16, 945-950.
[23]
Krall, R.L.; Penry, J.K.; White, B.G.; Kupferberg, H.J.; Swinyard, E.A. Antiepileptic drug development: II. Anticonvulsant drug screening. Epilepsia, 1978, 19, 409-428.
[24]
Swinyard, E.A.; Woodhead, J.H.; White, H.S.; Franklin, M.R. Antiepileptic Drugs; Raven-Press: NewYork, 1989, Vol. III, pp. 989-995.
[25]
Yogeeswari, P.; Sriram, D.; Saraswat, V.; Vaigunda, R.J.; Mohan, K.M.; Murugesan, S.; Thirumurugan, R. Synthesis and anticonvulsant and neurotoxicity evaluation of N4-phthalimido phenyl (thio) semicarbazides. Eur. J. Pharm. Sci., 2003, 20, 341-346.
[26]
Forney, R.B.; Halpien, H.P.; Hughes, F.W. The comparative enhancement of Phenobarbital activity by co-administration of other anticonvulsants. Experientia, 1962, 18, 468.
[27]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28, 56-63.
[28]
Varley, H. Practical Clinical Biochemistry; CBS Publishers and Distributors: New Delhi, 1988, pp. 236-238.
[29]
Tietz, N. Fundamentals of clinical chemistry,, Saunders Company:
USA, 1957, pp. 68-72.
[30]
Toro, G.; Ackermann, P.G. Practical clinical chemistry; st Ed.
Little Brown and Company: New York, 1975, pp. 117-125.
[31]
King, E.J.; Armstrong, A.R. A convenient method for determining serum and bile phosphatase activity. Can. Med. Assoc. J., 1934, 31, 376-381.