[1]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[2]
Blair, J.M.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol., 2015, 13(1), 42-51.
[3]
Subramani, R.; Narayanasamy, M.; Feussner, K.D. Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. Biotech, 2017, 7(3), 172.
[4]
O’Shea, S.; Lucey, B.; Cotter, L. In vitro activity of Inula helenium against clinical Staphylococcus aureus strains including MRSA. Brit. J. Biomed. Sci., 2009, 66(4), 186-189.
[5]
Friedman, M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J. Agricult. Food Chem., 2015, 63(15), 3805-3822.
[6]
Ugur, A.; Duru, M.E.; Ceylan, O.; Sarac, N.; Varol, O.; Kivrak, I. Chemical composition, antimicrobial and antioxidant activities of Centaurea ensiformis Hub.-Mor. (Asteraceae), a species endemic to Mugla (Turkey). Nat. Prod. Res., 2009, 23(2), 149-167.
[7]
Ruddock, P.S.; Charland, M.; Ramirez, S.; López, A.; Neil Towers, G.H.; Arnason, J.T.; Liao, M.; Dillon, J.A. Antimicrobial activity of flavonoids from Piper lanceaefolium and other colombian medicinal plants against antibiotic susceptible and resistant strains of Neisseria gonorrhoeae. Sexually . Transm. Dis., 2011, 38(2), 82-88.
[8]
Elisha, I.L.; Botha, F.S.; Mcgaw, L.J.; Eloff, J.N. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC Complement. Alternat. Med., 2017, 17(1), 133.
[9]
Silva, Jr, W.F.; Cecílio, S.G.; Magalhães, C.L.B.; Ferreira, J.M.S.; Tótola, A.H.; de Magalhaes, J.C. Combination of extracts from Aristolochia cymbifera with streptomycin as a potential antibacterial drug. Springerplus, 2013, 2, 430.
[10]
Yaseen, R.; Branitzki-Heinemann, K.; Moubasher, H.; Setzer, W.N.; Naim, H.Y.; von Köckritz-Blickwede, M. In vitro testing of crude natural plant extracts from Costa Rica for their ability to boost innate immune cells against Staphylococcus aureus. Biomedicines, 2017, 5(3), 40.
[11]
You, Y.O.; Choi, N.Y.; Kim, K.J. Ethanol extract of ulmus pumila root bark inhibits clinically isolated antibiotic-resistant bacteria. Evidence-Based Complement. Alternat. Med., 2013, 2013, 269874.
[12]
Neghabi-Hajiagha, M.; Aliahmadi, A.; Taheri, M.R.; Ghassempour, A.; Irajian, G.; Rezadoost, H.; Feizabadi, M.M. A bioassay-guided fractionation scheme for characterization of new antibacterial compounds from Prosopis cineraria aerial parts. Iran. J. Microbiol., 2016, 8(1), 1-7.
[13]
Almariri, A.; Safi, M. In vitro antibacterial activity of several plant extracts and oils against some Gram-negative bacteria. Iran. J. Med. Sci., 2014, 39(1), 36-43.
[14]
Igbeneghu, O.A.; Abdu, A.B. Multiple antibiotic-resistant bacteria on fluted pumpkin leaves, a herb of therapeutic value. J. Health Populat. Nutr., 2014, 32(2), 176-182.
[15]
Al Laham, S.A.; Al Fadel, F.M. Antibacterial activity of various plants extracts against antibiotic-resistant Aeromonas hydrophila. Jundishapur J. Microbiol., 2014, 7(7), e11370.
[16]
Ait Said, L.; Zahlane, K.; Ghalbane, I. El Messouss,i S.; Romane, A.; Cavaleiro, C.; Salgueiro, L. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria. Nat. Prod. Res., 2015, 29(6), 582-585.
[17]
Fadli, M.; Saad, A.; Sayadi, S.; Chevalier, J.; Mezrioui, N.E.; Pagès, J.M.; Hassani, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection-bacteria and their synergistic potential with antibiotics. Phytomedicine, 2012, 19(5), 464-471.
[18]
Ugur, A.; Sarac, N.; Duru, M.E.; Beyatli, Y. In vitro study of antibacterial activity on multi-resistant bacteria and chemical composition of the chloroform extract of endemic Centaurea drabifolia subsp. cappadocica. Nat. Prod. Communic., 2009, 4(9), 1267-1270.
[19]
Langeveld, W.T.; Veldhuizen, E.J.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol., 2014, 40(1), 76-94.
[20]
Lima, Z.M.; da Trindade, L.S.; Santana, G.C.; Padilha, F.F.; da Costa Mendonça, M.; da Costa, L.P.; López, J.A.; Macedo, M.L.H. Effect of Tamarindus indica L. and Manihot esculenta extracts on antibiotic-resistant bacteria. Pharmacol. Res., 2017, 9(2), 195-199.
[21]
Shin, S. In vitro effects of essential oils from Ostericum koreanum against antibiotic-resistant Salmonella spp. Arch. Pharmacal. Res., 2005, 28(7), 765-769.
[22]
Birdi, T. D’ souza, D.; Tolani, M.; Daswani, P.; Nair V.; Tetali P.; Toro J.C.; Hoffner S. Assessment of the activity of selected Indian medicinal plants against Mycobacterium tuberculosis: A preliminary screening using the microplate alamar blue assay. Europ J. Med. Plants, 2012, 2(4), 308-323.
[23]
Singh, R.; Hussain, S.; Verma, R.; Sharma, P. Anti-mycobacterial screening of five Indian medicinal plants and partial purification of active extracts of Cassia sophera and Urtica dioica. Asian Pac. J. Trop. Med., 2013, 6(5), 366-371.
[24]
Yang, J.F.; Yang, C.H.; Chang, H.W.; Yang, C.S.; Wang, S.M.; Hsieh, M.C.; Chuang, L.Y. Chemical composition and antibacterial activities of Illicium verum against antibiotic-resistant pathogens. J. Med. Food, 2010, 13(5), 1254-1262.
[25]
Lu, J.; Ye, S.; Qin, R.; Deng, Y.; Li, C.P. Effect of Chinese herbal medicine extracts on cell-mediated immunity in a rat model of tuberculosis induced by multiple drug-resistant bacilli. Mol. Med. Reports., 2013, 8(1), 227-232.
[26]
Liu, W.; Liu, Y.; Zhang, X.Z.; Li, N.; Cheng, H. In vitro bactericidal activity of Jinghua Weikang capsule and its individual herb Chenopodium ambrosioides L. against antibiotic-resistant Helicobacter pylori. Chin. J. Integrat. Med., 2013, 19(1), 54-57.
[27]
Kong, L.B.; Ma, Q.; Gao, J.; Qiu, G.S.; Wang, L.X.; Zhao, S.M.; Bao, Y.G.; Liu, Q.Q. Effect of Qiguiyin decoction on multidrug-resistant Pseudomonas aeruginosa infection in rats. Chin. J. Integrat. Med., 2015, 21(12), 916-921.
[28]
Perumal, S.; Mahmud, R. Chemical analysis, inhibition of biofilm formation and biofilm eradication potential of Euphorbia hirta L. against clinical isolates and standard strains. BMC Complement. Alternat. Med., 2013, 13(1), 346.
[29]
Wang, M.; Guan, X.; Chi, Y.; Robinson, N.; Liu, J.P. Chinese herbal medicine as adjuvant treatment to chemotherapy for multidrug-resistant tuberculosis (MDR-TB): A systematic review of randomised clinical trials. Tuberculosis., 2015, 95(4), 364-372.
[30]
Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol., 2005, 49(4), 391-396.
[31]
Chang, P.C.; Li, H.Y.; Tang, H.J.; Liu, J.W.; Wang, J.J.; Chuang, Y.C. In vitro synergy of baicalein and gentamicin against vancomycin-resistant Enterococcus. J. Microbiol. Immunol. Infect., 2007, 40(1), 56-61.
[32]
Chan, B.C.; Ip, M.; Lau, C.B.; Lui, S.L.; Jolivalt, C.; Ganem-Elbaz, C.; Litaudon, M.; Reiner, N.E.; Gong, H.; See, R.H.; Fung, K.P.; Leung, P.C. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J. Ethnopharmacol., 2011, 137(1), 767-773.
[33]
Peng, Q.; Zhou, S.; Yao, F.; Hou, B.; Huang, Y.; Hua, D.; Zheng, Y.; Qian, Y. Baicalein suppresses the SOS response system of Staphylococcus aureus induced by ciprofloxacin. Cell. Physiol. Biochem. Intl. J. Experiment. Cell. Physiol. Biochem. Pharmacol., 2011, 28(5), 1045-1050.
[34]
Siriwong, S.; Pimchan, T.; Naknarong, W.; Eumkeb, G. Mode of action and synergy of ceftazidime and baicalein against Streptococcus pyogenes. Trop. J. Pharmaceut. Res., 2015, 14(4), 641-648.
[35]
Skariyachan, S.; Jayaprakash, N.; Bharadwaj, N.; Narayanappa, R. Exploring insights for virulent gene inhibition of multidrug resistant Salmonella typhi, Vibrio cholerae and Staphylococcus areus by potential phytoligands via in silico screening. J. Biomol. Struct. Dynam., 2014, 32(9), 1379-1395.
[36]
Tang, Y.J.; Zhou, F.W.; Luo, Z.Q.; Li, X.Z.; Yan, H.M.; Wang, M.J.; Huang, F.R.; Yue, S.J. Multiple therapeutic effects of adjunctive baicalin therapy in experimental bacterial meningitis. Inflammation, 2010, 33(3), 180-188.
[37]
Cushnie, T.P.; Hamilton, V.E.; Lamb, A.J. Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiol. Res., 2003, 158(4), 281-289.
[38]
Xu, H.; Lee, S.F. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother. Res. Ptr., 2001, 15(1), 39-43.
[39]
Qiu, J.; Li, H.; Meng, H.; Hu, C.; Li, J.; Luo, M.; Dong, J.; Wang, X.; Wang, J.; Deng, Y.; Deng, X. Impact of luteolin on the production of alpha-toxin by Staphylococcus aureus. Lett. Appl. Microbiol., 2011, 53(2), 238-243.
[40]
Eumkeb, G.; Siriwong, S.; Thumanu, K. Synergistic activity of luteolin and amoxicillin combination against amoxicillin-resistant Escherichia coli and mode of action. J. Photochem. Photobiol. B Biol, 2012, 117(4), 247-253.
[41]
Siriwong, S.; Thumanu, K.; Hengpratom, T.; Eumkeb, G. Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evidence-based Complement. Alternat. Med., 2015, 2015, 759459.
[42]
Su, Y.; Ma, L.; Wen, Y.; Wang, H.; Zhang, S. Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus. Molecules, 2014, 19(8), 12630-12639.
[43]
Gopu, V.; Meena, C.K.; Shetty, P.H. Quercetin influences quorum sensing in food borne bacteria: In-vitro and in-silico evidence. PLoS One, 2015, 10(8), e0134684.
[44]
Wang, S.Y.; Sun, Z.L.; Liu, T.; Gibbons, S.; Zhang, W.J.; Qing, M. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother. Res., 2014, 28(7), 1071-1076.
[45]
Miyasaki, Y.; Rabenstein, J.D.; Rhea, J.; Crouch, M.L.; Mocek, U.M.; Kittell, P.E.; Morgan, M.A.; Nichols, W.S.; Van Benschoten, M.M.; Hardy, W.D.; Liu, G.Y. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii. PLoS One, 2013, 8(4), e61594.
[46]
Klančnik, A.; Možina, S.S.; Zhang, Q. Anti-Campylobacter activities and resistance mechanisms of natural phenolic compounds in Campylobacter. PLoS One, 2012, 7(12), e51800.
[47]
Yanagawa, Y.; Yamamoto, Y.; Hara, Y.; Shimamura, T. A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Curr. Microbiol., 2003, 47(3), 244-249.
[48]
Osterburg, A.; Gardner, J.; Hyon, S.H.; Neely, A.; Babcock, G. Highly antibiotic-resistant Acinetobacter baumannii clinical isolates are killed by the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG). Clin. Microbiol. Infect., 2009, 15(4), 341-346.
[49]
Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamiltonmiller, J.M. Modulation of betalactam resistance in Staphylococcus aureus by catechins and gallates. Int. J. Antimicrob. Agents, 2004, 23(5), 462-467.
[50]
Aldulaimi, O.A. General overview of phenolics from plant to laboratory, good antibacterials or not. Pharmacogn. Rev., 2017, 11(22), 123-127.
[51]
Choi, E.J.; Kim, H.I.; Kim, J.A.; Jun, S.Y.; Kang, S.H.; Park, D.J.; Son, S.J.; Kim, Y.; Shin, O.S. The herbal-derived honokiol and magnolol enhances immune response to infection with methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Appl. Microbiol. Biotechnol., 2015, 99(10), 4387-4396.
[52]
Kuok, C.F.; Hoi, S.O.; Hoi, C.F.; Chan, C.H.; Fong, I.H.; Ngok, C.K.; Meng, L.R.; Fong, P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Experiment. Biol. Med., 2017, 242, 731-743.
[53]
Palaniappan, K.; Holley, R.A. Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria. Int. J. Food Microbiol., 2010, 140(2), 164-168.
[54]
Wang, W.; Zeng, Y.H.; Osman, K.; Shinde, K.; Rahman, M.; Gibbons, S.; Mu, Q. Norlignans, acylphloroglucinols, and a dimeric xanthone from Hypericum chinense. J. Nat. Prod., 2010, 73(11), 1815-1820.
[55]
Hemaiswarya, S.; Doble, M. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria. Phytomedicine, 2009, 16(11), 997-1005.
[56]
Kim, J.K.; Kim, N.; Lim, Y.H. Evaluation of the antibacterial activity of rhapontigenin produced from rhapontin by biotransformation against Propionibacterium acnes. J. Microbiol. Biotechnol., 2010, 20(1), 82-87.
[57]
Wojtyczka, R.D.; Dziedzic, A.; Kępa, M.; Kubina, R.; Kabała-Dzik, A.; Mularz, T.; Idzik, D. Berberine enhances the antibacterial activity of selected antibiotics against coagulase-negative Staphylococcus strains in vitro. Molecules, 2014, 19(5), 6583-6596.
[58]
Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food, 2005, 8(4), 454-461.
[59]
Siriyong, T.; Chusri, S.; Srimanote, P.; Tipmanee, V.; Voravuthikunchai, S.P. Holarrhena antidysenterica extract and its steroidal alkaloid, conessine, as resistance-modifying agents against extensively drug-resistant Acinetobacter baumannii. Microbial . Drug Resist., 2016, 22(4), 273-282.
[60]
Nagappan, T.; Ramasamy, P.; Wahid, M.E.; Segaran, T.C.; Vairappan, C.S. Biological activity of carbazole alkaloids and essential oil of Murraya koenigii against antibiotic resistant microbes and cancer cell lines. Molecules, 2011, 16(11), 9651-9664.
[61]
Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Develop. Indust. Pharm., 2015, 41(6), 989-994.
[62]
Bandara, H.M.; Herpin, M.J.; Kolacny, D., Jr; Harb, A.; Romanovicz, D.; Smyth, H.D. Incorporation of farnesol significantly increases the efficacy of liposomal ciprofloxacin against Pseudomonas aeruginosa biofilms in vitro. Mol. Pharm., 2016, 13(8), 2760-2770.
[63]
Liu, T.; Osman, K.; Kaatz, G.W.; Gibbons, S.; Mu, Q. Antibacterial sesquiterpenoid derivatives from Ferula ferulaeoides. Planta Medica., 2013, 79(8), 701-706.
[64]
Jeong, S.I.; Han, W.S.; Yun, Y.H.; Kim, K.J. Continentalic acid from Aralia continentalis shows activity against methicillin-resistant Staphylococcus aureus. Phytother. Res. Ptr., 2006, 20(6), 511-514.
[65]
Kuźma, Ł.; Rózalski, M.; Walencka, E.; Rózalska, B.; Wysokińska, H. Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant Staphylococci. Phytomedicine, 2007, 14(1), 31-35.
[66]
Jin, H.G.; Jin, Q.; Ryun Kim, A.; Choi, H.; Lee, J.H.; Kim, Y.S.; Lee, D.G.; Woo, E.R. A new triterpenoid from Alisma orientale and their antibacterial effect. Arch. Pharm. Res., 2012, 35(11), 1919-1926.
[67]
Kumar, P.; Singh, A.; Sharma, U.; Singh, D.; Dobhal, M.P.; Singh, S. Anti-mycobacterial activity of plumericin and isoplumericin against MDR Mycobacterium tuberculosis. Pulmon. Pharmacol. Therapeut., 2013, 26(3), 332-335.
[68]
Dey, D.; Ray, R.; Hazra, B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother. Res. Ptr., 2013, 28(7), 1014-1021.
[69]
Uc-Cachón, A.H.; Borges-Argáez, R.; Said-Fernández, S.; Vargas-Villarreal, J.; González-Salazar, F.; Méndez-González, M.; Cáceres-Farfán, M.; Molina-Salinas, G.M. Naphthoquinones isolated from Diospyros anisandra exhibit potent activity against pan-resistant first-line drugs Mycobacterium tuberculosis strains. Pulmon. Pharmacol. Therapeut., 2014, 27(1), 114-120.
[70]
Cutler, R.R.; Wilson, P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br. J. Biomed. Sci., 2004, 61(2), 71-74.
[71]
Lee, D.G.; Jung, H.J.; Woo, E.R. Antimicrobial property of (+)-lyoniresinol-3alpha-O-beta-D-glucopyranoside isolated from the root bark of Lycium chinense Miller against human pathogenic microorganisms. Arch. Pharmacal. Res., 2005, 28(9), 1031-1036.
[72]
Xiao, Z.Y.; Zeng, Y.H.; Mu, Q.; Shiu, W.K.; Gibbons, S. Prenylated benzophenone peroxide derivatives from Hypericum sampsonii. Chem. Biodivers., 2010, 7(4), 953-958.
[73]
Prabu, A.; Hassan, S. Prabuseenivasan; Shainaba, A.S.; Hanna, L.E.; Kumar, V. Andrographolide: a potent antituberculosis compound that targets Aminoglycoside 2′-N-acetyltransferase in Mycobacterium tuberculosis. J. Mol. Graph. Model., 2015, 61, 133-140.
[74]
Tegos, G.; Stermitz, F.R.; Lomovskaya, O.; Lewis, K. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Chemother., 2002, 46(10), 3133-3141.
[75]
Lin, S.; Koh, J.J.; Aung, T.T.; Sin, W.L.W.; Lim, F.; Wang, L.; Lakshminarayanan, R.; Zhou, L.; Tan, D.T.H.; Cao, D.; Beuerman, R.W.; Ren, L.; Liu, S. Semisynthetic flavone-derived antimicrobials with therapeutic potential against methicillin-resistant Staphylococcus aureus (MRSA). J. Med. Chem., 2017, 60(14), 6152-6165.
[76]
Li, M.K.; Li, J.; Liu, B.H.; Zhou, Y.; Li, X.; Xue, X.Y.; Hou, Z.; Luo, X.X. Synthesis, crystal structures, and anti-drug-resistant Staphylococcus aureus activities of novel 4-hydroxycoumarin derivatives. Europ. J. Pharmacol., 2013, 721(1-3), 151-157.
[77]
Wu, T.; He, M.; Zang, X.; Zhou, Y.; Qiu, T.; Pan, S.; Xu, X. A structure-activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochimica Et Biophysica. Acta, 2013, 1828(11), 2751-2756.