Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanoparticle-plasma Membrane Interactions: Thermodynamics, Toxicity and Cellular Response

Author(s): Ana G. Rodríguez-Hernández , Rafael Vazquez-Duhalt and Alejandro Huerta-Saquero *

Volume 27, Issue 20, 2020

Page: [3330 - 3345] Pages: 16

DOI: 10.2174/0929867325666181112090648

Price: $65

Abstract

Nanomaterials have become part of our daily lives, particularly nanoparticles contained in food, water, cosmetics, additives and textiles. Nanoparticles interact with organisms at the cellular level. The cell membrane is the first protective barrier against the potential toxic effect of nanoparticles. This first contact, including the interaction between the cell membranes -and associated proteins- and the nanoparticles is critically reviewed here. Nanoparticles, depending on their toxicity, can cause cellular physiology alterations, such as a disruption in cell signaling or changes in gene expression and they can trigger immune responses and even apoptosis. Additionally, the fundamental thermodynamics behind the nanoparticle-membrane and nanoparticle-proteins-membrane interactions are discussed. The analysis is intended to increase our insight into the mechanisms involved in these interactions. Finally, consequences are reviewed and discussed.

Keywords: Nanoparticles-plasma membrane interactions, Nanoparticles-protein interactions, Thermodynamics, Toxicity, Cellular Response, cell membrane.

[1]
Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Mota Morales, J.D.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter? Toxicol. Lett., 2017, 276, 11-20.
[http://dx.doi.org/10.1016/j.toxlet.2017.05.007] [PMID: 28483428]
[2]
Zoroddu, M.A.; Medici, S.; Ledda, A.; Nurchi, V.M.; Lachowicz, J.I.; Peana, M. Toxicity of nanoparticles. Curr. Med. Chem., 2014, 21(33), 3837-3853.
[http://dx.doi.org/10.2174/0929867321666140601162314] [PMID: 25306903]
[3]
Yah, C.S.; Iyuke, S.E.; Simate, G.S. A review of nanoparticles toxicity and their routes of exposures. Iran J Pharm Sci, 2012, 8, 299-314.
[4]
Yang, Y.; Qin, Z.; Zeng, W.; Yang, T.; Cao, Y.; Mei, C. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev., 2017, 6, 279-289.
[http://dx.doi.org/10.1515/ntrev-2016-0047]
[5]
Goñi, F.M. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim. Biophys. Acta, 2014, 1838(6), 1467-1476.
[http://dx.doi.org/10.1016/j.bbamem.2014.01.006] [PMID: 24440423]
[6]
Venkatakrishnan, A.J.; Deupi, X.; Lebon, G.; Tate, C.G.; Schertler, G.F.; Babu, M.M. Molecular signatures of G-protein-coupled receptors. Nature, 2013, 494(7436), 185-194.
[http://dx.doi.org/10.1038/nature11896] [PMID: 23407534]
[7]
Bigay, J.; Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity. Dev. Cell, 2012, 23(5), 886-895.
[http://dx.doi.org/10.1016/j.devcel.2012.10.009] [PMID: 23153485]
[8]
Venter, JC; Adams, MD; Myers, EW; Li, PW; Mural, RJ; Sutton, GG The Sequence of the Human Genome. Science (80- ), 2001, 291, 1304-51.
[http://dx.doi.org/10.1126/science.1058040]
[9]
Shang, L.; Nienhaus, K.; Nienhaus, G.U. Engineered nanoparticles interacting with cells: size matters. J. Nanobiotechnology, 2014, 12, 5.
[http://dx.doi.org/10.1186/1477-3155-12-5] [PMID: 24491160]
[10]
Trzaskowski, B.; Latek, D.; Yuan, S.; Ghoshdastider, U.; Debinski, A.; Filipek, S. Action of molecular switches in GPCRs--theoretical and experimental studies. Curr. Med. Chem., 2012, 19(8), 1090-1109.
[http://dx.doi.org/10.2174/092986712799320556] [PMID: 22300046]
[11]
Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsøe, K.; Hauser, A.S.; Vroling, B.; Bojarski, A.J.; Vriend, G.; Gloriam, D.E. GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res., 2016, 44(D1), D356-D364.
[http://dx.doi.org/10.1093/nar/gkv1178] [PMID: 26582914]
[12]
O’Hayre, M.; Degese, M.S.; Gutkind, J.S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol., 2014, 27, 126-135.
[http://dx.doi.org/10.1016/j.ceb.2014.01.005] [PMID: 24508914]
[13]
Schappi, J.M.; Krbanjevic, A.; Rasenick, M.M. Tubulin, actin and heterotrimeric G proteins: coordination of signaling and structure. Biochim. Biophys. Acta, 2014, 1838(2), 674-681.
[http://dx.doi.org/10.1016/j.bbamem.2013.08.026] [PMID: 24071592]
[14]
Ho, C-C.; Luo, Y-H.; Chuang, T-H.; Yang, C-S.; Ling, Y-C.; Lin, P. Quantum dots induced monocyte chemotactic protein-1 expression via MyD88-dependent Toll-like receptor signaling pathways in macrophages. Toxicology, 2013, 308, 1-9.
[http://dx.doi.org/10.1016/j.tox.2013.03.003] [PMID: 23499856]
[15]
Nel, A.E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E.M.V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 2009, 8(7), 543-557.
[http://dx.doi.org/10.1038/nmat2442] [PMID: 19525947]
[16]
Devaux, P.F.; Morris, R. Transmembrane asymmetry and lateral domains in biological membranes. Traffic, 2004, 5(4), 241-246.
[http://dx.doi.org/10.1111/j.1600-0854.2004.0170.x] [PMID: 15030565]
[17]
Min, J-J.; Nguyen, V.H.; Kim, H-J.; Hong, Y.; Choy, H.E. Quantitative bioluminescence imaging of tumor-targeting bacteria in living animals. Nat. Protoc., 2008, 3(4), 629-636.
[http://dx.doi.org/10.1038/nprot.2008.32] [PMID: 18388945]
[18]
Kim, H-Y.; Sofo, J.O.; Velegol, D.; Cole, M.W.; Lucas, A.A. Van der Waals dispersion forces between dielectric nanoclusters. Langmuir, 2007, 23(4), 1735-1740.
[http://dx.doi.org/10.1021/la061802w] [PMID: 17279651]
[19]
Chen, H.; Langer, R.; Edwards, D.A. A Film Tension Theory of Phagocytosis. J. Colloid Interface Sci., 1997, 190(1), 118-133.
[http://dx.doi.org/10.1006/jcis.1997.4865] [PMID: 9241149]
[20]
Decuzzi, P.; Ferrari, M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials, 2007, 28(18), 2915-2922.
[http://dx.doi.org/10.1016/j.biomaterials.2007.02.013] [PMID: 17363051]
[21]
Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett., 2006, 6(4), 662-668.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[22]
Gao, H.; Shi, W.; Freund, L.B. Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. USA, 2005, 102(27), 9469-9474.
[http://dx.doi.org/10.1073/pnas.0503879102] [PMID: 15972807]
[23]
Chithrani, B.D.; Chan, W.C.W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[24]
Gratton, S.E.A.; Ropp, P.A.; Pohlhaus, P.D.; Luft, J.C.; Madden, V.J.; Napier, M.E.; DeSimone, J.M. The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA, 2008, 105(33), 11613-11618.
[http://dx.doi.org/10.1073/pnas.0801763105] [PMID: 18697944]
[25]
Röcker, C.; Pötzl, M.; Zhang, F.; Parak, W.J.; Nienhaus, G.U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol., 2009, 4(9), 577-580.
[http://dx.doi.org/10.1038/nnano.2009.195] [PMID: 19734930]
[26]
Bao, G.; Bao, X.R. Shedding light on the dynamics of endocytosis and viral budding. Proc. Natl. Acad. Sci. USA, 2005, 102(29), 9997-9998.
[http://dx.doi.org/10.1073/pnas.0504555102] [PMID: 16009932]
[27]
Ginzburg, V.V.; Balijepalli, S. Modeling the thermodynamics of the interaction of nanoparticles with cell membranes. Nano Lett., 2007, 7(12), 3716-3722.
[http://dx.doi.org/10.1021/nl072053l] [PMID: 17983249]
[28]
Lane, L.A.; Qian, X.; Smith, A.M.; Nie, S. Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo. Annu. Rev. Phys. Chem., 2015, 66, 521-547.
[http://dx.doi.org/10.1146/annurev-physchem-040513-103718] [PMID: 25622189]
[29]
Chen, L.; Xiao, S.; Zhu, H.; Wang, L.; Liang, H. Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter, 2016, 12(9), 2632-2641.
[http://dx.doi.org/10.1039/C5SM01869B] [PMID: 26853682]
[30]
Leroueil, P.R.; Berry, S.A.; Duthie, K.; Han, G.; Rotello, V.M.; McNerny, D.Q.; Baker, J.R., Jr; Orr, B.G.; Holl, M.M. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett., 2008, 8(2), 420-424.
[http://dx.doi.org/10.1021/nl0722929] [PMID: 18217783]
[31]
Wong-Ekkabut, J.; Baoukina, S.; Triampo, W.; Tang, I-M.; Tieleman, D.P.; Monticelli, L. Computer simulation study of fullerene translocation through lipid membranes. Nat. Nanotechnol., 2008, 3(6), 363-368.
[http://dx.doi.org/10.1038/nnano.2008.130] [PMID: 18654548]
[32]
Abdelhamid, H.N.; Wu, H-F. Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(44), 6094-6106.
[http://dx.doi.org/10.1039/c3tb21020k] [PMID: 32260994]
[33]
Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K.A.; Linse, S. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA, 2007, 104(7), 2050-2055.
[http://dx.doi.org/10.1073/pnas.0608582104] [PMID: 17267609]
[34]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14265-14270.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[35]
Abdelhamid, H.N.; Wu, H-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. TrAC Trends Anal Chem, 2015, 65, 30-46.
[http://dx.doi.org/10.1016/j.trac.2014.09.010]
[36]
Vasir, J.K.; Labhasetwar, V. Quantification of the force of nanoparticle-cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials, 2008, 29(31), 4244-4252.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.020] [PMID: 18692238]
[37]
Tsoli, M.; Kuhn, H.; Brandau, W.; Esche, H.; Schmid, G. Cellular uptake and toxicity of Au55 clusters. Small, 2005, 1(8-9), 841-844.
[http://dx.doi.org/10.1002/smll.200500104] [PMID: 17193536]
[38]
Lin, J.; Zhang, H.; Chen, Z.; Zheng, Y. Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano, 2010, 4(9), 5421-5429.
[http://dx.doi.org/10.1021/nn1010792] [PMID: 20799717]
[39]
Vácha, R.; Martinez-Veracoechea, F.J.; Frenkel, D. Receptor-mediated endocytosis of nanoparticles of various shapes. Nano Lett., 2011, 11(12), 5391-5395.
[http://dx.doi.org/10.1021/nl2030213] [PMID: 22047641]
[40]
Ding, H.M.; Tian, W.D.; Ma, Y.Q. Designing nanoparticle translocation through membranes by computer simulations. ACS Nano, 2012, 6(2), 1230-1238.
[http://dx.doi.org/10.1021/nn2038862] [PMID: 22208867]
[41]
Yang, K.; Ma, Y-Q. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat. Nanotechnol., 2010, 5(8), 579-583.
[http://dx.doi.org/10.1038/nnano.2010.141] [PMID: 20657599]
[42]
Schulz, M.; Olubummo, A.; Binder, W.H. Beyond the lipid-bilayer: interaction of polymers and nanoparticles with membranes. Soft Matter, 2012, 8, 4849.
[http://dx.doi.org/10.1039/c2sm06999g]
[43]
Bahrami, A.H. Orientational changes and impaired internalization of ellipsoidal nanoparticles by vesicle membranes. Soft Matter, 2013, 9, 8642-8646.
[http://dx.doi.org/10.1039/c3sm50885d]
[44]
Dasgupta, S.; Auth, T.; Gompper, G. Shape and orientation matter for the cellular uptake of nonspherical particles. Nano Lett., 2014, 14(2), 687-693.
[http://dx.doi.org/10.1021/nl403949h] [PMID: 24383757]
[45]
Seifert, U.; Berndl, K.; Lipowsky, R. Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Phys. Rev. A, 1991, 44(2), 1182-1202.
[http://dx.doi.org/10.1103/PhysRevA.44.1182] [PMID: 9906067]
[46]
Contini, C.; Schneemilch, M.; Gaisford, S.; Quirke, N. Nanoparticle–membrane interactions. J. Exp. Nanosci., 2018, 13, 62-81.
[http://dx.doi.org/10.1080/17458080.2017.1413253]
[47]
Deserno, M. When do fluid membranes engulf sticky colloids? J. Phys. Condens. Matter, 2004, 16, S2061-S2070.
[http://dx.doi.org/10.1088/0953-8984/16/22/004]
[48]
Helfrich, W. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C, 1973, 28(11), 693-703.
[http://dx.doi.org/10.1515/znc-1973-11-1209] [PMID: 4273690]
[49]
David, F.; Leibler, S. Vanishing tension of fluctuating membranes. J. Phys. II, 1991, 1, 959-976.
[http://dx.doi.org/10.1051/jp2:1991120]
[50]
Raatz, M.; Lipowsky, R.; Weikl, T.R. Cooperative wrapping of nanoparticles by membrane tubes. Soft Matter, 2014, 10(20), 3570-3577.
[http://dx.doi.org/10.1039/c3sm52498a] [PMID: 24658648]
[51]
Huang, C.; Zhang, Y.; Yuan, H.; Gao, H.; Zhang, S. Role of nanoparticle geometry in endocytosis: laying down to stand up. Nano Lett., 2013, 13(9), 4546-4550.
[http://dx.doi.org/10.1021/nl402628n] [PMID: 23972158]
[52]
Arvizo, R.R.; Miranda, O.R.; Thompson, M.A.; Pabelick, C.M.; Bhattacharya, R.; Robertson, J.D.; Rotello, V.M.; Prakash, Y.S.; Mukherjee, P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett., 2010, 10(7), 2543-2548.
[http://dx.doi.org/10.1021/nl101140t] [PMID: 20533851]
[53]
Jayaram, D.T.; Luo, Q.; Thourson, S.B.; Finlay, A.H.; Payne, C.K. Controlling the Resting Membrane Potential of Cells with Conducting Polymer Microwires. Small, 2017, 13(27)1700789
[http://dx.doi.org/10.1002/smll.201700789] [PMID: 28556571]
[54]
Warren, E.A.K.; Payne, C.K. Cellular binding of nanoparticles disrupts the membrane potential. RSC Advances, 2015, 5(18), 13660-13666.
[http://dx.doi.org/10.1039/C4RA15727C] [PMID: 25685328]
[55]
Rana, M.A.; Yao, N.; Mukhopadhyay, S.; Zhang, F.; Warren, E.; Payne, C. Modeling the effect of nanoparticles & the bistability of transmembrane potential in non-excitable cells Am. Control Conf, 2016, pp. 400-5.
[http://dx.doi.org/10.1109/ACC.2016.7524947]
[56]
Albanese, A.; Tang, P.S.; Chan, W.C.W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng., 2012, 14, 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[57]
Shi, T.; Sun, X.; He, Q-Y. Cytotoxicity of Silver Nanoparticles Against Bacteria and Tumor Cells. Curr. Protein Pept. Sci., 2018, 19(6), 525-536.
[http://dx.doi.org/10.2174/1389203718666161108092149] [PMID: 27829349]
[58]
Patil, R.M.; Thorat, N.D.; Shete, P.B.; Bedge, P.A.; Gavde, S.; Joshi, M.G.; Tofail, S.A.M.; Bohara, R.A. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem. Biophys. Rep., 2018, 13, 63-72.
[http://dx.doi.org/10.1016/j.bbrep.2017.12.002] [PMID: 29349357]
[59]
Cao, Y. The Toxicity of Nanoparticles to Human Endothelial Cells; Springer: Cham, 2018, pp. 59-69.
[http://dx.doi.org/10.1007/978-3-319-72041-8_4]
[60]
Huang, Y-W.; Cambre, M.; Lee, H-J.; Huang, Y-W.; Cambre, M.; Lee, H-J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci., 2017, 18(12), 2702.
[http://dx.doi.org/10.3390/ijms18122702] [PMID: 29236059]
[61]
Hanan, N.A.; Chiu, H.I.; Ramachandran, M.R.; Tung, W.H.; Mohamad Zain, N.N.; Yahaya, N.; Lim, V. Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int. J. Mol. Sci., 2018, 19(6), 1725.
[http://dx.doi.org/10.3390/ijms19061725] [PMID: 29891772]
[62]
Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 2017, 9, 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[63]
Hussain, S.M.; Hess, K.L.; Gearhart, J.M.; Geiss, K.T.; Schlager, J.J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro, 2005, 19(7), 975-983.
[http://dx.doi.org/10.1016/j.tiv.2005.06.034] [PMID: 16125895]
[64]
Kim, J.A.; Lee, N.; Kim, B.H.; Rhee, W.J.; Yoon, S.; Hyeon, T.; Park, T.H. Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials, 2011, 32(11), 2871-2877.
[http://dx.doi.org/10.1016/j.biomaterials.2011.01.019] [PMID: 21288566]
[65]
Razavipour, S.; Behnammorshedi, M.; Ajdary, M. The toxic effect of nickel nanoparticles on oxidative stress and inflammatory markers. Biomed. Res., 2015, 26, 370-374.
[66]
Trouiller, B.; Reliene, R.; Westbrook, A.; Solaimani, P.; Schiestl, R.H. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res., 2009, 69(22), 8784-8789.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2496] [PMID: 19887611]
[67]
Agarwal, A.; Saleh, R.A.; Bedaiwy, M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril., 2003, 79(4), 829-843.
[http://dx.doi.org/10.1016/S0015-0282(02)04948-8] [PMID: 12749418]
[68]
Sharifi, S.; Behzadi, S.; Laurent, S.; Forrest, M.L.; Stroeve, P.; Mahmoudi, M. Toxicity of nanomaterials. Chem. Soc. Rev., 2012, 41(6), 2323-2343.
[http://dx.doi.org/10.1039/C1CS15188F] [PMID: 22170510]
[69]
Hoppe, A.D.; Swanson, J.A. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell, 2004, 15(8), 3509-3519.
[http://dx.doi.org/10.1091/mbc.e03-11-0847] [PMID: 15169870]
[70]
Julius, D; Livelli, T; Jessell, T; Axel, R Ectopic expression of the serotonin 1c receptor and the trig-gering of malignant transformation Science (80- ), 1989, 244, 1057-62.
[http://dx.doi.org/10.1126/science.2727693] [PMID: 2727693]
[71]
Hild, W.; Pollinger, K.; Caporale, A.; Cabrele, C.; Keller, M.; Pluym, N.; Buschauer, A.; Rachel, R.; Tessmar, J.; Breunig, M.; Goepferich, A. G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proc. Natl. Acad. Sci. USA, 2010, 107(23), 10667-10672.
[http://dx.doi.org/10.1073/pnas.0912782107] [PMID: 20498042]
[72]
Lappano, R.; Maggiolini, M. GPCRs and cancer. Acta Pharmacol. Sin., 2012, 33(3), 351-362.
[http://dx.doi.org/10.1038/aps.2011.183] [PMID: 22266725]
[73]
Dorsam, R.T.; Gutkind, J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer, 2007, 7(2), 79-94.
[http://dx.doi.org/10.1038/nrc2069] [PMID: 17251915]
[74]
Kedmi, R.; Ben-Arie, N.; Peer, D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials, 2010, 31(26), 6867-6875.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.027] [PMID: 20541799]
[75]
Kaisho, T.; Akira, S. Toll-like receptor function and signaling. J. Allergy Clin. Immunol., 2006, 117(5), 979-987.
[http://dx.doi.org/10.1016/j.jaci.2006.02.023] [PMID: 16675322]
[76]
Pradere, J.P.; Dapito, D.H.; Schwabe, R.F. The Yin and Yang of Toll-like receptors in cancer. Oncogene, 2014, 33(27), 3485-3495.
[http://dx.doi.org/10.1038/onc.2013.302] [PMID: 23934186]
[77]
Xie, Y.; Williams, N.G.; Tolic, A.; Chrisler, W.B.; Teeguarden, J.G.; Maddux, B.L.S.; Pounds, J.G.; Laskin, A.; Orr, G. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface. Toxicol. Sci., 2012, 125(2), 450-461.
[http://dx.doi.org/10.1093/toxsci/kfr251] [PMID: 21964423]
[78]
Lankoff, A.; Arabski, M.; Wegierek-Ciuk, A.; Kruszewski, M.; Lisowska, H.; Banasik-Nowak, A.; Rozga-Wijas, K.; Wojewodzka, M.; Slomkowski, S. Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology, 2013, 7(3), 235-250.
[http://dx.doi.org/10.3109/17435390.2011.649796] [PMID: 22264124]
[79]
Mittal, S.; Pandey, A.K. Cerium oxide nanoparticles induced toxicity in human lung cells: role of ROS mediated DNA damage and apoptosis. BioMed Res. Int., 2014, 2014891934
[http://dx.doi.org/10.1155/2014/891934] [PMID: 24987704]
[80]
Ershova, E.S.; Sergeeva, V.A.; Chausheva, A.I.; Zheglo, D.G.; Nikitina, V.A.; Smirnova, T.D.; Kameneva, L.V.; Porokhovnik, L.N.; Kutsev, S.I.; Troshin, P.A.; Voronov, I.I.; Khakina, E.A.; Veiko, N.N.; Kostyuk, S.V. Toxic and DNA damaging effects of a functionalized fullerene in human embryonic lung fibroblasts. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 805, 46-57.
[http://dx.doi.org/10.1016/j.mrgentox.2016.05.004] [PMID: 27402482]
[81]
Lammel, T.; Boisseaux, P.; Fernández-Cruz, M-L.; Navas, J.M. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part. Fibre Toxicol., 2013, 10, 27.
[http://dx.doi.org/10.1186/1743-8977-10-27] [PMID: 23849434]
[82]
Xiong, S.; George, S.; Yu, H.; Damoiseaux, R.; France, B.; Ng, K.W.; Loo, J.S. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles. Arch. Toxicol., 2013, 87(6), 1075-1086.
[http://dx.doi.org/10.1007/s00204-012-0938-8] [PMID: 22983807]
[83]
Becker, K.; Schroecksnadel, S.; Geisler, S.; Carriere, M.; Gostner, J.M.; Schennach, H.; Herlin, N.; Fuchs, D. TiO(2) nanoparticles and bulk material stimulate human peripheral blood mononuclear cells. Food Chem. Toxicol., 2014, 65, 63-69.
[http://dx.doi.org/10.1016/j.fct.2013.12.018] [PMID: 24361406]
[84]
Xue, Y.; Wu, J.; Sun, J. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol. Lett., 2012, 214(2), 91-98.
[http://dx.doi.org/10.1016/j.toxlet.2012.08.009] [PMID: 22939914]
[85]
Hong, J.; Wang, L.; Zhao, X.; Yu, X.; Sheng, L.; Xu, B.; Liu, D.; Zhu, Y.; Long, Y.; Hong, F. Th2 factors may be involved in TiO2 NP-induced hepatic inflammation. J. Agric. Food Chem., 2014, 62(28), 6871-6878.
[http://dx.doi.org/10.1021/jf501428w] [PMID: 24971501]
[86]
Park, E-J.; Roh, J.; Kim, Y.; Choi, K. A Single Instillation of Amorphous Silica Nanoparticles Induced Inflammatory Responses and Tissue Damage until Day 28 after Exposure. J. Health Sci., 2011, 57, 60-71.
[http://dx.doi.org/10.1248/jhs.57.60]
[87]
Kim, C.S.; Nguyen, H.D.; Ignacio, R.M.; Kim, J.H.; Cho, H.C.; Maeng, E.H.; Kim, Y.R.; Kim, M.K.; Park, B.K.; Kim, S.K. Immunotoxicity of zinc oxide nanoparticles with different size and electrostatic charge. Int. J. Nanomedicine, 2014, 9(Suppl. 2), 195-205.
[PMID: 25565837]
[88]
De Jong, W.H.; Van Der Ven, L.T.M.; Sleijffers, A.; Park, M.V.D.Z.; Jansen, E.H.J.M.; Van Loveren, H.; Vandebriel, R.J. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials, 2013, 34(33), 8333-8343.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.048] [PMID: 23886731]
[89]
Trickler, W.J.; Lantz, S.M.; Murdock, R.C.; Schrand, A.M.; Robinson, B.L.; Newport, G.D.; Schlager, J.J.; Oldenburg, S.J.; Paule, M.G.; Slikker, W., Jr; Hussain, S.M.; Ali, S.F. Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol. Sci., 2010, 118(1), 160-170.
[http://dx.doi.org/10.1093/toxsci/kfq244] [PMID: 20713472]
[90]
Chairuangkitti, P.; Lawanprasert, S.; Roytrakul, S.; Aueviriyavit, S.; Phummiratch, D.; Kulthong, K.; Chanvorachote, P.; Maniratanachote, R. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol. In Vitro, 2013, 27(1), 330-338.
[http://dx.doi.org/10.1016/j.tiv.2012.08.021] [PMID: 22940466]
[91]
Hirano, S.; Kanno, S.; Furuyama, A. Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol. Appl. Pharmacol., 2008, 232(2), 244-251.
[http://dx.doi.org/10.1016/j.taap.2008.06.016] [PMID: 18655803]
[92]
Hirano, S.; Fujitani, Y.; Furuyama, A.; Kanno, S. Uptake and cytotoxic effects of multi-walled carbon nanotubes in human bronchial epithelial cells. Toxicol. Appl. Pharmacol., 2010, 249(1), 8-15.
[http://dx.doi.org/10.1016/j.taap.2010.08.019] [PMID: 20800606]
[93]
Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J.W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forró, L. Cellular toxicity of carbon-based nanomaterials. Nano Lett., 2006, 6(6), 1121-1125.
[http://dx.doi.org/10.1021/nl060162e] [PMID: 16771565]
[94]
Zhang, Q.L.; Li, M.Q.; Ji, J.W.; Gao, F.P.; Bai, R.; Chen, C.Y.; Wang, Z.W.; Zhang, C.; Niu, Q. In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms. Int. J. Immunopathol. Pharmacol., 2011, 24(1)(Suppl.), 23S-29S.
[PMID: 21329562]
[95]
Zhu, Y.; Li, Y.; Miao, L.; Wang, Y.; Liu, Y.; Yan, X.; Cui, X.; Li, H. Immunotoxicity of aluminum. Chemosphere, 2014, 104, 1-6.
[http://dx.doi.org/10.1016/j.chemosphere.2013.10.052] [PMID: 24287266]
[96]
Auffret, M.; Mujdzic, N.; Corporeau, C.; Moraga, D. Xenobiotic-induced immunomodulation in the European flat oyster, Ostrea edulis. Mar. Environ. Res., 2002, 54(3-5), 585-589.
[http://dx.doi.org/10.1016/S0141-1136(02)00120-4] [PMID: 12408622]
[97]
Wang, X.; Tian, J.; Yong, K-T.; Zhu, X.; Lin, M.C-M.; Jiang, W.; Li, J.; Huang, Q.; Lin, G. Immunotoxicity assessment of CdSe/ZnS quantum dots in macrophages, lymphocytes and BALB/c mice. J. Nanobiotechnology, 2016, 14, 10.
[http://dx.doi.org/10.1186/s12951-016-0162-4] [PMID: 26846666]
[98]
Tsai, C-Y.; Lu, S-L.; Hu, C-W.; Yeh, C-S.; Lee, G-B.; Lei, H-Y. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J. Immunol., 2012, 188(1), 68-76.
[http://dx.doi.org/10.4049/jimmunol.1100344] [PMID: 22156340]
[99]
Mironava, T.; Hadjiargyrou, M.; Simon, M.; Jurukovski, V.; Rafailovich, M.H. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology, 2010, 4(1), 120-137.
[http://dx.doi.org/10.3109/17435390903471463] [PMID: 20795906]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy