Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Can Antidiabetic Drugs Improve Male Reproductive (Dys)Function Associated with Diabetes?

Author(s): R.S. Tavares, S. Escada-Rebelo, M.I. Sousa, A. Silva, J. Ramalho-Santos and S. Amaral*

Volume 26, Issue 22, 2019

Page: [4191 - 4222] Pages: 32

DOI: 10.2174/0929867325666181101111404

Price: $65

Abstract

The alarming increase in the number of diabetic patients worldwide raises concerns regarding the impact of the disease on global health, not to mention on social and economic aspects. Furthermore, the association of this complex metabolic disorder with male reproductive impairment is worrying, mainly due to the increasing chances that young individuals, at the apex of their reproductive window, could be affected by the disease, further contributing to the disturbing decline in male fertility worldwide. The cornerstone of diabetes management is glycemic control, proven to be effective in avoiding, minimizing or preventing the appearance or development of disease-related complications. Nonetheless, the possible impact of these therapeutic interventions on male reproductive function is essentially unexplored. To address this issue, we have made a critical assessment of the literature on the effects of several antidiabetic drugs on male reproductive function. While the crucial role of insulin is clear, as shown by the recovery of reproductive impairments in insulin-deficient individuals after treatment, the same clearly does not apply to other antidiabetic strategies. In fact, there is an abundance of controversial reports, possibly related to the various study designs, experimental models and compounds used, which include biguanides, sulfonylureas, meglitinides, thiazolidinediones/glitazones, bile acid sequestrants, amylin mimetics, as well as sodiumglucose co-transporter 2 (SGLT2) inhibitors, glucagon-like peptide 1 (GLP1), α-glucosidase inhibitors and dipeptidyl peptidase 4 (DPP4) inhibitors. These aspects constitute the focus of the current review.

Keywords: Diabetes, infertility, male reproductive function, antidiabetic therapies, SGLT2, diabetic problems, reproductive dysfunction.

[1]
2. Classification and diagnosis of diabetes. Diabetes Care, 2016, 39(Suppl. 1), S13-S22.
[http://dx.doi.org/10.2337/dc16-S005] [PMID: 26696675]
[2]
Emilien, G.; Maloteaux, J.M.; Ponchon, M. Pharmacological management of diabetes: recent progress and future perspective in daily drug treatment. Pharmacol. Ther., 1999, 81(1), 37-51.
[http://dx.doi.org/10.1016/S0163-7258(98)00034-5] [PMID: 10051177]
[3]
World Health Organization (WHO), Global Report on Diabetes. 2016.http://www.who.int/diabetes/global-report/en/
[4]
Agbaje, I.M.; Rogers, D.A.; McVicar, C.M.; McClure, N.; Atkinson, A.B.; Mallidis, C.; Lewis, S.E. Insulin dependant diabetes mellitus: implications for male reproductive function. Hum. Reprod., 2007, 22(7), 1871-1877.
[http://dx.doi.org/10.1093/humrep/dem077] [PMID: 17478459]
[5]
Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol., 2015, 13, 37.
[http://dx.doi.org/10.1186/s12958-015-0032-1] [PMID: 25928197]
[6]
Skakkebaek, N.E.; Jørgensen, N.; Main, K.M.; Rajpert-De Meyts, E.; Leffers, H.; Andersson, A.M.; Juul, A.; Carlsen, E.; Mortensen, G.K.; Jensen, T.K.; Toppari, J. Is human fecundity declining? Int. J. Androl., 2006, 29(1), 2-11.
[http://dx.doi.org/10.1111/j.1365-2605.2005.00573.x] [PMID: 16466518]
[7]
Bener, A.; Al-Ansari, A.A.; Zirie, M.; Al-Hamaq, A.O. Is male fertility associated with type 2 diabetes mellitus? Int. Urol. Nephrol., 2009, 41(4), 777-784.
[http://dx.doi.org/10.1007/s11255-009-9565-6] [PMID: 19381857]
[8]
La Vignera, S.; Calogero, A.E.; Condorelli, R.; Lanzafame, F.; Giammusso, B.; Vicari, E. Andrological characterization of the patient with diabetes mellitus. Minerva Endocrinol., 2009, 34(1), 1-9.
[PMID: 19209124]
[9]
Mulholland, J.; Mallidis, C.; Agbaje, I.; McClure, N. Male diabetes mellitus and assisted reproduction treatment outcome. Reprod. Biomed. Online, 2011, 22(2), 215-219.
[http://dx.doi.org/10.1016/j.rbmo.2010.10.005] [PMID: 21227754]
[10]
Ballester, J.; Muñoz, M.C.; Domínguez, J.; Rigau, T.; Guinovart, J.J.; Rodríguez-Gil, J.E. Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J. Androl., 2004, 25(5), 706-719.
[http://dx.doi.org/10.1002/j.1939-4640.2004.tb02845.x] [PMID: 15292100]
[11]
Kim, S.T.; Moley, K.H. Paternal effect on embryo quality in diabetic mice is related to poor sperm quality and associated with decreased glucose transporter expression. Reproduction, 2008, 136(3), 313-322.
[http://dx.doi.org/10.1530/REP-08-0167] [PMID: 18558660]
[12]
Dinulovic, D.; Radonjic, G. Diabetes mellitus/male infertility. Arch. Androl., 1990, 25(3), 277-293.
[http://dx.doi.org/10.3109/01485019008987617] [PMID: 2285351]
[13]
Musicki, B.; Burnett, A.L. Endothelial dysfunction in diabetic erectile dysfunction. Int. J. Impot. Res., 2007, 19(2), 129-138.
[http://dx.doi.org/10.1038/sj.ijir.3901494] [PMID: 16775612]
[14]
Penson, D.F.; Wessells, H.; Cleary, P.; Rutledge, B.N.; Diabetes, C. Diabetes control and complications trial/epidemiology of diabetes interventions and complications research group. Sexual dysfunction and symptom impact in men with long-standing type 1 diabetes in the DCCT/EDIC cohort. J. Sex. Med., 2009, 6(7), 1969-1978.
[http://dx.doi.org/10.1111/j.1743-6109.2009.01292.x] [PMID: 19453899]
[15]
Amaral, S.; Moreno, A.J.; Santos, M.S.; Seiça, R.; Ramalho-Santos, J. Effects of hyperglycemia on sperm and testicular cells of Goto-Kakizaki and streptozotocin-treated rat models for diabetes. Theriogenology, 2006, 66(9), 2056-2067.
[http://dx.doi.org/10.1016/j.theriogenology.2006.06.006] [PMID: 16860381]
[16]
Baccetti, B.; La Marca, A.; Piomboni, P.; Capitani, S.; Bruni, E.; Petraglia, F.; De Leo, V. Insulin-dependent diabetes in men is associated with hypothalamo-pituitary derangement and with impairment in semen quality. Hum. Reprod., 2002, 17(10), 2673-2677.
[http://dx.doi.org/10.1093/humrep/17.10.2673] [PMID: 12351547]
[17]
Barták, V.; Josífko, M.; Horácková, M. Juvenile diabetes and human sperm quality. Int. J. Fertil., 1975, 20(1), 30-32.
[PMID: 4382]
[18]
Delfino, M.; Imbrogno, N.; Elia, J.; Capogreco, F.; Mazzilli, F. Prevalence of diabetes mellitus in male partners of infertile couples. Minerva Urol. Nefrol., 2007, 59(2), 131-135.
[PMID: 17571048]
[19]
Handelsman, D.J.; Conway, A.J.; Boylan, L.M.; Yue, D.K.; Turtle, J.R. Testicular function and glycemic control in diabetic men. A controlled study. Andrologia, 1985, 17(5), 488-496.
[http://dx.doi.org/10.1111/j.1439-0272.1985.tb01047.x] [PMID: 3933383]
[20]
Padrón, R.S.; Dambay, A.; Suárez, R.; Más, J. Semen analyses in adolescent diabetic patients. Acta Diabetol. Lat., 1984, 21(2), 115-121.
[http://dx.doi.org/10.1007/BF02591100] [PMID: 6475450]
[21]
Scarano, W.R.; Messias, A.G.; Oliva, S.U.; Klinefelter, G.R.; Kempinas, W.G. Sexual behaviour, sperm quantity and quality after short-term streptozotocin-induced hyperglycaemia in rats. Int. J. Androl., 2006, 29(4), 482-488.
[http://dx.doi.org/10.1111/j.1365-2605.2006.00682.x] [PMID: 16524366]
[22]
Schoeller, E.L.; Albanna, G.; Frolova, A.I.; Moley, K.H. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility. Diabetes, 2012, 61(7), 1869-1878.
[http://dx.doi.org/10.2337/db11-1527] [PMID: 22522616]
[23]
Shrilatha, B. Muralidhara, Early oxidative stress in testis and epididymal sperm in streptozotocin-induced diabetic mice: its progression and genotoxic consequences. Reprod. Toxicol., 2007, 23(4), 578-587.
[http://dx.doi.org/10.1016/j.reprotox.2007.02.001] [PMID: 17360155]
[24]
Soudamani, S.; Malini, T.; Balasubramanian, K. Effects of streptozotocin-diabetes and insulin replacement on the epididymis of prepubertal rats: histological and histomorphometric studies. Endocr. Res., 2005, 31(2), 81-98.
[http://dx.doi.org/10.1080/07435800500229193] [PMID: 16353669]
[25]
Vignon, F.; Le Faou, A.; Montagnon, D.; Pradignac, A.; Cranz, C.; Winiszewsky, P.; Pinget, M. Comparative study of semen in diabetic and healthy men. Diabete Metab., 1991, 17(3), 350-354.
[PMID: 1884879]
[26]
Mangoli, E.; Talebi, A.R.; Anvari, M.; Pourentezari, M. Effects of experimentally-induced diabetes on sperm parameters and chromatin quality in mice. Iran. J. Reprod. Med., 2013, 11(1), 53-60.
[PMID: 24639693]
[27]
Rama Raju, G.A.; Jaya Prakash, G.; Murali Krishna, K.; Madan, K.; Siva Narayana, T.; Ravi Krishna, C.H. Noninsulin-dependent diabetes mellitus: effects on sperm morphological and functional characteristics, nuclear DNA integrity and outcome of assisted reproductive technique. Andrologia, 2012, 44(Suppl. 1), 490-498.
[http://dx.doi.org/10.1111/j.1439-0272.2011.01213.x] [PMID: 21806668]
[28]
Roessner, C.; Paasch, U.; Kratzsch, J.; Glander, H.J.; Grunewald, S. Sperm apoptosis signalling in diabetic men. Reprod. Biomed. Online, 2012, 25(3), 292-299.
[http://dx.doi.org/10.1016/j.rbmo.2012.06.004] [PMID: 22796231]
[29]
La Vignera, S.; Condorelli, R.A.; Di Mauro, M.; Lo Presti, D.; Mongioì, L.M.; Russo, G.; Calogero, A.E. Reproductive function in male patients with type 1 diabetes mellitus. Andrology, 2015, 3(6), 1082-1087.
[http://dx.doi.org/10.1111/andr.12097] [PMID: 26446574]
[30]
La Vignera, S.; Vicari, E.; Calogero, A.E.; Condorelli, R.; Lanzafame, F. Diabetes, oxidative stress and its impact on male fertility. J. Androl. Sci., 2009, 16, 42-46.
[31]
Shrilatha, B. Occurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic rat. Int. J. Androl., 2007, 30(6), 508-518.
[http://dx.doi.org/10.1111/j.1365-2605.2007.00748.x] [PMID: 17573857]
[32]
Vlassara, H.; Palace, M.R. Diabetes and advanced glycation endproducts. J. Intern. Med., 2002, 251(2), 87-101.
[http://dx.doi.org/10.1046/j.1365-2796.2002.00932.x] [PMID: 11905595]
[33]
Wautier, J.L.; Schmidt, A.M. Protein glycation: a firm link to endothelial cell dysfunction. Circ. Res., 2004, 95(3), 233-238.
[http://dx.doi.org/10.1161/01.RES.0000137876.28454.64] [PMID: 15297385]
[34]
Karimi, J.; Goodarzi, M.T.; Tavilani, H.; Khodadadi, I.; Amiri, I. Relationship between advanced glycation end products and increased lipid peroxidation in semen of diabetic men. Diabetes Res. Clin. Pract., 2011, 91(1), 61-66.
[http://dx.doi.org/10.1016/j.diabres.2010.09.024] [PMID: 20970866]
[35]
Mallidis, C.; Agbaje, I.; Rogers, D.; Glenn, J.; McCullough, S.; Atkinson, A.B.; Steger, K.; Stitt, A.; McClure, N. Distribution of the receptor for advanced glycation end products in the human male reproductive tract: prevalence in men with diabetes mellitus. Hum. Reprod., 2007, 22(8), 2169-2177.
[http://dx.doi.org/10.1093/humrep/dem156] [PMID: 17588956]
[36]
Mallidis, C.; Agbaje, I.M.; Rogers, D.A.; Glenn, J.V.; Pringle, R.; Atkinson, A.B.; Steger, K.; Stitt, A.W.; McClure, N. Advanced glycation end products accumulate in the reproductive tract of men with diabetes. Int. J. Androl., 2009, 32(4), 295-305.
[http://dx.doi.org/10.1111/j.1365-2605.2007.00849.x] [PMID: 18217985]
[37]
Portela, J.M.; Tavares, R.S.; Mota, P.C.; Ramalho-Santos, J.; Amaral, S. High glucose concentrations per se do not adversely affect human sperm function in vitro. Reproduction, 2015, 150(1), 77-84.
[http://dx.doi.org/10.1530/REP-15-0100] [PMID: 25926692]
[38]
Amaral, S.; Mota, P.C.; Lacerda, B.; Alves, M. Pereira, Mde.L.; Oliveira, P.J.; Ramalho-Santos, J. Testicular mitochondrial alterations in untreated streptozotocin-induced diabetic rats. Mitochondrion, 2009, 9(1), 41-50.
[http://dx.doi.org/10.1016/j.mito.2008.11.005] [PMID: 19100345]
[39]
Cameron, D.F.; Murray, F.T.; Drylie, D.D. Interstitial compartment pathology and spermatogenic disruption in testes from impotent diabetic men. Anat. Rec., 1985, 213(1), 53-62.
[http://dx.doi.org/10.1002/ar.1092130108] [PMID: 4073561]
[40]
Kianifard, D.; Sadrkhanlou, R.A.; Hasanzadeh, S. The ultrastructural changes of the sertoli and leydig cells following streptozotocin induced diabetes. Iran. J. Basic Med. Sci., 2012, 15(1), 623-635.
[PMID: 23493249]
[41]
Kyathanahalli, C.; Bangalore, S.; Hanumanthappa, K. Muralidhara. Experimental diabetes-induced testicular damage in prepubertal rats. J. Diabetes, 2014, 6(1), 48-59.
[http://dx.doi.org/10.1111/1753-0407.12068] [PMID: 23773549]
[42]
Sainio-Pöllänen, S.; Henriksén, K.; Parvinen, M.; Simell, O.; Pöllänen, P. Stage-specific degeneration of germ cells in the seminiferous tubules of non-obese diabetic mice. Int. J. Androl., 1997, 20(4), 243-253.
[http://dx.doi.org/10.1046/j.1365-2605.1997.00061.x] [PMID: 9401828]
[43]
Sanguinetti, R.E.; Ogawa, K.; Kurohmaru, M.; Hayashi, Y. Ultrastructural changes in mouse Leydig cells after streptozotocin administration. Exp. Anim., 1995, 44(1), 71-73.
[http://dx.doi.org/10.1538/expanim.44.71] [PMID: 7705483]
[44]
Arikawe, A.P.; Daramola, A.O.; Odofin, A.O.; Obika, L.F. Alloxan-induced and insulin-resistant diabetes mellitus affect semen parameters and impair spermatogenesis in male rats. Afr. J. Reprod. Health, 2006, 10(3), 106-113.
[http://dx.doi.org/10.2307/30032477] [PMID: 17518137]
[45]
Gondos, B.; Bevier, W. Effect of insulin on testicular alterations in the nonobese diabetic mouse. Ann. Clin. Lab. Sci., 1995, 25(3), 272-277.
[PMID: 7605110]
[46]
Tavares, R.S.; Portela, J.M.; Sousa, M.I.; Mota, P.C.; Ramalho-Santos, J.; Amaral, S. High glucose levels affect spermatogenesis: an in vitro approach. Reprod. Fertil. Dev., 2016.
[PMID: 27264729]
[47]
Wankeu-Nya, M.; Florea, A.; Bâlici, S.; Watcho, P.; Matei, H.; Kamanyi, A. Dracaena arborea alleviates ultra-structural spermatogenic alterations in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2013, 13, 71.
[http://dx.doi.org/10.1186/1472-6882-13-71] [PMID: 23548080]
[48]
Holdcraft, R.W.; Braun, R.E. Hormonal regulation of spermatogenesis. Int. J. Androl., 2004, 27(6), 335-342.
[http://dx.doi.org/10.1111/j.1365-2605.2004.00502.x] [PMID: 15595952]
[49]
Ruwanpura, S.M.; McLachlan, R.I.; Meachem, S.J. Hormonal regulation of male germ cell development. J. Endocrinol., 2010, 205(2), 117-131.
[http://dx.doi.org/10.1677/JOE-10-0025] [PMID: 20144980]
[50]
Schoeller, E.L.; Schon, S.; Moley, K.H. The effects of type 1 diabetes on the hypothalamic, pituitary and testes axis. Cell Tissue Res., 2012, 349(3), 839-847.
[http://dx.doi.org/10.1007/s00441-012-1387-7] [PMID: 22526620]
[51]
López-Alvarenga, J.C.; Zariñán, T.; Olivares, A.; González-Barranco, J.; Veldhuis, J.D.; Ulloa-Aguirre, A. Poorly controlled type I diabetes mellitus in young men selectively suppresses luteinizing hormone secretory burst mass. J. Clin. Endocrinol. Metab., 2002, 87(12), 5507-5515.
[http://dx.doi.org/10.1210/jc.2002-020803] [PMID: 12466346]
[52]
Seethalakshmi, L.; Menon, M.; Diamond, D. The effect of streptozotocin-induced diabetes on the neuroendocrine-male reproductive tract axis of the adult rat. J. Urol., 1987, 138(1), 190-194.
[http://dx.doi.org/10.1016/S0022-5347(17)43042-4] [PMID: 3599211]
[53]
Benitez, A.; Perez Diaz, J. Effect of streptozotocin-diabetes and insulin treatment on regulation of Leydig cell function in the rat. Horm. Metab. Res., 1985, 17(1), 5-7.
[http://dx.doi.org/10.1055/s-2007-1013433] [PMID: 2981762]
[54]
Sudha, S.; Valli, G.; Julie, P.M.; Arunakaran, J.; Govindarajulu, P.; Balasubramanian, K. Influence of streptozotocin-induced diabetes and insulin treatment on the pituitary-testicular axis during sexual maturation in rats. Exp. Clin. Endocrinol. Diabetes, 2000, 108(1), 14-20.
[PMID: 10768827]
[55]
Singh, S.; Malini, T.; Rengarajan, S.; Balasubramanian, K. Impact of experimental diabetes and insulin replacement on epididymal secretory products and sperm maturation in albino rats. J. Cell. Biochem., 2009, 108(5), 1094-1101.
[http://dx.doi.org/10.1002/jcb.22337] [PMID: 19760637]
[56]
Fukumoto, Y.; Yoshida, M.; Dokita, S.; Kamai, T.; Weiss, R.M.; Latifpour, J. The reversal effect of insulin on diabetes-induced alterations in beta adrenergic and muscarinic receptors in rat prostate. J. Urol., 1993, 149(6), 1602-1606.
[http://dx.doi.org/10.1016/S0022-5347(17)36459-5] [PMID: 8388963]
[57]
Ikeda, K.; Wada, Y.; Foster, H.E., Jr; Wang, Z.; Weiss, R.M.; Latifpour, J. Experimental diabetes-induced regression of the rat prostate is associated with an increased expression of transforming growth factor-beta. J. Urol., 2000, 164(1), 180-185.
[http://dx.doi.org/10.1016/S0022-5347(05)67491-5] [PMID: 10840456]
[58]
Saito, M.; Wada, Y.; Ikeda, K.; Wang, Z.; Foster, H.E., Jr; Smith, S.D.; Weiss, R.M.; Latifpour, J. Expression of endothelin receptor subtypes and their messenger RNAs in diabetic rat prostate: effect of insulin treatment. Mol. Cell. Biochem., 2000, 210(1-2), 1-12.
[http://dx.doi.org/10.1023/A:1007041909477] [PMID: 10976752]
[59]
Vikram, A.; Kushwaha, S.; Jena, G.B. Relative influence of testosterone and insulin in the regulation of prostatic cell proliferation and growth. Steroids, 2011, 76(4), 416-423.
[http://dx.doi.org/10.1016/j.steroids.2010.12.014] [PMID: 21215763]
[60]
Murray, F.T.; Orth, J.; Gunsalus, G.; Weisz, J.; Li, J.B.; Jefferson, L.S.; Musto, N.A.; Bardin, C.W. The pituitary-testicular axis in the streptozotocin diabetic male rat: evidence for gonadotroph, Sertoli cell and Leydig cell dysfunction. Int. J. Androl., 1981, 4(2), 265-280.
[http://dx.doi.org/10.1111/j.1365-2605.1981.tb00710.x] [PMID: 6788717]
[61]
Yono, M.; Pouresmail, M.; Takahashi, W.; Flanagan, J.F.; Weiss, R.M.; Latifpour, J. Effect of insulin treatment on tissue size of the genitourinary tract in BB rats with spontaneously developed and streptozotocin-induced diabetes. Naunyn Schmiedebergs Arch. Pharmacol., 2005, 372(3), 251-255.
[http://dx.doi.org/10.1007/s00210-005-0010-9] [PMID: 16235050]
[62]
Morrison, J.F.; Dhanasekaran, S.; Sheen, R.; Frampton, C.M.; Mensah-Brown, E. The effect of streptozotocin-induced diabetes on the rat seminal vesicle: A possible pathophysiological basis for disorders of ejaculation. Ann. N. Y. Acad. Sci., 2006, 1084, 267-279.
[http://dx.doi.org/10.1196/annals.1372.013] [PMID: 17151307]
[63]
La Vignera, S.; Condorelli, R.A.; Vicari, E.; D’Agata, R.; Calogero, A.E. Seminal vesicles and diabetic neuropathy: ultrasound evaluation in patients with couple infertility and different levels of glycaemic control. Asian J. Androl., 2011, 13(6), 872-876.
[http://dx.doi.org/10.1038/aja.2011.47] [PMID: 21804571]
[64]
Yonezawa, A.; Ebiko, M.; Yoshizumi, M.; Ise, S.N.; Watanabe, C.; Mizoguchi, H.; Iwasaki, M.; Kimura, Y.; Sakurada, S. Effects of insulin replacement on ejaculatory dysfunction in streptozotocin-induced diabetic rats. Int. J. Urol., 2009, 16(2), 208-211.
[http://dx.doi.org/10.1111/j.1442-2042.2008.02214.x] [PMID: 19183231]
[65]
van der Steeg, J.W.; Steures, P.; Eijkemans, M.J.F.; Habbema, J.D.; Hompes, P.G.; Kremer, J.A.; van der Leeuw-Harmsen, L.; Bossuyt, P.M.; Repping, S.; Silber, S.J.; Mol, B.W.; van der Veen, F. Collaborative effort for clinical evaluation in reproductive medicine study group. Role of semen analysis in subfertile couples. Fertil. Steril., 2011, 95(3), 1013-1019.
[http://dx.doi.org/10.1016/j.fertnstert.2010.02.024] [PMID: 20338556]
[66]
Alberti, K.G.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539:AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[67]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[68]
Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. Diabetes control and complications trial research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[69]
Ahmed, R.G. The physiological and biochemical effects of diabetes on the balance between oxidative stress and antioxidant defense system. Medical Journal of Islamic World Academy of Sciences, 2005, 15, 31-42.
[70]
Pitocco, D.; Zaccardi, F.; Di Stasio, E.; Romitelli, F.; Santini, S.A.; Zuppi, C.; Ghirlanda, G. Oxidative stress, nitric oxide, and diabetes. Rev. Diabet. Stud., 2010, 7(1), 15-25.
[http://dx.doi.org/10.1900/RDS.2010.7.15] [PMID: 20703435]
[71]
Ahn, T.Y.; Park, J.K.; Lee, S.W.; Hong, J.H.; Park, N.C.; Kim, J.J.; Park, K.; Park, H.; Hyun, J.S. Prevalence and risk factors for erectile dysfunction in Korean men: results of an epidemiological study. J. Sex. Med., 2007, 4(5), 1269-1276.
[http://dx.doi.org/10.1111/j.1743-6109.2007.00554.x] [PMID: 17635695]
[72]
Choi, W.S.; Kwon, O.S.; Cho, S.Y.; Paick, J.S.; Kim, S.W. Effect of chronic administration of PDE5 combined with glycemic control on erectile function in streptozotocin-induced diabetic rats. J. Sex. Med., 2015, 12(3), 600-610.
[http://dx.doi.org/10.1111/jsm.12752] [PMID: 25411013]
[73]
Niven, M.J.; Hitman, G.A.; Badenoch, D.F. A study of spermatozoal motility in type 1 diabetes mellitus. Diabet. Med., 1995, 12(10), 921-924.
[http://dx.doi.org/10.1111/j.1464-5491.1995.tb00397.x] [PMID: 8846685]
[74]
American Diabetes Association (ADA). 5. Glycemic Targets. Diabetes Care, 2016, 39(Suppl. 1), S39-S46.
[http://dx.doi.org/10.2337/dc16-S008] [PMID: 26696679]
[75]
American Diabetes Association. 4. Prevention or delay of type 2 diabetes. Diabetes Care, 2016, 39(Suppl. 1), S36-S38.
[http://dx.doi.org/10.2337/dc16-S007] [PMID: 26696678]
[76]
American Diabetes Association. 6. Obesity Management for the Treatment of Type 2 Diabetes. Diabetes Care, 2016, 39(Suppl. 1), S47-S51.
[http://dx.doi.org/10.2337/dc16-S009] [PMID: 26696681]
[77]
Diabetes.co.uk .The Global Diabetes Community, How to Avoid Diabetic Complications. http://www.diabetes.co.uk/how-to/avoid-diabetes-complications.html
[78]
American Diabetes Association. 7. Approaches to glycemic treatment. Diabetes Care, 2016, 39(Suppl. 1), S52-S59.
[http://dx.doi.org/10.2337/dc16-S010] [PMID: 26696682]
[79]
El-Kaissi, S.; Sherbeeni, S. Pharmacological management of type 2 diabetes mellitus: an update. Curr. Diabetes Rev., 2011, 7(6), 392-405.
[http://dx.doi.org/10.2174/157339911797579160] [PMID: 21846326]
[80]
Donath, M.Y.; Ehses, J.A.; Maedler, K.; Schumann, D.M.; Ellingsgaard, H.; Eppler, E.; Reinecke, M. Mechanisms of beta-cell death in type 2 diabetes. Diabetes, 2005, 54(Suppl. 2), S108-S113.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S108] [PMID: 16306327]
[81]
Shabanpoor, F.; Separovic, F.; Wade, J.D. The human insulin superfamily of polypeptide hormones. Vitam. Horm., 2009, 80, 1-31.
[http://dx.doi.org/10.1016/S0083-6729(08)00601-8] [PMID: 19251032]
[82]
Cryer, P.E. The barrier of hypoglycemia in diabetes. Diabetes, 2008, 57(12), 3169-3176.
[http://dx.doi.org/10.2337/db08-1084] [PMID: 19033403]
[83]
Zhang, J.; Liu, F. Tissue-specific insulin signaling in the regulation of metabolism and aging. IUBMB Life, 2014, 66(7), 485-495.
[http://dx.doi.org/10.1002/iub.1293] [PMID: 25087968]
[84]
Mauvais-Jarvis, F. Role of sex steroids in β cell function, growth, and survival. Trends Endocrinol. Metab., 2016, 27(12), 844-855.
[http://dx.doi.org/10.1016/j.tem.2016.08.008] [PMID: 27640750]
[85]
Porte, D., Jr; Baskin, D.G.; Schwartz, M.W. Insulin signaling in the central nervous system: a critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes, 2005, 54(5), 1264-1276.
[http://dx.doi.org/10.2337/diabetes.54.5.1264] [PMID: 15855309]
[86]
Aquila, S.; Gentile, M.; Middea, E.; Catalano, S.; Andò, S. Autocrine regulation of insulin secretion in human ejaculated spermatozoa. Endocrinology, 2005, 146(2), 552-557.
[http://dx.doi.org/10.1210/en.2004-1252] [PMID: 15550513]
[87]
Gómez, O.; Ballester, B.; Romero, A.; Arnal, E.; Almansa, I.; Miranda, M.; Mesonero, J.E.; Terrado, J. Expression and regulation of insulin and the glucose transporter GLUT8 in the testes of diabetic rats. Horm. Metab. Res., 2009, 41(5), 343-349.
[http://dx.doi.org/10.1055/s-0028-1128146] [PMID: 19194835]
[88]
Saucier, J.; Dubé, J.Y.; Tremblay, R.R. Specific insulin binding sites in rat testis: characterization and variation. Endocrinology, 1981, 109(6), 2220-2225.
[http://dx.doi.org/10.1210/endo-109-6-2220] [PMID: 7030719]
[89]
Loeken, M.R. A new role for pancreatic insulin in the male reproductive axis. Diabetes, 2012, 61(7), 1667-1668.
[http://dx.doi.org/10.2337/db12-0539] [PMID: 22723275]
[90]
Yamanaka, M.; Shirai, M.; Shiina, H.; Tanaka, Y.; Tsujimura, A.; Matsumiya, K.; Okuyama, A.; Dahiya, R. Diabetes induced erectile dysfunction and apoptosis in penile crura are recovered by insulin treatment in rats. J. Urol., 2003, 170(1), 291-297.
[http://dx.doi.org/10.1097/01.ju.0000060564.31122.2a] [PMID: 12796708]
[91]
Bailey, C.J.; Turner, R.C. Metformin. N. Engl. J. Med., 1996, 334(9), 574-579.
[http://dx.doi.org/10.1056/NEJM199602293340906] [PMID: 8569826]
[92]
El-Atat, F.; McFarlane, S.I.; Sowers, J.R. Diabetes, hypertension, and cardiovascular derangements: pathophysiology and management. Curr. Hypertens. Rep., 2004, 6(3), 215-223.
[http://dx.doi.org/10.1007/s11906-004-0072-y] [PMID: 15128475]
[93]
Lochhead, P.A.; Salt, I.P.; Walker, K.S.; Hardie, D.G.; Sutherland, C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes, 2000, 49(6), 896-903.
[http://dx.doi.org/10.2337/diabetes.49.6.896] [PMID: 10866040]
[94]
Pirwany, I.R.; Yates, R.W.; Cameron, I.T.; Fleming, R. Effects of the insulin sensitizing drug metformin on ovarian function, follicular growth and ovulation rate in obese women with oligomenorrhoea. Hum. Reprod., 1999, 14(12), 2963-2968.
[http://dx.doi.org/10.1093/humrep/14.12.2963] [PMID: 10601079]
[95]
Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001, 108(8), 1167-1174.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[96]
Melnik, B.C.; Schmitz, G. Metformin: an Inhibitor of mTORC1 Signaling. J. Endocrinol. Diabetes Obes., 2014, 2, 1029.
[97]
Tartarin, P.; Moison, D.; Guibert, E.; Dupont, J.; Habert, R.; Rouiller-Fabre, V.; Frydman, N.; Pozzi, S.; Frydman, R.; Lecureuil, C.; Froment, P. Metformin exposure affects human and mouse fetal testicular cells. Hum. Reprod., 2012, 27(11), 3304-3314.
[http://dx.doi.org/10.1093/humrep/des264] [PMID: 22811314]
[98]
Ayuob, N.N.; Murad, H.A.; Ali, S.S. Impaired expression of sex hormone receptors in male reproductive organs of diabetic rat in response to oral antidiabetic drugs. Folia Histochem. Cytobiol., 2015, 53(1), 35-48.
[http://dx.doi.org/10.5603/FHC.a2015.0005] [PMID: 25765091]
[99]
Kianifard, D.; Sadrkhanlou, R.A.; Hasanzadeh, S. The histological, histomorphometrical and histochemical changes of testicular tissue in the metformin treated and untreated streptozotocin-induced adult diabetic rats. Vet. Res. Forum, 2011, 2(1), 13-24.
[100]
Song, C.J.; Yang, Z.J.; Tang, Q.F.; Chen, Z.H. Effects of sericin on the testicular growth hormone/insulin-like growth factor-1 axis in a rat model of type 2 diabetes. Int. J. Clin. Exp. Med., 2015, 8(7), 10411-10419.
[PMID: 26379831]
[101]
Kim, Y.W.; Kim, J.Y.; Park, Y.H.; Park, S.Y.; Won, K.C.; Choi, K.H.; Huh, J.Y.; Moon, K.H. Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance. Diabetes, 2006, 55(3), 716-724.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0917] [PMID: 16505235]
[102]
Labazi, H.; Wynne, B.M.; Tostes, R.; Webb, R.C. Metformin treatment improves erectile function in an angiotensin II model of erectile dysfunction. J. Sex. Med., 2013, 10(9), 2154-2164.
[http://dx.doi.org/10.1111/jsm.12245] [PMID: 23889981]
[103]
Rey-Valzacchi, G.J.; Costanzo, P.R.; Finger, L.A.; Layus, A.O.; Gueglio, G.M.; Litwak, L.E.; Knoblovits, P. Addition of metformin to sildenafil treatment for erectile dysfunction in eugonadal nondiabetic men with insulin resistance. A prospective, randomized, double-blind pilot study. J. Androl., 2012, 33(4), 608-614.
[http://dx.doi.org/10.2164/jandrol.111.013714] [PMID: 22016348]
[104]
Bertoldo, M.J.; Faure, M.; Dupont, J.; Froment, P. Impact of metformin on reproductive tissues: an overview from gametogenesis to gestation. Ann. Transl. Med., 2014, 2(6), 55.
[PMID: 25333030]
[105]
Hurtado de Llera, A.; Martin-Hidalgo, D.; Gil, M.C.; Garcia-Marin, L.J.; Bragado, M.J. AMP-activated kinase AMPK is expressed in boar spermatozoa and regulates motility. PLoS One, 2012, 7(6)e38840
[http://dx.doi.org/10.1371/journal.pone.0038840] [PMID: 22719961]
[106]
Martin-Hidalgo, D.; Hurtado de Llera, A.; Yeste, M.; Cruz Gil, M.; Bragado, M.J.; Garcia-Marin, L.J. Adenosine monophosphate-activated kinase, AMPK, is involved in the maintenance of the quality of extended boar semen during long-term storage. Theriogenology, 2013, 80(4), 285-294.
[http://dx.doi.org/10.1016/j.theriogenology.2013.02.015] [PMID: 23773688]
[107]
Tartarin, P.; Guibert, E.; Touré, A.; Ouiste, C.; Leclerc, J.; Sanz, N.; Brière, S.; Dacheux, J.L.; Delaleu, B.; McNeilly, J.R.; McNeilly, A.S.; Brillard, J.P.; Dupont, J.; Foretz, M.; Viollet, B.; Froment, P. Inactivation of AMPKα1 induces asthenozoospermia and alters spermatozoa morphology. Endocrinology, 2012, 153(7), 3468-3481.
[http://dx.doi.org/10.1210/en.2011-1911] [PMID: 22581459]
[108]
Bertoldo, M.J.; Guibert, E.; Tartarin, P.; Guillory, V.; Froment, P. Effect of metformin on the fertilizing ability of mouse spermatozoa. Cryobiology, 2014, 68(2), 262-268.
[http://dx.doi.org/10.1016/j.cryobiol.2014.02.006] [PMID: 24556364]
[109]
Córdova, A.; Strobel, P.; Vallejo, A.; Valenzuela, P.; Ulloa, O.; Burgos, R.A.; Menarim, B.; Rodríguez-Gil, J.E.; Ratto, M.; Ramírez-Reveco, A. Use of hypometabolic TRIS extenders and high cooling rate refrigeration for cryopreservation of stallion sperm: presence and sensitivity of 5′ AMP-activated protein kinase (AMPK). Cryobiology, 2014, 69(3), 473-481.
[http://dx.doi.org/10.1016/j.cryobiol.2014.10.008] [PMID: 25445464]
[110]
Seltzer, H.S. Efficacy and safety of oral hypoglycemic agents. Annu. Rev. Med., 1980, 31, 261-272.
[http://dx.doi.org/10.1146/annurev.me.31.020180.001401] [PMID: 6994611]
[111]
Tommasini, R. Pharmacological activity of glipizide. Current Medical Research and Opinion, 1975, 3, (sup1), 7-19.
[http://dx.doi.org/10.1185/03007997509111970]
[112]
Basit, A.; Riaz, M.; Fawwad, A. Glimepiride: evidence-based facts, trends, and observations (GIFTS). Vasc. Health Risk Manag., 2012, 8, 463-472.
[http://dx.doi.org/10.2147/VHRM.S33194] [PMID: 23028231]
[113]
Kar, P.; Holt, R.I. The effect of sulphonylureas on the microvascular and macrovascular complications of diabetes. Cardiovasc. Drugs Ther., 2008, 22(3), 207-213.
[http://dx.doi.org/10.1007/s10557-008-6090-2] [PMID: 18288596]
[114]
Lebovitz, H.E. Oral therapies for diabetic hyperglycemia. Endocrinol. Metab. Clin. North Am., 2001, 30(4), 909-933.
[http://dx.doi.org/10.1016/S0889-8529(05)70221-8] [PMID: 11727405]
[115]
Jackson, J.E.; Bressler, R. Clinical pharmacology of sulphonylurea hypoglycaemic agents: part 1. Drugs, 1981, 22(3), 211-245.
[http://dx.doi.org/10.2165/00003495-198122030-00003] [PMID: 7021124]
[116]
Sturgess, N.C.; Ashford, M.L.; Cook, D.L.; Hales, C.N. The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet, 1985, 2(8453), 474-475.
[http://dx.doi.org/10.1016/S0140-6736(85)90403-9] [PMID: 2412077]
[117]
Trube, G.; Rorsman, P.; Ohno-Shosaku, T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic beta-cells. Pflugers Arch., 1986, 407(5), 493-499.
[http://dx.doi.org/10.1007/BF00657506] [PMID: 2431383]
[118]
Ashcroft, F.M.; Gribble, F.M. Correlating structure and function in ATP-sensitive K+ channels. Trends Neurosci., 1998, 21(7), 288-294.
[http://dx.doi.org/10.1016/S0166-2236(98)01225-9] [PMID: 9683320]
[119]
Muñoz-Garay, C.; De la Vega-Beltrán, J.L.; Delgado, R.; Labarca, P.; Felix, R.; Darszon, A. Inwardly rectifying K(+) channels in spermatogenic cells: functional expression and implication in sperm capacitation. Dev. Biol., 2001, 234(1), 261-274.
[http://dx.doi.org/10.1006/dbio.2001.0196] [PMID: 11356034]
[120]
Acevedo, J.J.; Mendoza-Lujambio, I.; de la Vega-Beltrán, J.L.; Treviño, C.L.; Felix, R.; Darszon, A. KATP channels in mouse spermatogenic cells and sperm, and their role in capacitation. Dev. Biol., 2006, 289(2), 395-405.
[http://dx.doi.org/10.1016/j.ydbio.2005.11.002] [PMID: 16343479]
[121]
Lybaert, P.; Vanbellinghen, A.M.; Quertinmont, E.; Petein, M.; Meuris, S.; Lebrun, P. KATP channel subunits are expressed in the epididymal epithelium in several mammalian species. Biol. Reprod., 2008, 79(2), 253-261.
[http://dx.doi.org/10.1095/biolreprod.107.064659] [PMID: 18434629]
[122]
Kumar, N.; Jain, S.; Gupta, A.; Tiwary, A.K. Spermicidal activity of sulfonylureas and meglitinide analogues: role of intrasperm Ca2+ elevation. J. Pharm. Pharmacol., 2008, 60(3), 323-330.
[http://dx.doi.org/10.1211/jpp.60.3.0007] [PMID: 18284812]
[123]
Nelli, G.B. K, A.S.; Kilari, E.K. Antidiabetic effect of α-mangostin and its protective role in sexual dysfunction of streptozotocin induced diabetic male rats. Syst Biol Reprod Med, 2013, 59(6), 319-328.
[http://dx.doi.org/10.3109/19396368.2013.820369] [PMID: 23886300]
[124]
Rabbani, S.I.; Devi, K.; Khanam, S. Inhibitory effect of glimepiride on nicotinamide-streptozotocin induced nuclear damages and sperm abnormality in diabetic Wistar rats. Indian J. Exp. Biol., 2009, 47(10), 804-810.
[PMID: 20112807]
[125]
Rabbani, S.I.; Devi, K.; Khanam, S. Protective role of glibenclamide against nicotinamide-streptozotocin induced nuclear damage in diabetic Wistar rats. J. Pharmacol. Pharmacother., 2010, 1(1), 18-23.
[http://dx.doi.org/10.4103/0976-500X.64531] [PMID: 21808586]
[126]
Adaramoye, O.; Akanni, O.; Adesanoye, O.; Labo-Popoola, O.; Olaremi, O. Evaluation of toxic effects of metformin hydrochloride and glibenclamide on some organs of male rats. Niger. J. Physiol. Sci., 2012, 27(2), 137-144.
[PMID: 23652227]
[127]
Sehra, D.; Sehra, S.; Sehra, S.T. Sulfonylureas: do we need to introspect safety again? Expert Opin. Drug Saf., 2011, 10(6), 851-861.
[http://dx.doi.org/10.1517/14740338.2011.583234] [PMID: 21605015]
[128]
Ruiz Rubio, J.L.; Hernández, M.; Rivera de los Arcos, L.; Benedito, S.; Recio, P.; García, P.; García-Sacristán, A.; Prieto, D. Role of ATP-sensitive K+ channels in relaxation of penile resistance arteries. Urology, 2004, 63(4), 800-805.
[http://dx.doi.org/10.1016/j.urology.2003.10.071] [PMID: 15072915]
[129]
Landgraf, R. Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs Aging, 2000, 17(5), 411-425.
[http://dx.doi.org/10.2165/00002512-200017050-00007] [PMID: 11190420]
[130]
Malaisse, W.J. Stimulation of insulin release by non-sulfonylurea hypoglycemic agents: the meglitinide family. Horm. Metab. Res., 1995, 27(6), 263-266.
[http://dx.doi.org/10.1055/s-2007-979955] [PMID: 7557835]
[131]
Malaisse, W.J. Pharmacology of the meglitinide analogs: new treatment options for type 2 diabetes mellitus. Treat. Endocrinol., 2003, 2(6), 401-414.
[http://dx.doi.org/10.2165/00024677-200302060-00004] [PMID: 15981944]
[132]
Neuschwander-Tetri, B.A.; Isley, W.L.; Oki, J.C.; Ramrakhiani, S.; Quiason, S.G.; Phillips, N.J.; Brunt, E.M. Troglitazone-induced hepatic failure leading to liver transplantation. A case report. Ann. Intern. Med., 1998, 129(1), 38-41.
[http://dx.doi.org/10.7326/0003-4819-129-1-199807010-00009] [PMID: 9652998]
[133]
Gitlin, N.; Julie, N.L.; Spurr, C.L.; Lim, K.N.; Juarbe, H.M. Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann. Intern. Med., 1998, 129(1), 36-38.
[http://dx.doi.org/10.7326/0003-4819-129-1-199807010-00008] [PMID: 9652997]
[134]
Herrine, S.K.; Choudhary, C. Severe hepatotoxicity associated with troglitazone. Ann. Intern. Med., 1999, 130(2), 163-164.
[http://dx.doi.org/10.7326/0003-4819-130-2-199901190-00021] [PMID: 10068372]
[135]
Hauner, H. The mode of action of thiazolidinediones. Diabetes Metab. Res. Rev., 2002, 18(Suppl. 2), S10-S15.
[http://dx.doi.org/10.1002/dmrr.249] [PMID: 11921433]
[136]
Aquila, S.; Bonofiglio, D.; Gentile, M.; Middea, E.; Gabriele, S.; Belmonte, M.; Catalano, S.; Pellegrino, M.; Andò, S. Peroxisome proliferator-activated receptor (PPAR)gamma is expressed by human spermatozoa: its potential role on the sperm physiology. J. Cell. Physiol., 2006, 209(3), 977-986.
[http://dx.doi.org/10.1002/jcp.20807] [PMID: 16972250]
[137]
Bhattacharya, N.; Dufour, J.M.; Vo, M.N.; Okita, J.; Okita, R.; Kim, K.H. Differential effects of phthalates on the testis and the liver. Biol. Reprod., 2005, 72(3), 745-754.
[http://dx.doi.org/10.1095/biolreprod.104.031583] [PMID: 15564602]
[138]
Braissant, O.; Foufelle, F.; Scotto, C.; Dauça, M.; Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology, 1996, 137(1), 354-366.
[http://dx.doi.org/10.1210/endo.137.1.8536636] [PMID: 8536636]
[139]
Mansour, M.; Coleman, E.; Dennis, J.; Akingbemi, B.; Schwartz, D.; Braden, T.; Judd, R.; Plaisance, E.; Stewart, L.K.; Morrison, E. Activation of PPARγ by Rosiglitazone does not negatively impact male sex steroid hormones in diabetic rats. PPAR Res., 2009.2009101857
[http://dx.doi.org/10.1155/2009/101857] [PMID: 19536350]
[140]
Thomas, K.; Sung, D.Y.; Chen, X.; Thompson, W.; Chen, Y.E.; McCarrey, J.; Walker, W.; Griswold, M. Developmental patterns of PPAR and RXR gene expression during spermatogenesis. Front. Biosci. (Elite Ed.), 2011, 3, 1209-1220.
[http://dx.doi.org/10.2741/e324] [PMID: 21622127]
[141]
Ibabe, A.; Bilbao, E.; Cajaraville, M.P. Expression of peroxisome proliferator-activated receptors in zebrafish (Danio rerio) depending on gender and developmental stage. Histochem. Cell Biol., 2005, 123(1), 75-87.
[http://dx.doi.org/10.1007/s00418-004-0737-2] [PMID: 15616845]
[142]
Gumieniczek, A.; Hopkała, H.; Zabek, A. Protective effects of a PPARgamma agonist pioglitazone on anti-oxidative system in testis of diabetic rabbits. Pharmazie, 2008, 63(5), 377-378.
[PMID: 18557423]
[143]
Gumieniczek, A.; Komsta, L.; Chehab, M.R. Effects of two oral antidiabetics, pioglitazone and repaglinide, on aconitase inactivation, inflammation and oxidative/nitrosative stress in tissues under alloxan-induced hyperglycemia. Eur. J. Pharmacol., 2011, 659(1), 89-93.
[http://dx.doi.org/10.1016/j.ejphar.2010.12.039] [PMID: 21237149]
[144]
Meneses, M.J.; Bernardino, R.L.; Sá, R.; Silva, J.; Barros, A.; Sousa, M.; Silva, B.M.; Oliveira, P.F.; Alves, M.G. Pioglitazone increases the glycolytic efficiency of human Sertoli cells with possible implications for spermatogenesis. Int. J. Biochem. Cell Biol., 2016, 79, 52-60.
[http://dx.doi.org/10.1016/j.biocel.2016.08.011] [PMID: 27515589]
[145]
Kovanecz, I.; Ferrini, M.G.; Vernet, D.; Nolazco, G.; Rajfer, J.; Gonzalez-Cadavid, N.F. Pioglitazone prevents corporal veno-occlusive dysfunction in a rat model of type 2 diabetes mellitus. BJU Int., 2006, 98(1), 116-124.
[http://dx.doi.org/10.1111/j.1464-410X.2006.06268.x] [PMID: 16831155]
[146]
Rabbani, S.I.; Devi, K.; Khanam, S. Effect of thiazolidinediones on the erythropoeitic and germinal cells in the male wistar rats. Clin. Med. Oncol., 2008, 2, 423-429.
[http://dx.doi.org/10.4137/CMO.S678] [PMID: 21892311]
[147]
Rabbani, S.I.; Devi, K.; Khanam, S. Pioglitazone, a PPAR-gamma ligand inhibited the nicotinamide-streptozotocin induced sperm abnormalities in type-2 diabetic Wistar rats. Pak. J. Pharm. Sci., 2010, 23(3), 326-331.
[PMID: 20566448]
[148]
Hvidberg, A.; Nielsen, M.T.; Hilsted, J.; Orskov, C.; Holst, J.J. Effect of glucagon-like peptide-1 (proglucagon 78-107amide) on hepatic glucose production in healthy man. Metabolism, 1994, 43(1), 104-108.
[http://dx.doi.org/10.1016/0026-0495(94)90164-3] [PMID: 8289665]
[149]
Wajchenberg, B.L. beta-cell failure in diabetes and preservation by clinical treatment. Endocr. Rev., 2007, 28(2), 187-218.
[http://dx.doi.org/10.1210/10.1210/er.2006-0038] [PMID: 17353295]
[150]
Miller, B.R.; Nguyen, H.; Hu, C.J.; Lin, C.; Nguyen, Q.T. New and emerging drugs and targets for type 2 diabetes: reviewing the evidence. Am. Health Drug Benefits, 2014, 7(8), 452-463.
[PMID: 25558307]
[151]
Ahangarpour, A.; Oroojan, A.A.; Heidari, H. Effects of exendin-4 on male reproductive parameters of d-galactose induced aging mouse model. World J. Mens Health, 2014, 32(3), 176-183.
[http://dx.doi.org/10.5534/wjmh.2014.32.3.176] [PMID: 25606567]
[152]
Zhang, E.; Xu, F.; Liang, H.; Yan, J.; Xu, H.; Li, Z.; Wen, X.; Weng, J. GLP-1 receptor agonist exenatide attenuates the detrimental effects of obesity on inflammatory profile in testis and sperm quality in mice. Am. J. Reprod. Immunol., 2015, 74(5), 457-466.
[http://dx.doi.org/10.1111/aji.12420] [PMID: 26287267]
[153]
Fontoura, P.; Cardoso, M.C.; Erthal-Martins, M.C.; Werneck, C.; Sartorio, C.; Ramos, C.F. The effects of liraglutide on male fertility: a case report. Reprod. Biomed. Online, 2014, 29(5), 644-646.
[http://dx.doi.org/10.1016/j.rbmo.2014.07.009] [PMID: 25246122]
[154]
Stein, S.A.; Lamos, E.M.; Davis, S.N. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin. Drug Saf., 2013, 12(2), 153-175.
[http://dx.doi.org/10.1517/14740338.2013.752813] [PMID: 23241069]
[155]
Hibi, H.; Ohori, T.; Yamada, Y. DPP-IV inhibitor may affect spermatogenesis. Diabetes Res. Clin. Pract., 2011, 93(2), e74-e75.
[http://dx.doi.org/10.1016/j.diabres.2011.04.022] [PMID: 21636156]
[156]
Sadeghi, A.; Babazadeh, D.; Eghbal, R.; Alyari Gavaher, M. Comparative appraisal of acarbose, pioglitazone and repaglinide on histopathology of testis in streptozotocin induced diabetic rats. Int. J. Fertil. Steril., 2013, 7(Suppl. 1), 67-67.
[157]
Garg, A.; Grundy, S.M. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann. Intern. Med., 1994, 121(6), 416-422.
[http://dx.doi.org/10.7326/0003-4819-121-6-199409150-00004] [PMID: 8053615]
[158]
Marquis, J.K.; Dagher, R.; Jones, M. Dietary administration of colesevelam hydrochloride does not affect fertility or reproductive performance in rats. Int. J. Toxicol., 2004, 23(6), 357-367.
[http://dx.doi.org/10.1080/10915810490902010] [PMID: 15764491]
[159]
Cuypers, J.; Mathieu, C.; Benhalima, K. SGLT2-inhibitors: a novel class for the treatment of type 2 diabetes introduction of SGLT2-inhibitors in clinical practice. Acta Clin. Belg., 2013, 68(4), 287-293.
[http://dx.doi.org/10.2143/ACB.3349] [PMID: 24455799]
[160]
Ji, L.; Ma, J.; Li, H.; Mansfield, T. A. T'Joen C, L.; Iqbal, N.; Ptaszynska, A.; List, J. F. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: a randomized, blinded, prospective phase III study Clin Ther, 2014, 36, (1), 84-100 e9.
[161]
Hoogwerf, B.J.; Doshi, K.B.; Diab, D. Pramlintide, the synthetic analogue of amylin: physiology, pathophysiology, and effects on glycemic control, body weight, and selected biomarkers of vascular risk. Vasc. Health Risk Manag., 2008, 4(2), 355-362.
[http://dx.doi.org/10.2147/VHRM.S1978] [PMID: 18561511]
[162]
Baron, A.D.; Kim, D.; Weyer, C. Novel peptides under development for the treatment of type 1 and type 2 diabetes mellitus. Curr. Drug Targets Immune Endocr. Metabol. Disord., 2002, 2(1), 63-82.
[http://dx.doi.org/10.2174/1568005310202010063] [PMID: 12477297]
[163]
Young, A. Tissue expression and secretion of amylin. Adv. Pharmacol., 2005, 52, 19-45.
[http://dx.doi.org/10.1016/S1054-3589(05)52002-7] [PMID: 16492539]
[164]
Adashi, E.Y.; Hsueh, A.J.; Yen, S.S. Insulin enhancement of luteinizing hormone and follicle-stimulating hormone release by cultured pituitary cells. Endocrinology, 1981, 108(4), 1441-1449.
[http://dx.doi.org/10.1210/endo-108-4-1441] [PMID: 6781875]
[165]
Brüning, J.C.; Gautam, D.; Burks, D.J.; Gillette, J.; Schubert, M.; Orban, P.C.; Klein, R.; Krone, W.; Müller-Wieland, D.; Kahn, C.R. Role of brain insulin receptor in control of body weight and reproduction. Science, 2000, 289(5487), 2122-2125.
[http://dx.doi.org/10.1126/science.289.5487.2122] [PMID: 11000114]
[166]
Burcelin, R.; Thorens, B.; Glauser, M.; Gaillard, R.C.; Pralong, F.P. Gonadotropin-releasing hormone secretion from hypothalamic neurons: stimulation by insulin and potentiation by leptin. Endocrinology, 2003, 144(10), 4484-4491.
[http://dx.doi.org/10.1210/en.2003-0457] [PMID: 12960084]
[167]
Borland, K.; Mita, M.; Oppenheimer, C.L.; Blinderman, L.A.; Massague, J.; Hall, P.F.; Czech, M.P. The actions of insulin-like growth factors I and II on cultured Sertoli cells. Endocrinology, 1984, 114(1), 240-246.
[http://dx.doi.org/10.1210/endo-114-1-240] [PMID: 6360662]
[168]
Karl, A.F.; Griswold, M.D. Actions of insulin and vitamin A on Sertoli cells. Biochem. J., 1980, 186(3), 1001-1003.
[http://dx.doi.org/10.1042/bj1861001] [PMID: 6249257]
[169]
Oonk, R.B.; Grootegoed, J.A.; van der Molen, H.J. Comparison of the effects of insulin and follitropin on glucose metabolism by Sertoli cells from immature rats. Mol. Cell. Endocrinol., 1985, 42(1), 39-48.
[http://dx.doi.org/10.1016/0303-7207(85)90005-X] [PMID: 3928417]
[170]
Skinner, M.K.; Griswold, M.D. Secretion of testicular transferrin by cultured Sertoli cells is regulated by hormones and retinoids. Biol. Reprod., 1982, 27(1), 211-221.
[http://dx.doi.org/10.1095/biolreprod27.1.211] [PMID: 6810965]
[171]
Alves, M.G.; Socorro, S.; Silva, J.; Barros, A.; Sousa, M.; Cavaco, J.E.; Oliveira, P.F. In vitro cultured human Sertoli cells secrete high amounts of acetate that is stimulated by 17β-estradiol and suppressed by insulin deprivation. Biochim. Biophys. Acta, 2012, 1823(8), 1389-1394.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.002] [PMID: 22705155]
[172]
Dias, T.R.; Rato, L.; Martins, A.D.; Simões, V.L.; Jesus, T.T.; Alves, M.G.; Oliveira, P.F. Insulin deprivation decreases caspase-dependent apoptotic signaling in cultured rat sertoli cells. ISRN Urol., 2013.2013970370
[http://dx.doi.org/10.1155/2013/970370] [PMID: 24228182]
[173]
Oliveira, P.F.; Alves, M.G.; Rato, L.; Laurentino, S.; Silva, J.; Sá, R.; Barros, A.; Sousa, M.; Carvalho, R.A.; Cavaco, J.E.; Socorro, S. Effect of insulin deprivation on metabolism and metabolism-associated gene transcript levels of in vitro cultured human Sertoli cells. Biochim. Biophys. Acta, 2012, 1820(2), 84-89.
[http://dx.doi.org/10.1016/j.bbagen.2011.11.006] [PMID: 22146232]
[174]
Khan, S.; Teerds, K.; Dorrington, J. Growth factor requirements for DNA synthesis by Leydig cells from the immature rat. Biol. Reprod., 1992, 46(3), 335-341.
[http://dx.doi.org/10.1095/biolreprod46.3.335] [PMID: 1617007]
[175]
Lin, T.; Haskell, J.; Vinson, N.; Terracio, L. Characterization of insulin and insulin-like growth factor I receptors of purified Leydig cells and their role in steroidogenesis in primary culture: a comparative study. Endocrinology, 1986, 119(4), 1641-1647.
[http://dx.doi.org/10.1210/endo-119-4-1641] [PMID: 2944738]
[176]
Söder, O.; Bang, P.; Wahab, A.; Parvinen, M. Insulin-like growth factors selectively stimulate spermatogonial, but not meiotic, deoxyribonucleic acid synthesis during rat spermatogenesis. Endocrinology, 1992, 131(5), 2344-2350.
[http://dx.doi.org/10.1210/endo.131.5.1425434] [PMID: 1425434]
[177]
Hicks, J.J.; Rojas, L.; Rosado, A. Insulin regulation of spermatozoa metabolism. Endocrinology, 1973, 92(3), 833-839.
[http://dx.doi.org/10.1210/endo-92-3-833] [PMID: 4701485]
[178]
Nakayama, Y.; Yamamoto, T.; Abé, S.I. IGF-I, IGF-II and insulin promote differentiation of spermatogonia to primary spermatocytes in organ culture of newt testes. Int. J. Dev. Biol., 1999, 43(4), 343-347.
[PMID: 10470651]
[179]
Silvestroni, L.; Modesti, A.; Sartori, C. Insulin-sperm interaction: effects on plasma membrane and binding to acrosome. Arch. Androl., 1992, 28(3), 201-211.
[http://dx.doi.org/10.3109/01485019208987699] [PMID: 1530369]
[180]
Lampiao, F.; du Plessis, S.S. Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian J. Androl., 2008, 10(5), 799-807.
[http://dx.doi.org/10.1111/j.1745-7262.2008.00421.x] [PMID: 18645684]
[181]
Bucholtz, D.C.; Chiesa, A.; Pappano, W.N.; Nagatani, S.; Tsukamura, H.; Maeda, K.I.; Foster, D.L. Regulation of pulsatile luteinizing hormone secretion by insulin in the diabetic male lamb. Biol. Reprod., 2000, 62(5), 1248-1255.
[http://dx.doi.org/10.1095/biolreprod62.5.1248] [PMID: 10775173]
[182]
Dong, Q.; Lazarus, R.M.; Wong, L.S.; Vellios, M.; Handelsman, D.J. Pulsatile LH secretion in streptozotocin-induced diabetes in the rat. J. Endocrinol., 1991, 131(1), 49-55.
[http://dx.doi.org/10.1677/joe.0.1310049] [PMID: 1744558]
[183]
Tanaka, T.; Nagatani, S.; Bucholtz, D.C.; Ohkura, S.; Tsukamura, H.; Maeda, K.; Foster, D.L. Central action of insulin regulates pulsatile luteinizing hormone secretion in the diabetic sheep model. Biol. Reprod., 2000, 62(5), 1256-1261.
[http://dx.doi.org/10.1095/biolreprod62.5.1256] [PMID: 10775174]
[184]
Tesone, M.; de Souza Valle, L.B.; Foglia, V.G.; Charreau, E.H. Endocrine function of the testis in streptozotocin diabetic rats. Acta Physiol. Lat. Am., 1976, 26(5), 387-394.
[PMID: 1052602]
[185]
Charreau, E.H.; Calvo, J.C.; Tesone, M.; de Souza Valle, L.B.; Barañao, J.L. Insulin regulation of Leydig cell luteinizing hormone receptors. J. Biol. Chem., 1978, 253(8), 2504-2506.
[PMID: 204651]
[186]
Pérez Díaz, J.; Benitez, A.; Fernández Galaz, C. Effect of streptozotocin diabetes on the pituitary-testicular axis in the rat. Horm. Metab. Res., 1982, 14(9), 479-482.
[http://dx.doi.org/10.1055/s-2007-1019052] [PMID: 6815042]
[187]
Orth, J.M.; Murray, F.T.; Bardin, C.W. Ultrastructural changes in Leydig cells of streptozotocin-induced diabetic rats. Anat. Rec., 1979, 195(3), 415-430.
[http://dx.doi.org/10.1002/ar.1091950302] [PMID: 228565]
[188]
Paz, G.; Homonnai, Z.T. Leydig cell function in streptozotocin-induced diabetic rats. Experientia, 1979, 35(10), 1412-1413.
[http://dx.doi.org/10.1007/BF01964042] [PMID: 227718]
[189]
Hurtado de Catalfo, G.E.; De Gómez Dumm, I.N. Lipid dismetabolism in Leydig and Sertoli cells isolated from streptozotocin-diabetic rats. Int. J. Biochem. Cell Biol., 1998, 30(9), 1001-1010.
[http://dx.doi.org/10.1016/S1357-2725(98)00055-7] [PMID: 9785463]
[190]
Hutson, J.C.; Stocco, D.M.; Campbell, G.T.; Wagoner, J. Sertoli cell function in diabetic, insulin-treated diabetic, and semi-starved rats. Diabetes, 1983, 32(2), 112-116.
[http://dx.doi.org/10.2337/diab.32.2.112] [PMID: 6219025]
[191]
Steger, R.W.; Kienast, S.G. Effect of continuous versus delayed insulin replacement on sex behavior and neuroendocrine function in diabetic male rats. Diabetes, 1990, 39(8), 942-948.
[http://dx.doi.org/10.2337/diab.39.8.942] [PMID: 1973672]
[192]
Suthagar, E.; Soudamani, S.; Yuvaraj, S.; Ismail Khan, A.; Aruldhas, M.M.; Balasubramanian, K. Effects of streptozotocin (STZ)-induced diabetes and insulin replacement on rat ventral prostate. Biomed. Pharmacother., 2009, 63(1), 43-50.
[http://dx.doi.org/10.1016/j.biopha.2008.01.002] [PMID: 18313883]
[193]
Wang, L.; Tian, W.; Uwais, Z.; Li, G.; Li, H.; Guan, R.; Gao, Z.; Xin, Z. AGE-breaker ALT-711 plus insulin could restore erectile function in streptozocin-induced type 1 diabetic rats. J. Sex. Med., 2014, 11(6), 1452-1462.
[http://dx.doi.org/10.1111/jsm.12533] [PMID: 24766706]
[194]
Adaramoye, O.A.; Lawal, S.O. Effect of kolaviron, a biflavonoid complex from Garcinia kola seeds, on the antioxidant, hormonal and spermatogenic indices of diabetic male rats. Andrologia, 2014, 46(8), 878-886.
[http://dx.doi.org/10.1111/and.12160] [PMID: 24007369]
[195]
Attia, S.M.; Helal, G.K.; Alhaider, A.A. Assessment of genomic instability in normal and diabetic rats treated with metformin. Chem. Biol. Interact., 2009, 180(2), 296-304.
[http://dx.doi.org/10.1016/j.cbi.2009.03.001] [PMID: 19497428]
[196]
Alves, M.G.; Martins, A.D.; Vaz, C.V.; Correia, S.; Moreira, P.I.; Oliveira, P.F.; Socorro, S. Metformin and male reproduction: effects on Sertoli cell metabolism. Br. J. Pharmacol., 2014, 171(4), 1033-1042.
[http://dx.doi.org/10.1111/bph.12522] [PMID: 24261663]
[197]
Couto, J.A.; Saraiva, K.L.; Barros, C.D.; Udrisar, D.P.; Peixoto, C.A.; Vieira, J.S.; Lima, M.C.; Galdino, S.L.; Pitta, I.R.; Wanderley, M.I. Effect of chronic treatment with Rosiglitazone on Leydig cell steroidogenesis in rats: in vivo and ex vivo studies. Reprod. Biol. Endocrinol., 2010, 8, 13.
[http://dx.doi.org/10.1186/1477-7827-8-13] [PMID: 20144211]
[198]
Vierhapper, H.; Nowotny, P.; Waldhäusl, W. Reduced production rates of testosterone and dihydrotestosterone in healthy men treated with rosiglitazone. Metabolism, 2003, 52(2), 230-232.
[http://dx.doi.org/10.1053/meta.2003.50028] [PMID: 12601638]
[199]
Panten, U.; Schwanstecher, M.; Schwanstecher, C. Sulfonylurea receptors and mechanism of sulfonylurea action. Exp. Clin. Endocrinol. Diabetes, 1996, 104(1), 1-9.
[http://dx.doi.org/10.1055/s-0029-1211414] [PMID: 8750563]
[200]
Prasad-Reddy, L.; Isaacs, D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs Context, 2015, 4212283
[http://dx.doi.org/10.7573/dic.212283] [PMID: 26213556]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy