[1]
Malani, N. Preventing postoperative Staphylococcus aureus infections. JAMA, 2013, 309, 1408-1409.
[2]
Dukic, V.; Laurderdale, D.; Wilder, J.; Daum, R.; David, M. Epidemics of community-associated methicillin resistant Staphylococcus aureus in the United States: A meta-analysis. PLoS One, 2013, 8, 52722.
[3]
Vos, F.; Kullberg, J.; Sturm, P.; Dijk, A.; Wanten, G.; Oyen, W.; Bleeker, C. Metastatic infectious disease and clinical outcome in Staphylococcus aureus and Streptococcus species bacteremia. Medicine (Baltimore), 2012, 91(2), 86-94.
[4]
Thwaites, G.; Edgeworth, J.; Gkrania, E.; Kirkby, A.; Tilley, R.; Torok, M.; Walker, S.; Wertherim, H.; Wilson, P.; Llewelyn, M. Clinical management of Staphylococcus aureus bacteraemia. Lancet Infect. Dis., 2011, 11, 208-222.
[5]
Lee, K.; Crossley, K.; Gerding, N. The association between Staphylococcus aureus bacteremia and bacteriuria. Am. J. Med., 1978, 65, 303-310.
[6]
Figueroa, D.; Mangini, E.; Amodio, M.; Vardianos, B.; Melchert, A.; Fana, C.; Wehbeh, W.; Urban, C.; Segal, S. Safety of high-dose intravenous daptomycin treatment: Three-year cumulative experience in a clinical program. Clin. Infect. Dis., 2009, 49, 177-180.
[7]
Fowler, V.; Boucher, H.; Corey, R.; Abrutyn, E. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med., 2006, 355, 653-665.
[8]
Wunderink, R.; Niderman, M.; Kollef, M.; Shorr, A.; Kunkel, M.; Baruch, A.; McGee, W.; Reisman, A.; Chastre, J. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: A randomized, controlled study. Clin. Infect. Dis., 2012, 54, 621-629.
[9]
Kang, C.; Song, J. Antimcrobial resistance in asia: Current epidemiology and clinical implications. Infect. Chemother., 2013, 45(1), 22-31.
[10]
Cosgrove, E.; Carroll, K.; Perl, T. Staphylococcus aureus with reduced susceptibility to vancomycin. Clin. Infect. Dis., 2004, 39, 539-545.
[11]
McConeghy, K.; Bleasdale, S.; Rodvold, K. The empirical combination of vancomycin and a β-lactam for Staphylococcal bacteremia. Clin. Infect. Dis., 2013, 57, 1760-1765.
[12]
Riveiro, M.; Kimpe, D.; Moglloni, A.; Vazquez, R.; Monczor, F.; Shayo, C.; Davio, C. Coumarins: Old compounds with novel promising therapeutic perspectives. Curr. Med. Chem., 2010, 17, 1325-1338.
[13]
Goth, A. The antibacterial properties of dicumarol. Science, 1945, 101, 2624.
[14]
Dadák, V.; Hoďák, K. Some relations between the structure and the antibacterial activity of natural coumarins. Experientia, 1966, 22(1), 38-39.
[15]
Bassetti, M.; Merelli, M.; Temperoni, C.; Astillean, A. New antibitoics for bad bugs: Where are we? Ann. Clin. Microbiol. Antimicrob., 2013, 12, 22.
[16]
Hutchinson, H.; Tomlinson, A. The structure of dicoumarol and related compounds. Tetrahedron, 1969, 25, 2531-2537.
[17]
Wallin, R. Vitamin K antagonism of coumarin anticoagulation. A dehydrogenase pathway in rat liver is responsible for the antagonistic effect. Biochem. J., 1986, 236(3), 685-693.
[18]
Tavares, A.; Nobre, L.; Melo, A.; Saraiva, M. A novel nitroreductase of taphylococcus aureus with S-nitrosoglutathione reductase activity. J. Bacteriol., 2009, 191, 3403-3406.
[19]
Cresteil, T.; Jaiswal, K. High levels of expression of the NAD(P)H: Quinone oxidoreductase (NQO1) gene in tumor cells compared to normal cells of the same origin. Biochem. Pharmacol., 1991, 42, 1021-1027.
[20]
Ellis, G.; West, G. Progress in medicinal chemistry, Volume 10, 1st
ed.; Elsevier Science: North Holland 1974.
[21]
Hou, Z.; Zhou, Y.; Li, J.; Zhang, X.; Shi, X.; Xue, X. Selective in vivo and in vitro activities of 3,3′-4-nitrobenzylidene-bis-4-hydroxycoumarin against methicillin-resistant Staphylococcus aureus by inhibition of DNA polymerase III. Sci. Rep., 2015, 5, 13637.
[22]
Petnapapun, K.; Chavasiri, W.; Sompornpisut, P. Structure-Activity relationships of 3,3′-Phenylmethylene-bis-4-hydroxycoumarins: Selective and potent inhibitors of gram-positive bacteria. ScientificWorldJournal, 2013, 2013178649
[23]
Asher, G.; Dym, O.; Tsvetkov, P.; Adler, J.; Shaul, Y. The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry, 2006, 45(20), 6372-6378.
[24]
Johansson, E.; Parkinson, N.; Denny, A.; Neidle, S. Studies on the nitroreductase prodrug-activating system. Crystal structures of complexes with the inhibitor dicoumarol and dinitrobenzamide prodrugs and of the enzyme active form. J. Med. Chem., 2003, 46(19), 4009-4020.
[25]
Ito, K.; Nakanishi, M.; Lee, C.; Zhi, Y.; Sasaki, H.; Zenno, S.; Saigo, K.; Kitade, Y.; Tanokura, M. Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J. Biol. Chem., 2008, 283(20), 13889-13896.
[26]
Hunter, C.; Sanders, J. The nature of pi-pi interactions. J. Am. Chem. Soc., 1990, 112(14), 5525-5534.
[27]
Li, Z.; Li, J.; Hou, Z.; Yang, X.; Zhang, Z.; Wang, Y.; Luo, X.; Li, M. Synthesis and pharmacological evaluations of 4-hydroxycoumarin derivatives as a new class of anti-Staphylococcus aureus agent. J. Pharma. Pharmacol., 2014, 67, 573-582.
[28]
Rehman, S.; Ikram, M.; Baker, R.; Zubair, M.; Azad, E.; Min, S.; Riaz, K.; Mok, K.; Rehman, S. Synthesis, characterization, in vitro antimicrobial, and U2OS tumoricidal activities of different coumarin derivatives. Chem. Cent. J., 2013, 7, 68.
[29]
Sherill, D. Energy Component Analysis of π Interactions. Acc. Chem. Res., 2013, 46(4), 1020-1028.
[30]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1, 337-341.
[31]
Wheeler, E.; Houk, N. Are anion/π interactions actually a case of simple charge-dipole interactions? J. Phys. Chem. A, 2010, 114, 8658-8664.
[32]
Wheeler, S.E.; Houk, K.N. Substituent effects in cation/π interactions and electrostatic potentials above the center of substituted benzenes are due primarily to through-space effects of the substituents. J. Am. Chem. Soc., 2009, 131, 3126-3127.
[33]
Wheeler, S.E.; Houk, K.N. Origin of substituent effects in Edge-to-Face Aryl-Aryl interactions. Mol. Phys., 2009, 107, 749-760.
[34]
Wheeler, S.E.; Houk, K.N. Substituent effects in the benzene dimer are due to direct interactions of the substituents with the unsubstituted benzene. J. Am. Chem. Soc., 2008, 130, 10854-10855.
[35]
Wheeler, S.E. Understanding substituent effects in noncovalent interactions involving aromatic rings. J. Am. Chem. Soc., 2013, 46, 1029-1038.
[36]
Anjana, R.; Vaishnavi, M.; Sherlin, D.; Surapaneni, K.; Naveen, K.; Kanth, P.; Sekar, K. Aromatic-aromatic interactions in structures of proteins and protein-DNA complexes: A study based on orientation and distance. Bioinformation, 2012, 8(24), 1220-1224.
[37]
Burley, K.; Petsko, A. Amino-aromatic interactions in proteins. FEBS Lett., 1986, 203(2), 139-143.
[38]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, H. Simple coumarins and analogoues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12, 887.
[39]
Shi, Y.; Zhou, C.; Geng, R.; Ji, Q. Synthesis and antimicrobial evaluation of coumarin-based benzotriazoles and their synergistic effects with chloromycin and fluconazole. Yao Xue Xue Bao, 2011, 46, 798-810.
[40]
Nolan, K.; Doncaster, J.; Dunstan, M.; Scott, K.; Frenkel, A.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys, D.; Whitehead, R.; Stratford, I.; Bryce, R. Synthesis and biological evaluation of coumarin-based inhibitors of NAD(P)H: Quinone oxidoreductase-1 (NQO1). J. Med. Chem., 2009, 52(22), 7142-7156.
[41]
Liu, Y.; Liu, X.; Wang, M.; Peng, H.; Lin, L.; Feng, X. Enantioselective synthesis of 3,4-dihydropyran derivatives via organocatalytic Michael reaction of α,β-unsaturated enones. J. Org. Chem., 2012, 77, 4136-4142.
[42]
Gung, W.; Amicangelo, C. Substituent effects in C6F6-C6H5X stacking interactions. J. Org. Chem., 2006, 71, 9261-9270.
[43]
Benitex, Y.; Baranger, A. Recognition of essential purines by the U1A protein. BMC Biochem., 2007, 8, 22.
[44]
Hunter, A.; Lawson, R.; Perkins, J.; Urch, J. Aromatic Interactions. J. Chem. Soc., Perkin Trans., 2001, 5, 651-669.
[45]
Hunter, C.A.; Sanders, J.K.M. The nature of π-π interactions. J. Am. Chem. Soc., 1990, 112, 5525-5534.
[46]
Cockroft, S.L.; Hunter, C.A.; Lawson, K.R.; Perkins, J.; Urch, C.J. Electrostatic control of aromatic stacking interactions. J. Am. Chem. Soc., 2005, 127, 8594-8595.
[47]
Cockroft, S.L.; Hunter, C.A. Chemical double-mutant cycles: Dissecting non-covalent interactions. Chem. Soc. Rev., 2007, 36, 172-188.
[48]
Cockroft, S.L.; Perkins, J.; Zonta, C.; Adams, H.; Spey, S.E.; Low, C.M.R.; Vinter, J.G.; Lawson, K.R.; Urch, C.J.; Hunter, C.A. Substituent effects on aromatic stacking interactions. Org. Biomol. Chem., 2007, 5, 1062-1080.
[49]
Cravotto, G.; Nano, G.; Palmisano, G.; Tagliapierta, S. The reactivity of 4-hydroxycoumarin under heterogeneous high-intensity sonochemical conditions. Synthesis, 2003, 8, 1286-1291.
[50]
Hamd, N.; Puerta, C.; Valerga, P. Synthesis, structure, antimicrobial and antioxidant investigations of dicoumarol and related compounds. Eur. J. Med. Chem., 2008, 43, 2541-2548.
[51]
Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437(7059), 640-647.