[1]
WorldHealthOrganization, Global Tuberculosis Report 2017, Geneva. 2017.
[2]
Tiberi, S.; Scardigli, A.; Centis, R.; D’Ambrosio, L.; Munoz-Torrico, M.; Salazar-Lezama, M.A.; Spanevello, A.; Visca, D.; Zumla, A.; Migliori, G.B.; Caminero Luna, J.A. Classifying new anti-tuberculosis drugs: Rationale and future perspectives. Int. J. Infect. Dis., 2017, 56, 181-184.
[4]
Caminero, J.A. World Health, O.; American Thoracic, S.; British Thoracic, S. Treatment of multidrug-resistant tuberculosis: Evidence and controversies. Int. J. Tuberc. Lung Dis., 2006, 10(8), 829-837.
[5]
Chan, E.D.; Laurel, V.; Strand, M.J.; Chan, J.F.; Huynh, M.L.; Goble, M.; Iseman, M.D. Treatment and outcome analysis of 205 patients with multidrug-resistant tuberculosis. Am. J. Respir. Crit. Care Med., 2004, 169(10), 1103-1109.
[6]
Eker, B.; Ortmann, J.; Migliori, G.B.; Sotgiu, G.; Muetterlein, R.; Centis, R.; Hoffmann, H.; Kirsten, D.; Schaberg, T.; Ruesch-Gerdes, S.; Lange, C.; German, T.G. Multidrug- and extensively drug-resistant tuberculosis, Germany. Emerg. Infect. Dis., 2008, 14(11), 1700-1706.
[7]
Migliori, G.B.; Loddenkemper, R.; Blasi, F.; Raviglione, M.C. 125 years after Robert Koch’s discovery of the Tubercle bacillus: The new XDR-TB threat. Is “science” enough to tackle the epidemic? Eur. Respir. J., 2007, 29(3), 423-427.
[8]
Mitnick, C.D.; Shin, S.S.; Seung, K.J.; Rich, M.L.; Atwood, S.S.; Furin, J.J.; Fitzmaurice, G.M.; Alcantara Viru, F.A.; Appleton, S.C.; Bayona, J.N.; Bonilla, C.A.; Chalco, K.; Choi, S.; Franke, M.F.; Fraser, H.S.; Guerra, D.; Hurtado, R.M.; Jazayeri, D.; Joseph, K.; Llaro, K.; Mestanza, L.; Mukherjee, J.S.; Munoz, M.; Palacios, E.; Sanchez, E.; Sloutsky, A.; Becerra, M.C. Comprehensive treatment of extensively drug-resistant tuberculosis. N. Engl. J. Med., 2008, 359(6), 563-574.
[9]
Velayati, A.A.; Farnia, P.; Masjedi, M.R. The totally drug resistant tuberculosis (TDR-TB). Int. J. Clin. Exp. Med., 2013, 6(4), 307-309.
[10]
Sotgiu, G.; Centis, R.; D’Ambrosio, L.; Migliori, G.B. Tuberculosis treatment and drug regimens. Cold Spring Harb. Perspect. Med., 2015, 5(5), a017822.
[11]
Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E., 3rd; Tekaia, F.; Badcock, K.; Basham, D.; Brown, D.; Chillingworth, T.; Connor, R.; Davies, R.; Devlin, K.; Feltwell, T.; Gentles, S.; Hamlin, N.; Holroyd, S.; Hornsby, T.; Jagels, K.; Krogh, A.; McLean, J.; Moule, S.; Murphy, L.; Oliver, K.; Osborne, J.; Quail, M.A.; Rajandream, M.A.; Rogers, J.; Rutter, S.; Seeger, K.; Skelton, J.; Squares, R.; Squares, S.; Sulston, J.E.; Taylor, K.; Whitehead, S.; Barrell, B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998, 393(6685), 537-544.
[12]
Takayama, K.; Wang, C.; Besra, G.S. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev., 2005, 18(1), 81-101.
[13]
Takayama, K.; Wang, L.; David, H.L. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 1972, 2(1), 29-35.
[14]
Molle, V.; Kremer, L. Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Mol. Microbiol., 2010, 75(5), 1064-1077.
[15]
Daffe, M.; Crick, D.C.; Jackson, M. Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids Microbiol. Spectr., 2014, 2(4), MGM2-0021-2013.
[16]
Jackson, M.; Stadthagen, G.; Gicquel, B. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: Biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb.), 2007, 87(2), 78-86.
[17]
Nataraj, V.; Varela, C.; Javid, A.; Singh, A.; Besra, G.S.; Bhatt, A. Mycolic acids: Deciphering and targeting the Achilles’ heel of the Tubercle bacillus. Mol. Microbiol., 2015, 98(1), 7-16.
[18]
Lederer, E.; Adam, A.; Ciorbaru, R.; Petit, J.F.; Wietzerbin, J. Cell walls of Mycobacteria and related organisms; Chemistry and immunostimulant properties. Mol. Cell. Biochem., 1975, 7(2), 87-104.
[19]
Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem., 1995, 64, 29-63.
[20]
Misaki, A.; Seto, N.; Azuma, I. Structure and immunological properties of D-arabino-D-galactans isolated from cell walls of Mycobacterium species. J. Biochem., 1974, 76(1), 15-27.
[21]
Azuma, I.; Yamamura, Y. Studies on the firmly bound lipids of human Tubercle bacillus. J. Biochem., 1963, 53, 275-281.
[22]
Daffe, M.; Draper, P. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol., 1998, 39, 131-203.
[23]
Hattori, Y.; Matsunaga, I.; Komori, T.; Urakawa, T.; Nakamura, T.; Fujiwara, N.; Hiromatsu, K.; Harashima, H.; Sugita, M. Glycerol monomycolate, a latent tuberculosis-associated mycobacterial lipid, induces eosinophilic hypersensitivity responses in guinea pigs. Biochem. Biophys. Res. Commun., 2011, 409(2), 304-307.
[24]
McNeil, M.R.; Brennan, P.J. Structure, function and biogenesis of the cell envelope of mycobacteria in relation to bacterial physiology, pathogenesis and drug resistance; Some thoughts and possibilities arising from recent structural information. Res. Microbiol., 1991, 142(4), 451-463.
[25]
Roura-Mir, C.; Wang, L.; Cheng, T.Y.; Matsunaga, I.; Dascher, C.C.; Peng, S.L.; Fenton, M.J.; Kirschning, C.; Moody, D.B. Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J. Immunol., 2005, 175(3), 1758-1766.
[26]
Geisel, R.E.; Sakamoto, K.; Russell, D.G.; Rhoades, E.R. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J. Immunol., 2005, 174(8), 5007-5015.
[27]
Layre, E.; Collmann, A.; Bastian, M.; Mariotti, S.; Czaplicki, J.; Prandi, J.; Mori, L.; Stenger, S.; De Libero, G.; Puzo, G.; Gilleron, M. Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem. Biol., 2009, 16(1), 82-92.
[28]
Moody, D.B.; Briken, V.; Cheng, T.Y.; Roura-Mir, C.; Guy, M.R.; Geho, D.H.; Tykocinski, M.L.; Besra, G.S.; Porcelli, S.A. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol., 2002, 3(5), 435-442.
[29]
Hunter, R.L.; Venkataprasad, N.; Olsen, M.R. The role of trehalose dimycolate (cord factor) on morphology of virulent M. tuberculosis in vitro. Tuberculosis (Edinb.), 2006, 86(5), 349-356.
[30]
Hunter, R.L.; Olsen, M.; Jagannath, C.; Actor, J.K. Trehalose 6,6′-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. Am. J. Pathol., 2006, 168(4), 1249-1261.
[31]
Marrakchi, H.; Laneelle, M.A.; Daffe, M. Mycolic acids: Structures, biosynthesis, and beyond. Chem. Biol., 2014, 21(1), 67-85.
[32]
Raman, K.; Rajagopalan, P.; Chandra, N. Flux balance analysis of mycolic acid pathway: Targets for anti-tubercular drugs. PLoS Comput. Biol., 2005, 1(5), e46.
[33]
Barry, C.E., 3rd; Lee, R.E.; Mdluli, K.; Sampson, A.E.; Schroeder, B.G.; Slayden, R.A.; Yuan, Y. Mycolic acids: Structure, biosynthesis and physiological functions. Prog. Lipid Res., 1998, 37(2-3), 143-179.
[34]
Bhatt, A.; Molle, V.; Besra, G.S.; Jacobs, W.R., Jr; Kremer, L. The Mycobacterium tuberculosis FAS-II condensing enzymes: Their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol. Microbiol., 2007, 64(6), 1442-1454.
[35]
Bloch, K. Control mechanisms for fatty acid synthesis in Mycobacterium smegmatis. Adv. Enzymol. Relat. Areas Mol. Biol., 1977, 45, 1-84.
[36]
Daniel, J.; Oh, T.J.; Lee, C.M.; Kolattukudy, P.E. AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J. Bacteriol., 2007, 189(3), 911-917.
[37]
Bloch, K.; Vance, D. Control mechanisms in the synthesis of saturated fatty acids. Annu. Rev. Biochem., 1977, 46, 263-298.
[38]
Fernandes, N.D.; Kolattukudy, P.E. Cloning, sequencing and characterization of a fatty acid synthase-encoding gene from Mycobacterium tuberculosis var. bovis BCG. Gene, 1996, 170(1), 95-99.
[39]
Zimhony, O.; Vilcheze, C.; Jacobs, W.R., Jr Characterization of Mycobacterium smegmatis expressing the Mycobacterium tuberculosis fatty acid synthase I (fas1) gene. J. Bacteriol., 2004, 186(13), 4051-4055.
[40]
Smith, S.; Witkowski, A.; Joshi, A.K. Structural and functional organization of the animal fatty acid synthase. Prog. Lipid Res., 2003, 42(4), 289-317.
[41]
Odriozola, J.M.; Ramos, J.A.; Bloch, K. Fatty acid synthetase activity in Mycobacterium smegmatis. Characterization of the acyl carrier protein-dependent elongating system. Biochim. Biophys. Acta, 1977, 488(2), 207-217.
[42]
Kremer, L.; Nampoothiri, K.M.; Lesjean, S.; Dover, L.G.; Graham, S.; Betts, J.; Brennan, P.J.; Minnikin, D.E.; Locht, C.; Besra, G.S. Biochemical characterization of acyl carrier protein (AcpM) and malonyl-CoA:AcpM transacylase (mtFabD), two major components of Mycobacterium tuberculosis fatty acid synthase II. J. Biol. Chem., 2001, 276(30), 27967-27974.
[43]
Choi, K.H.; Kremer, L.; Besra, G.S.; Rock, C.O. Identification and substrate specificity of beta -ketoacyl (acyl carrier protein) synthase III (mtFabH) from Mycobacterium tuberculosis. J. Biol. Chem., 2000, 275(36), 28201-28207.
[44]
Marrakchi, H.; Ducasse, S.; Labesse, G.; Montrozier, H.; Margeat, E.; Emorine, L.; Charpentier, X.; Daffe, M.; Quemard, A. MabA (FabG1), a Mycobacterium tuberculosis protein involved in the long-chain fatty acid elongation system FAS-II. Microbiology, 2002, 148(Pt 4), 951-960.
[45]
Bhatt, A.; Fujiwara, N.; Bhatt, K.; Gurcha, S.S.; Kremer, L.; Chen, B.; Chan, J.; Porcelli, S.A.; Kobayashi, K.; Besra, G.S.; Jacobs, W.R., Jr Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc. Natl. Acad. Sci. USA, 2007, 104(12), 5157-5162.
[46]
Bhatt, A.; Kremer, L.; Dai, A.Z.; Sacchettini, J.C.; Jacobs, W.R., Jr Conditional depletion of KasA, a key enzyme of mycolic acid biosynthesis, leads to mycobacterial cell lysis. J. Bacteriol., 2005, 187(22), 7596-7606.
[47]
Kremer, L.; Dover, L.G.; Carrere, S.; Nampoothiri, K.M.; Lesjean, S.; Brown, A.K.; Brennan, P.J.; Minnikin, D.E.; Locht, C.; Besra, G.S. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis. Biochem. J., 2002, 364(Pt 2), 423-430.
[48]
Schaeffer, M.L.; Agnihotri, G.; Volker, C.; Kallender, H.; Brennan, P.J.; Lonsdale, J.T. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J. Biol. Chem., 2001, 276(50), 47029-47037.
[49]
Slayden, R.A.; Barry, C.E., 3rd The role of KasA and KasB in the biosynthesis of meromycolic acids and isoniazid resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2002, 82(4-5), 149-160.
[50]
Cantaloube, S.; Veyron-Churlet, R.; Haddache, N.; Daffe, M.; Zerbib, D. The Mycobacterium tuberculosis FAS-II dehydratases and methyltransferases define the specificity of the mycolic acid elongation complexes. PLoS One, 2011, 6(12), e29564.
[51]
Veyron-Churlet, R.; Bigot, S.; Guerrini, O.; Verdoux, S.; Malaga, W.; Daffe, M.; Zerbib, D. The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions. J. Mol. Biol., 2005, 353(4), 847-858.
[52]
Veyron-Churlet, R.; Guerrini, O.; Mourey, L.; Daffe, M.; Zerbib, D. Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol. Microbiol., 2004, 54(5), 1161-1172.
[53]
Marrakchi, H. Bardou, F.; Lanéelle, M.-a.; Daffé, M. In: The Mycobacterial Cell Envelope; American Society of Microbiology, 2008.
[54]
Sacco, E.; Covarrubias, A.S.; O’Hare, H.M.; Carroll, P.; Eynard, N.; Jones, T.A.; Parish, T.; Daffe, M.; Backbro, K.; Quemard, A. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14628-14633.
[55]
Gao, L.Y.; Laval, F.; Lawson, E.H.; Groger, R.K.; Woodruff, A.; Morisaki, J.H.; Cox, J.S.; Daffe, M.; Brown, E.J. Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: Implications for therapy. Mol. Microbiol., 2003, 49(6), 1547-1563.
[56]
Gokhale, R.S.; Saxena, P.; Chopra, T.; Mohanty, D. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat. Prod. Rep., 2007, 24(2), 267-277.
[57]
Trivedi, O.A.; Arora, P.; Sridharan, V.; Tickoo, R.; Mohanty, D.; Gokhale, R.S. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature, 2004, 428(6981), 441-445.
[58]
Gavalda, S.; Bardou, F.; Laval, F.; Bon, C.; Malaga, W.; Chalut, C.; Guilhot, C.; Mourey, L.; Daffe, M.; Quemard, A. The polyketide synthase Pks13 catalyzes a novel mechanism of lipid transfer in mycobacteria. Chem. Biol., 2014, 21(12), 1660-1669.
[59]
Gavalda, S.; Leger, M.; van der Rest, B.; Stella, A.; Bardou, F.; Montrozier, H.; Chalut, C.; Burlet-Schiltz, O.; Marrakchi, H.; Daffe, M.; Quemard, A. The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis. J. Biol. Chem., 2009, 284(29), 19255-19264.
[60]
Leger, M.; Gavalda, S.; Guillet, V.; van der Rest, B.; Slama, N.; Montrozier, H.; Mourey, L.; Quemard, A.; Daffe, M.; Marrakchi, H. The dual function of the Mycobacterium tuberculosis FadD32 required for mycolic acid biosynthesis. Chem. Biol., 2009, 16(5), 510-519.
[61]
Gande, R.; Gibson, K.J.; Brown, A.K.; Krumbach, K.; Dover, L.G.; Sahm, H.; Shioyama, S.; Oikawa, T.; Besra, G.S.; Eggeling, L. Acyl-CoA carboxylases (accD2 and accD3), together with a unique polyketide synthase (Cg-pks), are key to mycolic acid biosynthesis in Corynebacterianeae such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J. Biol. Chem., 2004, 279(43), 44847-44857.
[62]
Portevin, D.; De Sousa-D’Auria, C.; Houssin, C.; Grimaldi, C.; Chami, M.; Daffe, M.; Guilhot, C. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 314-319.
[63]
Portevin, D.; de Sousa-D’Auria, C.; Montrozier, H.; Houssin, C.; Stella, A.; Laneelle, M.A.; Bardou, F.; Guilhot, C.; Daffe, M. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: Identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J. Biol. Chem., 2005, 280(10), 8862-8874.
[64]
Bhatt, A.; Brown, A.K.; Singh, A.; Minnikin, D.E.; Besra, G.S. Loss of a mycobacterial gene encoding a reductase leads to an altered cell wall containing beta-oxo-mycolic acid analogs and accumulation of ketones. Chem. Biol., 2008, 15(9), 930-939.
[65]
Lea-Smith, D.J.; Pyke, J.S.; Tull, D.; McConville, M.J.; Coppel, R.L.; Crellin, P.K. The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan. J. Biol. Chem., 2007, 282(15), 11000-11008.
[66]
Aggarwal, A.; Parai, M.K.; Shetty, N.; Wallis, D.; Woolhiser, L.; Hastings, C.; Dutta, N.K.; Galaviz, S.; Dhakal, R.C.; Shrestha, R.; Wakabayashi, S.; Walpole, C.; Matthews, D.; Floyd, D.; Scullion, P.; Riley, J.; Epemolu, O.; Norval, S.; Snavely, T.; Robertson, G.T.; Rubin, E.J.; Ioerger, T.R.; Sirgel, F.A.; van der Merwe, R.; van Helden, P.D.; Keller, P.; Bottger, E.C.; Karakousis, P.C.; Lenaerts, A.J.; Sacchettini, J.C. Development of a Novel Lead that Targets M. tuberculosis Polyketide Synthase 13. Cell, 2017, 170(2), 249-259 . e225
[67]
Bergeret, F.; Gavalda, S.; Chalut, C.; Malaga, W.; Quemard, A.; Pedelacq, J.D.; Daffe, M.; Guilhot, C.; Mourey, L.; Bon, C. Biochemical and structural study of the atypical acyltransferase domain from the mycobacterial polyketide synthase Pks13. J. Biol. Chem., 2012, 287(40), 33675-33690.
[68]
Yu, M.; Dou, C.; Gu, Y.; Cheng, W. Crystallization and structure analysis of the core motif of the Pks13 acyltransferase domain from Mycobacterium tuberculosis. PeerJ, 2018, 6, e4728.
[69]
Thanna, S.; Knudson, S.E.; Grzegorzewicz, A.; Kapil, S.; Goins, C.M.; Ronning, D.R.; Jackson, M.; Slayden, R.A.; Sucheck, S.J. Synthesis and evaluation of new 2-aminothiophenes against Mycobacterium tuberculosis. Org. Biomol. Chem., 2016, 14(25), 6119-6133.
[70]
Zhang, W.; Lun, S.; Wang, S.H.; Jiang, X.W.; Yang, F.; Tang, J.; Manson, A.L.; Earl, A.M.; Gunosewoyo, H.; Bishai, W.R.; Yu, L.F. Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors against Mycobacterium tuberculosis. J. Med. Chem., 2018, 61(3), 791-803.
[71]
Domenech, P.; Reed, M.B.; Barry, C.E., 3rd Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect. Immun., 2005, 73(6), 3492-3501.
[72]
Belardinelli, J.M.; Larrouy-Maumus, G.; Jones, V.; Sorio de Carvalho, L.P.; McNeil, M.R.; Jackson, M. Biosynthesis and translocation of unsulfated acyltrehaloses in Mycobacterium tuberculosis. J. Biol. Chem., 2014, 289(40), 27952-27965.
[73]
Converse, S.E.; Mougous, J.D.; Leavell, M.D.; Leary, J.A.; Bertozzi, C.R.; Cox, J.S. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6121-6126.
[74]
Cox, J.S.; Chen, B.; McNeil, M.; Jacobs, W.R., Jr Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature, 1999, 4020(6757), 79-83.
[75]
Domenech, P.; Reed, M.B.; Dowd, C.S.; Manca, C.; Kaplan, G.; Barry, C.E., 3rd The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J. Biol. Chem., 2004, 279(20), 21257-21265.
[76]
Xu, Z.; Meshcheryakov, V.A.; Poce, G.; Chng, S.S. MmpL3 is the flippase for mycolic acids in mycobacteria. Proc. Natl. Acad. Sci. USA, 2017, 114(30), 7993-7998.
[77]
Mdluli, K.; Kaneko, T.; Upton, A. Tuberculosis drug discovery and emerging targets. Ann. N. Y. Acad. Sci., 2014, 1323, 56-75.
[78]
Owens, C.P.; Chim, N.; Graves, A.B.; Harmston, C.A.; Iniguez, A.; Contreras, H.; Liptak, M.D.; Goulding, C.W. The Mycobacterium tuberculosis secreted protein Rv0203 transfers heme to membrane proteins MmpL3 and MmpL11. J. Biol. Chem., 2013, 288(30), 21714-21728.
[79]
Grzegorzewicz, A.E.; Pham, H.; Gundi, V.A.; Scherman, M.S.; North, E.J.; Hess, T.; Jones, V.; Gruppo, V.; Born, S.E.; Kordulakova, J.; Chavadi, S.S.; Morisseau, C.; Lenaerts, A.J.; Lee, R.E.; McNeil, M.R.; Jackson, M. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat. Chem. Biol., 2012, 8(4), 334-341.
[80]
Tahlan, K.; Wilson, R.; Kastrinsky, D.B.; Arora, K.; Nair, V.; Fischer, E.; Barnes, S.W.; Walker, J.R.; Alland, D.; Barry, C.E., 3rd; Boshoff, H.I. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2012, 56(4), 1797-1809.
[81]
Varela, C.; Rittmann, D.; Singh, A.; Krumbach, K.; Bhatt, K.; Eggeling, L.; Besra, G.S.; Bhatt, A. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem. Biol., 2012, 19(4), 498-506.
[82]
Warrier, T.; Tropis, M.; Werngren, J.; Diehl, A.; Gengenbacher, M.; Schlegel, B.; Schade, M.; Oschkinat, H.; Daffe, M.; Hoffner, S.; Eddine, A.N.; Kaufmann, S.H. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob. Agents Chemother., 2012, 56(4), 1735-1743.
[83]
Stock, J.B.; Ninfa, A.J.; Stock, A.M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev., 1989, 53(4), 450-490.
[84]
Prisic, S.; Husson, R.N. Mycobacterium tuberculosis Serine/Threonine Protein Kinases. Microbiol. Spectrum., 2014, 2(5), 1-26.
[85]
Parish, T. Two-Component Regulatory Systems of Mycobacteria. Microbiol. Spectr., 2014, 2(1), MGM2-0010-2013.
[87]
Av-Gay, Y.; Everett, M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol., 2000, 8(5), 238-244.
[88]
Greenstein, A.E.; Grundner, C.; Echols, N.; Gay, L.M.; Lombana, T.N.; Miecskowski, C.A.; Pullen, K.E.; Sung, P.Y.; Alber, T. Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J. Mol. Microbiol. Biotechnol., 2005, 9(3-4), 167-181.
[89]
Wehenkel, A.; Bellinzoni, M.; Grana, M.; Duran, R.; Villarino, A.; Fernandez, P.; Andre-Leroux, G.; England, P.; Takiff, H.; Cervenansky, C.; Cole, S.T.; Alzari, P.M. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential. Biochim. Biophys. Acta, 2008, 1784(1), 193-202.
[90]
Zhou, P.; Long, Q.; Zhou, Y.; Wang, H.; Xie, J. Mycobacterium tuberculosis two-component systems and implications in novel vaccines and drugs. Crit. Rev. Eukaryot. Gene Expr., 2012, 22(1), 37-52.
[91]
Canova, M.J.; Molle, V. Bacterial serine/threonine protein kinases in host-pathogen interactions. J. Biol. Chem., 2014, 289(14), 9473-9479.
[92]
Narayan, A.; Sachdeva, P.; Sharma, K.; Saini, A.K.; Tyagi, A.K.; Singh, Y. Serine threonine protein kinases of mycobacterial genus: Phylogeny to function. Physiol. Genomics, 2007, 29(1), 66-75.
[93]
Prisic, S.; Dankwa, S.; Schwartz, D.; Chou, M.F.; Locasale, J.W.; Kang, C.M.; Bemis, G.; Church, G.M.; Steen, H.; Husson, R.N. Extensive phosphorylation with overlapping specificity by Mycobacterium tuberculosis serine/threonine protein kinases. Proc. Natl. Acad. Sci. USA, 2010, 107(16), 7521-7526.
[94]
Huse, M.; Kuriyan, J. The conformational plasticity of protein kinases. Cell, 2002, 109(3), 275-282.
[95]
Sickmann, A.; Meyer, H.E. Phosphoamino acid analysis. Proteomics, 2001, 1(2), 200-206.
[96]
Braconi Quintaje, S.; Orchard, S. The annotation of both human and mouse kinomes in UniProtKB/Swiss-Prot: One small step in manual annotation, one giant leap for full comprehension of genomes. Mol. Cell. Proteomics, 2008, 7(8), 1409-1419.
[97]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[98]
Bach, H.; Wong, D.; Av-Gay, Y. Mycobacterium tuberculosis PtkA is a novel protein tyrosine kinase whose substrate is PtpA. Biochem. J., 2009, 420(2), 155-160.
[99]
Zhou, P.; Li, W.; Wong, D.; Xie, J.; Av-Gay, Y. Phosphorylation control of protein tyrosine phosphatase A activity in Mycobacterium tuberculosis. FEBS Lett., 2015, 589(3), 326-331.
[101]
Sajid, A.; Arora, G.; Singhal, A.; Kalia, V.C.; Singh, Y. Protein Phosphatases of Pathogenic Bacteria: Role in Physiology and Virulence. Annu. Rev. Microbiol., 2015, 69, 527-547.
[102]
Boitel, B.; Ortiz-Lombardia, M.; Duran, R.; Pompeo, F.; Cole, S.T.; Cervenansky, C.; Alzari, P.M. PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium tuberculosis. Mol. Microbiol., 2003, 49(6), 1493-1508.
[103]
Chopra, P.; Singh, B.; Singh, R.; Vohra, R.; Koul, A.; Meena, L.S.; Koduri, H.; Ghildiyal, M.; Deol, P.; Das, T.K.; Tyagi, A.K.; Singh, Y. Phosphoprotein phosphatase of Mycobacterium tuberculosis dephosphorylates serine-threonine kinases PknA and PknB. Biochem. Biophys. Res. Commun., 2003, 311(1), 112-120.
[104]
Le, N-H.; Molle, V.; Eynard, N.; Miras, M.; Stella, A.; Bardou, F.; Galandrin, S.; Guillet, V.; Andre-Leroux, G.; Bellinzoni, M.; Alzari, P.; Mourey, L.; Burlet-Schiltz, O.; Daffe, M.; Marrakchi, H. Ser/Thr Phosphorylation Regulates the Fatty Acyl-AMP Ligase Activity of FadD32, an Essential Enzyme in Mycolic Acid Biosynthesis. J. Biol. Chem., 2016, 291(43), 22793-22805.
[105]
Sharma, A.K.; Arora, D.; Singh, L.K.; Gangwal, A.; Sajid, A.; Molle, V.; Singh, Y.; Nandicoori, V.K. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen. J. Biol. Chem., 2016, 291(46), 24215-24230.
[106]
Chao, J.; Wong, D.; Zheng, X.; Poirier, V.; Bach, H.; Hmama, Z.; Av-Gay, Y. Protein kinase and phosphatase signaling in Mycobacterium tuberculosis physiology and pathogenesis. Biochim. Biophys. Acta, 2010, 1804(3), 620-627.
[107]
Koul, A.; Choidas, A.; Treder, M.; Tyagi, A.K.; Drlica, K.; Singh, Y.; Ullrich, A. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J. Bacteriol., 2000, 182(19), 5425-5432.
[108]
Koul, A.; Herget, T.; Klebl, B.; Ullrich, A. Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol., 2004, 2(3), 189-202.
[109]
Zhou, B.; He, Y.; Zhang, X.; Xu, J.; Luo, Y.; Wang, Y.; Franzblau, S.G.; Yang, Z.; Chan, R.J.; Liu, Y.; Zheng, J.; Zhang, Z.Y. Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc. Natl. Acad. Sci. USA, 2010, 107(10), 4573-4578.
[110]
Bach, H.; Papavinasasundaram, K.G.; Wong, D.; Hmama, Z.; Av-Gay, Y. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe, 2008, 3(5), 316-322.
[111]
Beresford, N.; Patel, S.; Armstrong, J.; Szoor, B.; Fordham-Skelton, A.P.; Tabernero, L. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem. J., 2007, 406(1), 13-18.
[112]
Castandet, J.; Prost, J.F.; Peyron, P.; Astarie-Dequeker, C.; Anes, E.; Cozzone, A.J.; Griffiths, G.; Maridonneau-Parini, I. Tyrosine phosphatase MptpA of Mycobacterium tuberculosis inhibits phagocytosis and increases actin polymerization in macrophages. Res. Microbiol., 2005, 156(10), 1005-1013.
[113]
Chauhan, P.; Reddy, P.V.; Singh, R.; Jaisinghani, N.; Gandotra, S.; Tyagi, A.K. Secretory phosphatases deficient mutant of Mycobacterium tuberculosis imparts protection at the primary site of infection in guinea pigs. PLoS One, 2013, 8(10), e77930.
[114]
Cowley, S.C.; Babakaiff, R.; Av-Gay, Y. Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Res. Microbiol., 2002, 153(4), 233-241.
[115]
Guler, R.; Brombacher, F. Host-directed drug therapy for tuberculosis. Nat. Chem. Biol., 2015, 11(10), 748-751.
[116]
Singh, R.; Rao, V.; Shakila, H.; Gupta, R.; Khera, A.; Dhar, N.; Singh, A.; Koul, A.; Singh, Y.; Naseema, M.; Narayanan, P.R.; Paramasivan, C.N.; Ramanathan, V.D.; Tyagi, A.K. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol. Microbiol., 2003, 50(3), 751-762.
[117]
Singh, R.; Singh, A.; Tyagi, A.K. Deciphering the genes involved in pathogenesis of Mycobacterium tuberculosis. Tuberculosis (Edinb.), 2005, 85(5-6), 325-335.
[118]
Wang, J.; Li, B.X.; Ge, P.P.; Li, J.; Wang, Q.; Gao, G.F.; Qiu, X.B.; Liu, C.H. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system. Nat. Immunol., 2015, 16(3), 237-245.
[119]
Wang, J.; Teng, J.L.; Zhao, D.; Ge, P.; Li, B.; Woo, P.C.; Liu, C.H. The ubiquitin ligase TRIM27 functions as a host restriction factor antagonized by Mycobacterium tuberculosis PtpA during mycobacterial infection. Sci. Rep., 2016, 6, 34827.
[120]
Wong, D.; Bach, H.; Sun, J.; Hmama, Z.; Av-Gay, Y. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc. Natl. Acad. Sci. USA, 2011, 108(48), 19371-19376.
[121]
Parrish, N.M.; Dick, J.D.; Bishai, W.R. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol., 1998, 6(3), 107-112.
[122]
Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; Schoolnik, G.K. Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment. J. Exp. Med., 2003, 198(5), 693-704.
[123]
Dubnau, E.; Chan, J.; Raynaud, C.; Mohan, V.P.; Laneelle, M.A.; Yu, K.; Quemard, A.; Smith, I.; Daffe, M. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol., 2000, 36(3), 630-637.
[124]
Corrales, R.M.; Molle, V.; Leiba, J.; Mourey, L.; de Chastellier, C.; Kremer, L. Phosphorylation of mycobacterial PcaA inhibits mycolic acid cyclopropanation. J. Biol. Chem., 2012, 287(31), 26187-26199.
[125]
Jang, J.; Stella, A.; Boudou, F.; Levillain, F.; Darthuy, E.; Vaubourgeix, J.; Wang, C.; Bardou, F.; Puzo, G.; Gilleron, M.; Burlet-Schiltz, O.; Monsarrat, B.; Brodin, P.; Gicquel, B.; Neyrolles, O. Functional characterization of the Mycobacterium tuberculosis serine/threonine kinase PknJ. Microbiology (Reading, U.K.), 2010, 156(6), 1619-1631.
[126]
Khan, S.; Nagarajan, S.N.; Parikh, A.; Samantaray, S.; Singh, A.; Kumar, D.; Roy, R.P.; Bhatt, A.; Nandicoori, V.K. Phosphorylation of enoyl-acyl carrier protein reductase InhA impacts mycobacterial growth and survival. J. Biol. Chem., 2010, 285(48), 37860-37871.
[127]
Kumar, P.; Kumar, D.; Parikh, A.; Rananaware, D.; Gupta, M.; Singh, Y.; Nandicoori, V.K. The Mycobacterium tuberculosis protein kinase K modulates activation of transcription from the promoter of mycobacterial monooxygenase operon through phosphorylation of the transcriptional regulator VirS. J. Biol. Chem., 2009, 284(17), 11090-11099.
[128]
Kumari, R.; Saxena, R.; Tiwari, S.; Tripathi, D.K.; Srivastava, K.K. Rv3080c regulates the rate of inhibition of mycobacteria by isoniazid through FabD. Mol. Cell. Biochem., 2013, 374(1-2), 149-155.
[129]
Molle, V.; Brown, A.K.; Besra, G.S.; Cozzone, A.J.; Kremer, L. The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation. J. Biol. Chem., 2006, 281(40), 30094-30103.
[130]
Molle, V.; Gulten, G.; Vilcheze, C.; Veyron-Churlet, R.; Zanella-Cleon, I.; Sacchettini, J.C.; Jacobs, W.R., Jr; Kremer, L. Phosphorylation of InhA inhibits mycolic acid biosynthesis and growth of Mycobacterium tuberculosis. Mol. Microbiol., 2010, 78(6), 1591-1605.
[131]
Molle, V.; Kremer, L.; Girard-Blanc, C.; Besra, G.S.; Cozzone, A.J.; Prost, J.F. An FHA phosphoprotein recognition domain mediates protein EmbR phosphorylation by PknH, a Ser/Thr protein kinase from Mycobacterium tuberculosis. Biochemistry, 2003, 42(51), 15300-15309.
[132]
Sharma, K.; Gupta, M.; Pathak, M.; Gupta, N.; Koul, A.; Sarangi, S.; Baweja, R.; Singh, Y. Transcriptional control of the mycobacterial embCAB operon by PknH through a regulatory protein, EmbR, in vivo. J. Bacteriol., 2006, 188(8), 2936-2944.
[133]
Singh, A.; Gupta, R.; Vishwakarma, R.A.; Narayanan, P.R.; Paramasivan, C.N.; Ramanathan, V.D.; Tyagi, A.K. Requirement of the mymA operon for appropriate cell wall ultrastructure and persistence of Mycobacterium tuberculosis in the spleens of guinea pigs. J. Bacteriol., 2005, 187(12), 4173-4186.
[134]
Slama, N.; Leiba, J.; Eynard, N.; Daffe, M.; Kremer, L.; Quemard, A.; Molle, V. Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system. Biochem. Biophys. Res. Commun., 2011, 412(3), 401-406.
[135]
Veyron-Churlet, R.; Molle, V.; Taylor, R.C.; Brown, A.K.; Besra, G.S.; Zanella-Cleon, I.; Futterer, K.; Kremer, L. The Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue. J. Biol. Chem., 2009, 284(10), 6414-6424.
[136]
Veyron-Churlet, R.; Zanella-Cleon, I.; Cohen-Gonsaud, M.; Molle, V.; Kremer, L. Phosphorylation of the Mycobacterium tuberculosis β-Ketoacyl-Acyl Carrier Protein Reductase MabA Regulates Mycolic Acid Biosynthesis. J. Biol. Chem., 2010, 285(17), 12714-12725.
[137]
Sinha, I.; Boon, C.; Dick, T. Apparent growth phase-dependent phosphorylation of malonyl coenzyme A: Acyl carrier protein transacylase (MCAT), a major fatty acid synthase II component in Mycobacterium bovis BCG. FEMS Microbiol. Lett., 2003, 227(1), 141-147.
[138]
Vilcheze, C.; Molle, V.; Carrere-Kremer, S.; Leiba, J.; Mourey, L.; Shenai, S.; Baronian, G.; Tufariello, J.; Hartman, T.; Veyron-Churlet, R.; Trivelli, X.; Tiwari, S.; Weinrick, B.; Alland, D.; Guerardel, Y.; Jacobs, W.R., Jr; Kremer, L. Phosphorylation of KasB regulates virulence and acid-fastness in Mycobacterium tuberculosis. PLoS Pathog., 2014, 10(5), e1004115.
[139]
Dasgupta, A.; Datta, P.; Kundu, M.; Basu, J. The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology, 2006, 152(Pt 2), 493-504.
[140]
Gupta, M.; Sajid, A.; Arora, G.; Tandon, V.; Singh, Y. Forkhead-associated domain-containing protein Rv0019c and polyketide-associated protein PapA5, from substrates of serine/threonine protein kinase PknB to interacting proteins of Mycobacterium tuberculosis. J. Biol. Chem., 2009, 284(50), 34723-34734.
[141]
Kang, C.M.; Abbott, D.W.; Park, S.T.; Dascher, C.C.; Cantley, L.C.; Husson, R.N. The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: Substrate identification and regulation of cell shape. Genes Dev., 2005, 19(14), 1692-1704.
[142]
Kang, C.M.; Nyayapathy, S.; Lee, J.Y.; Suh, J.W.; Husson, R.N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology, 2008, 154(Pt 3), 725-735.
[143]
Parikh, A.; Verma, S.K.; Khan, S.; Prakash, B.; Nandicoori, V.K. PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J. Mol. Biol., 2009, 386(2), 451-464.
[144]
Thakur, M.; Chakraborti, P.K. GTPase activity of mycobacterial FtsZ is impaired due to its transphosphorylation by the eukaryotic-type Ser/Thr kinase, PknA. J. Biol. Chem., 2006, 281(52), 40107-40113.
[145]
Thakur, M.; Chakraborti, P.K. Ability of PknA, a mycobacterial eukaryotic-type serine/threonine kinase, to transphosphorylate MurD, a ligase involved in the process of peptidoglycan biosynthesis. Biochem. J., 2008, 415(1), 27-33.
[146]
Kumari, R.; Singh, S.K.; Singh, D.K.; Singh, P.K.; Chaurasiya, S.K.; Srivastava, K.K. Functional characterization delineates that a Mycobacterium tuberculosis specific protein kinase (Rv3080c) is responsible for the growth, phagocytosis and intracellular survival of avirulent mycobacteria. Mol. Cell. Biochem., 2012, 369(1-2), 67-74.
[147]
Malhotra, V.; Arteaga-Cortes, L.T.; Clay, G.; Clark-Curtiss, J.E. Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: Implications for immune modulation. Microbiology, 2010, 156(Pt 9), 2829-2841.
[148]
Brown, A.K.; Bhatt, A.; Singh, A.; Saparia, E.; Evans, A.F.; Besra, G.S. Identification of the dehydratase component of the mycobacterial mycolic acid-synthesizing fatty acid synthase-II complex. Microbiology, 2007, 153(Pt 12), 4166-4173.
[149]
Vilcheze, C.; Morbidoni, H.R.; Weisbrod, T.R.; Iwamoto, H.; Kuo, M.; Sacchettini, J.C.; Jacobs, W.R., Jr Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol., 2000, 182(14), 4059-4067.
[150]
North, E.J.; Jackson, M.; Lee, R.E. New approaches to target the mycolic acid biosynthesis pathway for the development of tuberculosis therapeutics. Curr. Pharm. Des., 2014, 20(27), 4357-4378.
[151]
Vilcheze, C.; Jacobs, W.R., Jr The mechanism of isoniazid killing: clarity through the scope of genetics. Annu. Rev. Microbiol., 2007, 61, 35-50.
[152]
Banerjee, A.; Sugantino, M.; Sacchettini, J.C.; Jacobs, W.R., Jr The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology, 1998, 144(Pt 10), 2697-2704.
[153]
Chaba, R.; Raje, M.; Chakraborti, P.K. Evidence that a eukaryotic-type serine/threonine protein kinase from Mycobacterium tuberculosis regulates morphological changes associated with cell division. Eur. J. Biochem., 2002, 269(4), 1078-1085.
[154]
Nagarajan, S.N.; Upadhyay, S.; Chawla, Y.; Khan, S.; Naz, S.; Subramanian, J.; Gandotra, S.; Nandicoori, V.K. Protein kinase A (PknA) of Mycobacterium tuberculosis is independently activated and is critical for growth in vitro and survival of the pathogen in the host. J. Biol. Chem., 2015, 290(15), 9626-9645.
[155]
Glickman, M.S.; Cox, J.S.; Jacobs, W.R., Jr A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell, 2000, 5(4), 717-727.
[156]
de Chastellier, C. The many niches and strategies used by pathogenic mycobacteria for survival within host macrophages. Immunobiology, 2009, 214(7), 526-542.
[157]
de Chastellier, C.; Forquet, F.; Gordon, A.; Thilo, L. Mycobacterium requires an all-around closely apposing phagosome membrane to maintain the maturation block and this apposition is re-established when it rescues itself from phagolysosomes. Cell. Microbiol., 2009, 11(8), 1190-1207.
[158]
Singh, A.; Jain, S.; Gupta, S.; Das, T.; Tyagi, A.K. mymA operon of Mycobacterium tuberculosis: Its regulation and importance in the cell envelope. FEMS Microbiol. Lett., 2003, 227(1), 53-63.
[159]
Bialy, L.; Waldmann, H. Inhibitors of protein tyrosine phosphatases: next-generation drugs? Angew. Chem. Int. Ed. Engl., 2005, 44(25), 3814-3839.
[160]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8(7), 547-566.
[161]
Tabernero, L.; Aricescu, A.R.; Jones, E.Y.; Szedlacsek, S.E. Protein tyrosine phosphatases: Structure-function relationships. FEBS J., 2008, 275(5), 867-882.
[162]
Vintonyak, V.V.; Antonchick, A.P.; Rauh, D.; Waldmann, H. The therapeutic potential of phosphatase inhibitors. Curr. Opin. Chem. Biol., 2009, 13(3), 272-283.
[163]
Zhang, J.; Yang, P.L.; Gray, N.S. Targeting cancer with small molecule kinase inhibitors. Nat. Rev. Cancer, 2009, 9(1), 28-39.
[164]
Zhang, Z.Y. Protein tyrosine phosphatases: Prospects for therapeutics. Curr. Opin. Chem. Biol., 2001, 5(4), 416-423.
[165]
Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: An analysis of FDA-approved drugs. Drug Discov. Today, 2016, 21(1), 5-10.
[166]
Wong, D.; Chao, J.D.; Av-Gay, Y. Mycobacterium tuberculosis-secreted phosphatases: From pathogenesis to targets for TB drug development. Trends Microbiol., 2013, 21(2), 100-109.
[167]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84.
[168]
Cowley, S.; Ko, M.; Pick, N.; Chow, R.; Downing, K.J.; Gordhan, B.G.; Betts, J.C.; Mizrahi, V.; Smith, D.A.; Stokes, R.W.; Av-Gay, Y. The Mycobacterium tuberculosis protein serine/threonine kinase PknG is linked to cellular glutamate/glutamine levels and is important for growth in vivo. Mol. Microbiol., 2004, 52(6), 1691-1702.
[169]
Chawla, Y.; Upadhyay, S.; Khan, S.; Nagarajan, S.N.; Forti, F.; Nandicoori, V.K. Protein kinase B (PknB) of Mycobacterium tuberculosis is essential for growth of the pathogen in vitro as well as for survival within the host. J. Biol. Chem., 2014, 289(20), 13858-13875.
[170]
Papavinasasundaram, K.G.; Chan, B.; Chung, J.H.; Colston, M.J.; Davis, E.O.; Av-Gay, Y. Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J. Bacteriol., 2005, 187(16), 5751-5760.
[171]
Walburger, A.; Koul, A.; Ferrari, G.; Nguyen, L.; Prescianotto-Baschong, C.; Huygen, K.; Klebl, B.; Thompson, C.; Bacher, G.; Pieters, J. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science, 2004, 304(5678), 1800-1804.
[172]
Fernandez, P.; Saint-Joanis, B.; Barilone, N.; Jackson, M.; Gicquel, B.; Cole, S.T.; Alzari, P.M. The Ser/Thr protein kinase PknB is essential for sustaining mycobacterial growth. J. Bacteriol., 2006, 188(22), 7778-7784.
[173]
Zhang, N.; Torrelles, J.B.; McNeil, M.R.; Escuyer, V.E.; Khoo, K.H.; Brennan, P.J.; Chatterjee, D. The Emb proteins of mycobacteria direct arabinosylation of lipoarabinomannan and arabinogalactan via an N-terminal recognition region and a C-terminal synthetic region. Mol. Microbiol., 2003, 50(1), 69-76.
[174]
Briken, V.; Porcelli, S.A.; Besra, G.S.; Kremer, L. Mycobacterial lipoarabinomannan and related lipoglycans: From biogenesis to modulation of the immune response. Mol. Microbiol., 2004, 53(2), 391-403.
[175]
Escuyer, V.E.; Lety, M.A.; Torrelles, J.B.; Khoo, K.H.; Tang, J.B.; Rithner, C.D.; Frehel, C.; McNeil, M.R.; Brennan, P.J.; Chatterjee, D. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem., 2001, 276(52), 48854-48862.
[176]
Deol, P.; Vohra, R.; Saini, A.K.; Singh, A.; Chandra, H.; Chopra, P.; Das, T.K.; Tyagi, A.K.; Singh, Y. Role of Mycobacterium tuberculosis Ser/Thr kinase PknF: Implications in glucose transport and cell division. J. Bacteriol., 2005, 187(10), 3415-3420.
[177]
Gopalaswamy, R.; Narayanan, S.; Chen, B.; Jacobs, W.R.; Av-Gay, Y. The serine/threonine protein kinase PknI controls the growth of Mycobacterium tuberculosis upon infection. FEMS Microbiol. Lett., 2009, 295(1), 23-29.
[178]
Arora, G.; Sajid, A.; Gupta, M.; Bhaduri, A.; Kumar, P.; Basu-Modak, S.; Singh, Y. Understanding the role of PknJ in Mycobacterium tuberculosis: Biochemical characterization and identification of novel substrate pyruvate kinase A. PLoS One, 2010, 5(5), e10772.
[179]
Ortega, C.; Liao, R.; Anderson, L.N.; Rustad, T.; Ollodart, A.R.; Wright, A.T.; Sherman, D.R.; Grundner, C. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch. PLoS Biol., 2014, 12(1), e1001746.
[180]
Scherr, N.; Honnappa, S.; Kunz, G.; Mueller, P.; Jayachandran, R.; Winkler, F.; Pieters, J.; Steinmetz, M.O. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2007, 104(29), 12151-12156.
[181]
O’Hare, H.M.; Duran, R.; Cervenansky, C.; Bellinzoni, M.; Wehenkel, A.M.; Pritsch, O.; Obal, G.; Baumgartner, J.; Vialaret, J.; Johnsson, K.; Alzari, P.M. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol. Microbiol., 2008, 70(6), 1408-1423.
[182]
Villarino, A.; Duran, R.; Wehenkel, A.; Fernandez, P.; England, P.; Brodin, P.; Cole, S.T.; Zimny-Arndt, U.; Jungblut, P.R.; Cervenansky, C.; Alzari, P.M. Proteomic identification of M. tuberculosis protein kinase substrates: PknB recruits GarA, a FHA domain-containing protein, through activation loop-mediated interactions. J. Mol. Biol., 2005, 350(5), 953-963.
[183]
Magnet, S.; Hartkoorn, R.C.; Szekely, R.; Pato, J.; Triccas, J.A.; Schneider, P.; Szantai-Kis, C.; Orfi, L.; Chambon, M.; Banfi, D.; Bueno, M.; Turcatti, G.; Keri, G.; Cole, S.T. Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinb.), 2010, 90(6), 354-360.
[184]
Chapman, T.M.; Bouloc, N.; Buxton, R.S.; Chugh, J.; Lougheed, K.E.; Osborne, S.A.; Saxty, B.; Smerdon, S.J.; Taylor, D.L.; Whalley, D. Substituted aminopyrimidine protein kinase B (PknB) inhibitors show activity against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett., 2012, 22(9), 3349-3353.
[185]
Lougheed, K.E.; Osborne, S.A.; Saxty, B.; Whalley, D.; Chapman, T.; Bouloc, N.; Chugh, J.; Nott, T.J.; Patel, D.; Spivey, V.L.; Kettleborough, C.A.; Bryans, J.S.; Taylor, D.L.; Smerdon, S.J.; Buxton, R.S. Effective inhibitors of the essential kinase PknB and their potential as anti-mycobacterial agents. Tuberculosis (Edinb.), 2011, 91(4), 277-286.
[186]
Szekely, R.; Waczek, F.; Szabadkai, I.; Nemeth, G.; Hegymegi-Barakonyi, B.; Eros, D.; Szokol, B.; Pato, J.; Hafenbradl, D.; Satchell, J.; Saint-Joanis, B.; Cole, S.T.; Orfi, L.; Klebl, B.M.; Keri, G. A novel drug discovery concept for tuberculosis: Inhibition of bacterial and host cell signalling. Immunol. Lett., 2008, 116(2), 225-231.
[187]
Chen, D.; Ma, S.; He, L.; Yuan, P.; She, Z.; Lu, Y. Sclerotiorin inhibits protein kinase G from Mycobacterium tuberculosis and impairs mycobacterial growth in macrophages. Tuberculosis (Edinb.), 2017, 103, 37-43.
[188]
Anand, N.; Singh, P.; Sharma, A.; Tiwari, S.; Singh, V.; Singh, D.K.; Srivastava, K.K.; Singh, B.N.; Tripathi, R.P. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG. Bioorg. Med. Chem., 2012, 20(17), 5150-5163.
[189]
Hegymegi-Barakonyi, B.; Szekely, R.; Varga, Z.; Kiss, R.; Borbely, G.; Nemeth, G.; Banhegyi, P.; Pato, J.; Greff, Z.; Horvath, Z.; Meszaros, G.; Marosfalvi, J.; Eros, D.; Szantai-Kis, C.; Breza, N.; Garavaglia, S.; Perozzi, S.; Rizzi, M.; Hafenbradl, D.; Ko, M.; Av-Gay, Y.; Klebl, B.M.; Orfi, L.; Keri, G. Signalling inhibitors against Mycobacterium tuberculosis--early days of a new therapeutic concept in tuberculosis. Curr. Med. Chem., 2008, 15(26), 2760-2770.
[190]
Sipos, A.; Pato, J.; Szekely, R.; Hartkoorn, R.C.; Kekesi, L.; Orfi, L.; Szantai-Kis, C.; Mikusova, K.; Svetlikova, Z.; Kordulakova, J.; Nagaraja, V.; Godbole, A.A.; Bush, N.; Collin, F.; Maxwell, A.; Cole, S.T.; Keri, G. Lead selection and characterization of antitubercular compounds using the Nested Chemical Library. Tuberculosis (Edinb.), 2015, 95(Suppl. 1), S200-S206.
[191]
Xu, J.; Wang, J.X.; Zhou, J.M.; Xu, C.L.; Huang, B.; Xing, Y.; Wang, B.; Luo, R.; Wang, Y.C.; You, X.F.; Lu, Y.; Yu, L.Y. A novel protein kinase inhibitor IMB-YH-8 with anti-tuberculosis activity. Sci. Rep., 2017, 7(1), 5093.
[192]
Wang, T.; Bemis, G.; Hanzelka, B.; Zuccola, H.; Wynn, M.; Moody, C.S.; Green, J.; Locher, C.; Liu, A.; Gao, H.; Xu, Y.; Wang, S.; Wang, J.; Bennani, Y.L.; Thomson, J.A.; Muh, U. Mtb PKNA/PKNB dual inhibition provides selectivity advantages for inhibitor design to minimize host kinase interactions. ACS Med. Chem. Lett., 2017, 8(12), 1224-1229.
[193]
Grundner, C.; Ng, H.L.; Alber, T. Mycobacterium tuberculosis protein tyrosine phosphatase PtpB structure reveals a diverged fold and a buried active site. Structure, 2005, 13(11), 1625-1634.
[194]
Chiaradia, L.D.; Martins, P.G.; Cordeiro, M.N.; Guido, R.V.; Ecco, G.; Andricopulo, A.D.; Yunes, R.A.; Vernal, J.; Nunes, R.J.; Terenzi, H. Synthesis, biological evaluation, and molecular modeling of chalcone derivatives as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatases (PtpA and PtpB). J. Med. Chem., 2012, 55(1), 390-402.
[195]
Chiaradia, L.D.; Mascarello, A.; Purificacao, M.; Vernal, J.; Cordeiro, M.N.; Zenteno, M.E.; Villarino, A.; Nunes, R.J.; Yunes, R.A.; Terenzi, H. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg. Med. Chem. Lett., 2008, 18(23), 6227-6230.
[196]
Correa, I.R., Jr; Noren-Muller, A.; Ambrosi, H.D.; Jakupovic, S.; Saxena, K.; Schwalbe, H.; Kaiser, M.; Waldmann, H. Identification of inhibitors for mycobacterial protein tyrosine phosphatase B (MptpB) by biology-oriented synthesis (BIOS). Chem. Asian J., 2007, 2(9), 1109-1126.
[197]
Grundner, C.; Perrin, D.; Hooft van Huijsduijnen, R.; Swinnen, D.; Gonzalez, J.; Gee, C.L.; Wells, T.N.; Alber, T. Structural basis for selective inhibition of Mycobacterium tuberculosis protein tyrosine phosphatase PtpB. Structure, 2007, 15(4), 499-509.
[198]
Manger, M.; Scheck, M.; Prinz, H.; von Kries, J.P.; Langer, T.; Saxena, K.; Schwalbe, H.; Furstner, A.; Rademann, J.; Waldmann, H. Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase A (MptpA) inhibitors based on natural products and a fragment-based approach. Chembiochem, 2005, 6(10), 1749-1753.
[199]
Noren-Muller, A.; Reis-Correa, I., Jr; Prinz, H.; Rosenbaum, C.; Saxena, K.; Schwalbe, H.J.; Vestweber, D.; Cagna, G.; Schunk, S.; Schwarz, O.; Schiewe, H.; Waldmann, H. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc. Natl. Acad. Sci. USA, 2006, 103(28), 10606-10611.
[200]
Noren-Muller, A.; Wilk, W.; Saxena, K.; Schwalbe, H.; Kaiser, M.; Waldmann, H. Discovery of a new class of inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B by biology-oriented synthesis. Angew. Chem. Int. Ed. Engl., 2008, 47(32), 5973-5977.
[201]
Rawls, K.A.; Lang, P.T.; Takeuchi, J.; Imamura, S.; Baguley, T.D.; Grundner, C.; Alber, T.; Ellman, J.A. Fragment-based discovery of selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg. Med. Chem. Lett., 2009, 19(24), 6851-6854.
[202]
Soellner, M.B.; Rawls, K.A.; Grundner, C.; Alber, T.; Ellman, J.A. Fragment-based substrate activity screening method for the identification of potent inhibitors of the Mycobacterium tuberculosis phosphatase PtpB. J. Am. Chem. Soc., 2007, 129(31), 9613-9615.
[203]
Tan, L.P.; Wu, H.; Yang, P.Y.; Kalesh, K.A.; Zhang, X.; Hu, M.; Srinivasan, R.; Yao, S.Q. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry. Org. Lett., 2009, 11(22), 5102-5105.
[204]
Vintonyak, V.V.; Warburg, K.; Kruse, H.; Grimme, S.; Hubel, K.; Rauh, D.; Waldmann, H. Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the Mycobacterium tuberculosis protein tyrosine phosphatase B. Angew. Chem. Int. Ed. Engl., 2010, 49(34), 5902-5905.
[205]
Zeng, L.F.; Xu, J.; He, Y.; He, R.; Wu, L.; Gunawan, A.M.; Zhang, Z.Y. A facile hydroxyindole carboxylic acid based focused library approach for potent and selective inhibitors of Mycobacterium protein tyrosine phosphatase B. ChemMedChem, 2013, 8(6), 904-908.
[206]
Mascarello, A.; Chiaradia, L.D.; Vernal, J.; Villarino, A.; Guido, R.V.; Perizzolo, P.; Poirier, V.; Wong, D.; Martins, P.G.; Nunes, R.J.; Yunes, R.A.; Andricopulo, A.D.; Av-Gay, Y.; Terenzi, H. Inhibition of Mycobacterium tuberculosis tyrosine phosphatase PtpA by synthetic chalcones: kinetics, molecular modeling, toxicity and effect on growth. Bioorg. Med. Chem., 2010, 18(11), 3783-3789.
[207]
Chen, L.; Zhou, B.; Zhang, S.; Wu, L.; Wang, Y.; Franzblau, S.G.; Zhang, Z.Y. Identification and characterization of novel inhibitors of mPTPB, an essential virulent phosphatase from Mycobacterium tuberculosis. ACS Med. Chem. Lett., 2010, 1(7), 355-359.
[208]
Beresford, N.J.; Mulhearn, D.; Szczepankiewicz, B.; Liu, G.; Johnson, M.E.; Fordham-Skelton, A.; Abad-Zapatero, C.; Cavet, J.S.; Tabernero, L. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J. Antimicrob. Chemother., 2009, 63(5), 928-936.
[209]
Mascarello, A.; Orbem Menegatti, A.C.; Calcaterra, A.; Martins, P.G.A.; Chiaradia-Delatorre, L.D.; D’Acquarica, I.; Ferrari, F.; Pau, V.; Sanna, A.; De Logu, A.; Botta, M.; Botta, B.; Terenzi, H.; Mori, M. Naturally occurring Diels-Alder-type adducts from Morus nigra as potent inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Eur. J. Med. Chem., 2018, 144, 277-288.
[210]
Dutta, N.K.; He, R.; Pinn, M.L.; He, Y.; Burrows, F.; Zhang, Z.Y.; Karakousis, P.C. Mycobacterial Protein Tyrosine Phosphatases A and B Inhibitors Augment the Bactericidal Activity of the Standard Anti-tuberculosis Regimen. ACS Infect. Dis., 2016, 2(3), 231-239.
[211]
Buttini, F. Colombo: G. In Drug Delivry Systems for Tuberculosis Prevention and Treatment, 2016.
[212]
Praphakar, R.A.; Shakila, H.; Azger Dusthackeer, V.N.; Munusamy, M.A.; Kumar, S.; Rajan, M. A mannose-conjugated multi-layered polymeric nanocarrier system for controlled and targeted release on alveolar macrophages. Polym. Chem., 2018, 9(5), 656-667.
[213]
Banerjee, S.; Roy, S.; Nath Bhaumik, K.; Kshetrapal, P.; Pillai, J. Comparative study of oral lipid nanoparticle formulations (LNFs) for chemical stabilization of antitubercular drugs: Physicochemical and cellular evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 1-19.
[214]
Oliveira, P.M.; Matos, B.N.; Pereira, P.A.; Gratieri, T.; Faccioli, L.H.; Cunha-Filho, M.S.; Gelfuso, G.M. Microparticles prepared with 50–190 kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr. Polym., 2017, 174, 421-431.
[215]
Li, D.; Li, L.; Ma, Y.; Zhuang, Y.; Li, D.; Shen, H.; Wang, X.; Yang, F.; Ma, Y.; Wu, D. Dopamine-assisted fixation of drug-loaded polymeric multilayers to osteoarticular implants for tuberculosis therapy. Biomaterials Bci., 2017, 5(4), 730-740.
[216]
Bhardwaj, A.; Mehta, S.; Yadav, S.; Singh, S.K.; Grobler, A.; Goyal, A.K.; Mehta, A. Pulmonary delivery of antitubercular drugs using spray-dried lipid–polymer hybrid nanoparticles. Artif. Cells Nanomed. Biotechnol., 2016, 44(6), 1544-1555.
[217]
Garg, T.; Goyal, A.K.; Rath, G.; Murthy, R. Spray-dried particles as pulmonary delivery system of anti-tubercular drugs: Design, optimization, in vitro and in vivo evaluation. Pharm. Develop. Technol., 2016, 21(8), 951-960.
[218]
Alves, A.D.; Cavaco, J.S.; Guerreiro, F.; Lourenço, J.P.; Rosa da Costa, A.M.; Grenha, A. Inhalable antitubercular therapy mediated by locust bean gum microparticles. Molecules, 2016, 21(6), 702.
[219]
Hussain, A.; Singh, S.K.; Singh, N.; Verma, P.R.P. In vitro–in vivo–in silico simulation studies of anti-tubercular drugs doped with a self nanoemulsifying drug delivery system. RSC Adv, 2016, 6(95), 93147-93161.
[220]
Goyal, A.K.; Garg, T.; Rath, G.; Gupta, U.D.; Gupta, P. Development and characterization of nanoembedded microparticles for pulmonary delivery of antitubercular drugs against experimental tuberculosis. Mol. Pharm., 2015, 12(11), 3839-3850.
[221]
Saifullah, B.; Maitra, A.; Chrzastek, A.; Naeemullah, B.; Fakurazi, S.; Bhakta, S.; Hussein, M.Z. Nano-formulation of Ethambutol with multifunctional Graphene Oxide and magnetic nanoparticles retains Its anti-tubercular activity with prospects of improving chemotherapeutic efficacy. Molecules, 2017, 22(10), 1697.
[222]
El-Ridy, M.S.; Yehia, S.A.; Kassem, M.A-E-M.; Mostafa, D.M.; Nasr, E.A.; Asfour, M.H. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv., 2015, 22(1), 21-36.
[223]
Ahmad, M.I.; Nakpheng, T.; Srichana, T. The safety of ethambutol dihydrochloride dry powder formulations containing chitosan for the possibility of treating lung tuberculosis. Inhal. Toxicol., 2014, 26(14), 908-917.
[224]
Costa-Gouveia, J.; Pancani, E.; Jouny, S.; Machelart, A.; Delorme, V.; Salzano, G.; Iantomasi, R.; Piveteau, C.; Queval, C.J.; Song, O-R. Combination therapy for tuberculosis treatment: Pulmonary administration of ethionamide and booster co-loaded nanoparticles. Sci. Rep., 2017, 7(1), 5390.
[225]
Debnath, S.K.; Saisivam, S.; Omri, A. PLGA Ethionamide Nanoparticles for Pulmonary Delivery: Development and in vivo evaluation of dry powder inhaler. J. Pharm. Biomed. Anal., 2017, 145, 854-859.
[226]
Kumar, G.; Malhotra, S.; Shafiq, N.; Pandhi, P.; Khuller, G.K.; Sharma, S. In vitro physicochemical characterization and short term in vivo tolerability study of ethionamide loaded PLGA nanoparticles: potentially effective agent for multidrug resistant tuberculosis. J. Microencapsul., 2011, 28(8), 717-728.
[227]
Matsunaga, I.; Naka, T.; Talekar, R.S.; McConnell, M.J.; Katoh, K.; Nakao, H.; Otsuka, A.; Behar, S.M.; Yano, I.; Moody, D.B.; Sugita, M. Mycolyltransferase-mediated glycolipid exchange in Mycobacteria. J. Biol. Chem., 2008, 283(43), 28835-28841.
[228]
De Smet, K.A.; Weston, A.; Brown, I.N.; Young, D.B.; Robertson, B.D. Three pathways for trehalose biosynthesis in mycobacteria. Microbiology, 2000, 146(Pt 1), 199-208.
[229]
Woodruff, P.J.; Carlson, B.L.; Siridechadilok, B.; Pratt, M.R.; Senaratne, R.H.; Mougous, J.D.; Riley, L.W.; Williams, S.J.; Bertozzi, C.R. Trehalose is required for growth of Mycobacterium smegmatis. J. Biol. Chem., 2004, 279(28), 28835-28843.
[230]
Perez, J.; Garcia, R.; Bach, H.; de Waard, J.H.; Jacobs, W.R., Jr; Av-Gay, Y.; Bubis, J.; Takiff, H.E. Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochem. Biophys. Res. Commun., 2006, 348(1), 6-12.
[231]
Lun, S.; Guo, H.; Onajole, O.K.; Pieroni, M.; Gunosewoyo, H.; Chen, G.; Tipparaju, S.K.; Ammerman, N.C.; Kozikowski, A.P.; Bishai, W.R. Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nat. Commun., 2013, 4, 2907.
[232]
Shah, I.M.; Laaberki, M.H.; Popham, D.L.; Dworkin, J. A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell, 2008, 135(3), 486-496.