[1]
Bisaglia, M.; Mammi, S.; Bubacco, L. Structural insights on physiological functions and pathological effects of α-synuclein. FASEB J., 2009, 23, 329-340.
[2]
Jain, N.; Bhasne, K.; Hemaswasthi, M.; Mukhopadhyay, S. Structural and dynamical insights into the membrane-bound α-Synuclein. PLoS One, 2013, 8, e83752.
[3]
Uversky, V.N. A protein-chameleon: conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. J. Biomol. Struct. Dyn., 2003, 21, 211-234.
[4]
Yoon, J.; Park, J.; Jang, S.; Lee, K.; Shin, S. Conformational characteristics of unstructured peptides: Alpha-synuclein. J. Biomol. Struct. Dyn., 2008, 25, 505-515.
[5]
Deleersnijder, A.; Gerard, M.; Debyser, Z.; Baekelandt, V. The remarkable conformational plasticity of α-synuclein: Blessing or curse? Trends Mol. Med., 2013, 19, 368-377.
[6]
Lavedan, C. The Synuclein family. Genome Res., 1998, 8, 871-880.
[7]
Uversky, V.N.; Li, J.; Souillac, P.; Millett, I.S.; Doniach, S.; Jakes, R.; Goedert, M.; Fink, A.L. Biophysical properties of the synucleins and their propensities to fibrillate: Inhibition of α-synuclein assembly by β- and gamma-synucleins. J. Biol. Chem., 2002, 277, 11970-11978.
[8]
Snyder, H.; Mensah, K.; Hsu, C.; Hashimoto, M.; Surgucheva, I.G.; Festoff, B.; Surguchov, A.; Masliah, E.; Matouschek, A.; Wolozin, B. β-synuclein reduces proteosomal inhibition by α-synuclein but not γ-synuclein. J. Biol. Chem., 2005, 280, 7562-7569.
[9]
Rockenstein, E.; Hansen, L.A.; Mallory, M.; Trojanowski, J.Q.; Galasko, D.; Masliah, E. Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Res., 2001, 914, 48-56.
[10]
Bendor, J.T.; Logan, T.P.; Edwards, R.H. The function of α-synuclein. Neuron, 2013, 79, 1044-1066.
[11]
Buchman, V.L.; Hunter, H.J.; Pinon, L.G.; Thompson, J.; Privalova, E.M.; Ninkina, N.N.; Davies, A.M. Persyn, a member of the synuclein family, influences neurofilament network integrity. J. Neurosci., 1998, 18, 9335-9341.
[12]
Angot, E.; Steiner, J.A. LemaTome, C.M.; Ekstrom, P.; Mattsson, B.; Bjorklund, A.; Brundin, P. α-Synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One, 2012, 7, e39465.
[13]
Hua, H.; Xu, L.; Wang, J.; Jing, J.; Luo, T.; Jiang, Y. Up-regulation of gamma-synuclein contributes to cancer cell survival under endoplasmic reticulum stress. J. Pathol., 2009, 217, 507-515.
[14]
Inaba, S.; Li, C.; Shi, Y.E.; Song, D.Q.; Jiang, J.D.; Liu, J. Synuclein gamma inhibits the mitotic checkpoint function and promotes chromosomal instability of breast cancer cells. Breast Cancer Res. Treat., 2005, 94, 25-35.
[15]
Ji, H.; Liu, Y.E.; Jia, T.; Wang, M.; Liu, J.; Xiao, G.; Joseph, B.K.; Rosen, C.; Shi, Y.E. Identification of a breast cancer-specific gene, BCSG1, by direct differential cDNA sequencing. Cancer Res., 1997, 57, 759-764.
[16]
Pan, Z.Z.; Bruening, W.; Giasson, B.I.; Lee, V.M.; Godwin, A.K. Gamma-synuclein promotes cancer cell survival and inhibits stress- and chemotherapy drug-induced apoptosis by modulating MAPK pathways. J. Biol. Chem., 2002, 277, 35050-35060.
[17]
Bruening, W.; Giasson, B.I.; Klein-Szanto, A.J.; Lee, V.M.; Trojanowski, J.Q.; Godwin, A.K. Synucleins are expressed in the majority of breast and ovarian carcinomas and in preneoplastic lesions of the ovary. Cancer, 2000, 88, 2154-2163.
[18]
Jiang, Y.; Liu, Y.E.; Goldberg, I.D.; Shi, Y.E. γ Synuclein, a novel heat-shock protein-associated chaperone, stimulates ligand-dependent estrogen receptor α signaling and mammary tumorigenesis. Cancer Res., 2004, 64, 4539-4546.
[19]
Surgucheva, I.G.; Sivak, J.M.; Fini, M.E.; Palazzo, R.E.; Surguchov, A.P. γ Synuclein, a novel heat-shock protein-associated chaperone, stimulates ligand-dependent estrogen receptor α signaling and mammary tumorigenesis. Arch. Biochem. Biophys., 2003, 410, 167-176.
[20]
Galvin, J.E.; Uryu, K.; Lee, V.M.; Trojanowski, J.Q. Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains α-, β-, and gamma-synuclein. Proc. Natl. Acad. Sci. USA, 1999, 96, 13450-13455.
[21]
Ninkina, N.; Peters, O.; Millership, S.; Salem, H.; van der Putten, H.; Buchman, V.L. Gamma synucleinopathy: Neurodegeneration associated with overexpression of the mouse protein. Hum. Mol. Genet., 2009, 18, 1779-1794.
[22]
Nishioka, K.; Wider, C.; Vilarino-Guell, C.; Soto-Ortolaza, A.I.; Lincoln, S.J.; Kachergus, J.M.; Jasinska-Myga, B.; Ross, O.A.; Rajput, A.; Robinson, C.A.; Ferman, T.J.; Wszolek, Z.K.; Dickson, D.W.; Farrer, M.J. Association of alpha-, beta-, and gamma-Synuclein with diffuse lewy body disease. Arch. Neurol., 2010, 67, 970-975.
[23]
Clayton, D.F.; George, J.M. The Synucleins: A family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci., 1998, 21, 249-254.
[24]
Ueda, K.; Fukushima, H.; Masliah, E.; Xia, Y.; Iwai, A.; Yoshimoto, M.; Otero, D.A.; Kondo, J.; Ihara, Y.; Saitoh, T. Molecular cloning of cDNA encoding anon-recognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci., 1993, 9, 11282-11286.
[25]
Berhanu, W.M.; Masunov, A.E. Atomistic mechanism of polyphenol amyloid aggregation inhibitors: Molecular dynamics study of Curcumin, Exifone, and Myricetin interaction with the segment of tau peptide oligomer. J. Biomol. Struct. Dyn., 2014, 33, 1399-1411.
[26]
Lamberto, C.R.; Torres-Monserrat, V.; Bertoncini, C.W.; Salvatella, X.; Zweckstetter, M.; Griesinger, C.; Fernandez, C.O. Toward the discovery of effective polycyclic inhibitors of α-synuclein amyloid assembly. J. Biol. Chem., 2011, 286, 32036-32044.
[27]
Lendel, C.; Bertoncini, C.W.; Cremades, N.; Waudby, C.A.; Vendruscolo, M.; Dobson, C.M.; Schenk, D.; Christodoulou, J.; Toth, G. On the mechanism of nonspecific inhibitors of protein aggregation: Dissecting the interactions of alpha-synuclein with congo red and lacmoid. Biochemistry, 2009, 48, 8322-8334.
[28]
Meng, X.Y.; Munishkina, L.A.; Fink, A.L.; Uversky, V.N. molecular mechanisms underlying the flavonoid-induced inhibition of α-synuclein fibrillation. Biochemistry, 2009, 48, 8206-8224.
[29]
Rao, J.N.; Dua, V.; Ulmer, T.S. Characterization of α-synuclein interactions with selected aggregation-inhibiting small molecules. Biochemistry, 2008, 47, 4651-4656.
[30]
Tofaris, G.K.; Layfield, R.; Spillantini, M.G. Alpha-synuclein metabolism and aggregation is linked to ubiquitin-independent degradation by the proteasome. FEBS Lett., 2001, 509, 22-26.
[31]
McNaught, K.S.; Jenner, P. Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci. Lett., 2001, 297, 191-194.
[32]
Fan, Y.; Limprasert, P.; Murray, IV, J.; Smith, A.C.; Lee, V.M.Y.; Trojanowski, J.Q.; Sopher, B.L.; Spada, A.R.L. β-synuclein modulates α-synuclein neurotoxicity by reducing α-synuclein protein expression. Hum. Mol. Genet., 2006, 15, 3002-3011.
[33]
Hashimoto, M.; Bar-On, P.; Ho, G.; Takenouchi, T.; Rockenstein, E.; Crews, L.; Masliah, E. β-synuclein regulates Akt activity in neuronal cells. A possible mechanism for neuroprotection in Parkinson’s disease. J. Biol. Chem., 2004, 279, 23622-23629.
[34]
Hashimoto, M.; Rockenstein, E.; Mante, M.; Crews, L.; Bar-On, P.; Gage, F.H.; Marr, R.; Masliah, E. An anti-aggregation gene therapy strategy for Lewy body disease utilizing β-synuclein lentivirus in a transgenic model. Gene Ther., 2004, 11, 1713-1723.
[35]
Hashimoto, M.; Rockenstein, E.; Mante, M.; Mallory, M.; Masliah, E. β-Synuclein inhibits α-synuclein aggregation: A possible role as an anti-parkinsonian factor. Neuron, 2001, 32, 213-223.
[36]
Park, J.Y.; Lansbury, Jr, P.T. β-synuclein inhibits formation of α-synuclein protofibrils: A possible therapeutic strategy against Parkinson’s disease. Biochemistry, 2003, 42, 3696-3700.
[37]
Tsigelny, I.F.; Bar-On, P.; Sharikov, Y.; Crews, L.; Hashimoto, M.; Miller, M.A.; Keller, S.H.; Platoshyn, O.; Yuan, J.X.Y.; Mashiah, E. Dynamics of α-synuclein aggregation and inhibition of pore-like oligomer development by β-synuclein. FEBS J., 2007, 274, 1862-1877.
[38]
Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The european molecular biology open software suite. Trends Genet., 2000, 16, 276-277.
[39]
Mehta, K.; Poddar, R.; Mukhopadhyay, K.; Kumar, M. Insight into interaction of γ-synuclein inhibiting α-synuclein oligomers-a possible strategy to cure parkinson’s disease. Intl. J. Adv. Biotechnol. Res., 2013, 4, 488-495.
[40]
Kirkwood, J.G. Statistical mechanics of fluid mixtures. J. Chem. Phys., 1935, 3, 300-313.
[41]
Duhovny, D.; Nussinov, R.; Wolfson, H.J. Efficient unbound docking of rigid molecules; Berlin, Heidelberg Springer-Verlag, 2002, pp. 185-200.
[42]
Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: Fast interaction refinement in molecular docking. Proteins, 2007, 69, 139-159.
[43]
Laskowski, R.A. PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Res., 2001, 29, 221-222.
[44]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9, 40.
[45]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28, 235-242.
[46]
Case, D.A.; Darden, T.A.; Cheatham, T.E., III; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; Roberts, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Swails, J.; Gotz, A.W.; Kolossvary, I.; Wong, K.F.; Paesani, F.; Vanicek, J.; Wolf, R.M.; Liu, J.; Wu, X.; Brozell, S.R.; Steinbrecher, T.; Gohlke, H.; Cai, Q.; Ye, X.; Wang, J.; Hsieh, M.J.; Cui, G.; Roe, D.R.; Mathews, D.H.; Seetin, M.G.; Salomon-Ferrer, R.; Sagui, C.; Babin, V.; Luchko, T.; Gusarov, S.; Kovalenko, A.; Kollman, P.A. AMBER 12, University of California, San Francisco 2012.
[47]
Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 2006, 65, 712-725.
[48]
Sanjeev, A.; Mattaparthi, V.S.K. Effect of C-terminal truncations on the aggregation propensity of αlpha-synuclein - a potential of mean force study. J. Mol. Imaging Dyn., 2017, 7, 1-7.
[49]
Zhang, C.; Vasmatzis, G.; Cornette, J.L.; DeLisi, C. Determination of atomic desolvation energies from the structures of crystallized proteins. J. Mol. Biol., 1997, 267, 707-726.
[50]
Grossfield, A. Multidimensional free-energy calculations using the weighted histogram analysis method. J. Comput. Chem., 1995, 16, 1339-1350.
[51]
Kumar, S.; Bouzida, D.; Swendsen, R.H.; Kollmanand, P.A.; Rosenberg, J.M. The weighted histogram analysis method for free-energy calculations on biomolecules. I. the method. J. Comput. Chem., 1992, 13, 1011-1021.
[52]
Souaille, M.; Roux, B. Extension to the weighted histogram analysis method: Combining umbrella sampling with free energy calculations. Comput. Phys. Commun., 2001, 135, 40-57.
[53]
Torrie, G.M.; Valleau, J.P. Modeling condensed phase reaction dynamics. Chem. Phys. Lett., 1974, 28, 578-581.
[54]
Sanjeev, A.; Sahu, R.K.; Mattaparthi, V.S.K. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation. J. Biomol. Struct. Dyn., 2016, 1-12.