[1]
Weiss, N.; Miller, F.; Cazaubon, S.; Couraud, P.O. The blood-brain barrier in brainhomeostasis and neurological diseases. Biochim. Biophys. Acta Biomembr, 2009, 1788, 842-857.
[2]
Hare, J.I.; Lammers, T.; Ashford, M.B.; Puri, S.; Storm, G.; Barry, S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev., 2017, 108, 25-38.
[3]
Pardeshi, V.; Belgamwar, V.S. Direct nose to brain delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent plateform for brain targeting. Expert Opin. Drug Del., 2013, 10(7), 957-972.
[4]
Mustafa, G.; Ahuja, A.; Ali, J.; Md, S.; Kumar, N.; Singh, T.; Bhatnagar, A.; Baboota, S. Nose to brain targeting potential of a chitosan- coated nano-formulation: Pharmacodynamic and pharmacoscintigraphic evaluation. Sci. Adv. Mat., 2013, 5, 1-14.
[5]
Costantino, H.R.; Illum, L.; Brandt, G.; Johnson, P.H.; Quay, S.C. Intranasal delivery: Physicochemical and therapeutic aspects. Int. J. Pharm., 2007, 337(1-2), 1-24.
[6]
Illum, L. Is nose‐to‐brain transport of drugs in man a reality? J. Pharm. Pharmacol., 2004, 56, 3-17.
[7]
Khan, A.; Aqil, M.; Imam, S.S.; Ahad, A.; Sultana, Y.; Ali, A.; Khan, K. Temozolomide loaded nano lipid based chitosan hydrogel for nose to brain delivery: Characterization, nasal absorption, histopathology and cell line study Int. J. Biol. Macromol., 2018, S0141-8130(18), 31712-31714.
[8]
Hagan, D.T.O.; Critchley, H.; Farraj, N.F.; Fisher, A.N.; Johansen, B.R.; Davis, S.S.; Illum, L. Nasal absorption enhancers for biosynthetic human growth hormone in rats. Pharm. Res., 1990, 7, 772-776.
[9]
Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct noseto- brain delivery of drugs. Int. J. Pharm., 2009, 379(1), 146-157.
[10]
Yoshino, T.; Machida, Y.; Onishi, H.; Nagai, T. Preparation and characterization of chitosan microspheres containing doxifluridine. Drug Dev. Ind. Pharm., 2003, 29(4), 417-427.
[11]
Elnaggar, Y.S.; Etman, S.M.; Abdelmonsif, D.A.; Abdallah, O.Y. Intranasal piperine-loaded chitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: Optimization, biological efficacy, and potential toxicity. J. Pharm. Sci., 2015, 104(10), 3544-3556.
[12]
Kumar, M.; Misra, A.; Babbar, A.K.; Mishra, A.K.; Mishra, P.; Pathak, K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm., 2008, 358, 285-291.
[13]
Imam, S.S.; Aqil, M.; Ahad, A.; Akhtar, M.; Sultana, Y.; Ali, A. Formulation by design-based proniosome for accentuated transdermal delivery of risperidone: In vitro characterization and in vivo pharmacokinetic study. Drug Deliv., 2015, 22(8), 1059-1070.
[14]
Prieto, M.J.; Temprana, C.F.; Zabala, N.E.R.; Marotta, C.H.; Alonso, S.V. Optimization and in vitro toxicity evaluation of G4 PAMAM Dendrimere risperidone complexes. Eur. J. Med. Chem., 2011, 46, 845-850.
[15]
Courchesne, E.; Pierce, K.; Schumann, C.M.; Redcay, E.; Buckwalter, J.A.; Kennedy, D.P.; Morgan, J. Mapping early brain development in autism. Neuron, 2007, 56, 399-413.
[16]
Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine., 2013, 9(1), 1-14.
[17]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[18]
Tiwari, S.B.; Amiji, M.M. A review of nanocarrier-based CNS delivery systems. Curr. Drug Deliv., 2006, 3(3), 219-232.
[19]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed, 2017, 12, 1227-1249.
[20]
Raj, R.; Wairkar, S.; Sridhar, V.; Gaud, R. Pramipexole dihydrochloride loaded chitosan nanoparticles for noseto brain delivery: Development, characterization and in vivo anti-Parkinson activity. Int. J. Biol. Macromol., 2018, 109, 27-35.
[21]
Henriksen, I.; Green, K.L.; Smart, J.D.; Smistad, G.; Karlsen, J. Bioadhesion of hydrated chitosans: An in vitro and in vivo study. Int. J. Pharm., 1996, 145, 231-240.
[22]
Ozsoy, Y.; Gungor, S.; Cevher, E. Nasal delivery of high molecular weight drugs. Molecules, 2009, 14, 3754-3779.
[23]
Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release, 2014, 190, 189-200.
[24]
Rosas, J.G.; Blanco, M.; Gonzalez, J.M.; Alcala, M. Quality by design approach of a pharmaceutical gel manufacturing process, Part 1: Determination of the design space. J. Pharm. Sci., 2011, 100, 4432-4441.
[25]
Rosas, J.G.; Blanco, M.; Gonzalez, J.M.; Alcala, M. Quality by design approach of a pharmaceutical gel manufacturing process, Part 2: Near infrared monitoring of composition and physical parameters. J. Pharm. Sci., 2011, 100, 4442-4451.
[26]
Jahangir, M.A.; Khan, R.; Imam, S.S. Formulation of sitagliptin-loaded oral polymeric nano scaffold: process parameters evaluation and enhanced anti-diabetic performance. Artif. Cells Nanomed. Biotechnol., 2017, 9, 1-13.
[27]
Khan, A.; Imam, S.S.; Aqil, M.; Ahad, A.; Sultana, Y.; Ali, A.; Khan, K. Brain targeting of temozolomide via the intranasal route using lipid-based nanoparticles: Brain pharmacokinetic and scintigraphic analyses. Mol. Pharm., 2016, 13, 3773-3782.
[28]
Shah, B.; Khunt, D.; Misra, M.; Padh, H. Application of Box-Behnken design for optimization and development of quetiapine fumarate loaded chitosan nanoparticles for brain delivery via intranasal route. Int. J. Biol. Macromol., 2016, 89, 206-218.
[29]
Imam, S.S.; Aqil, M.; Ahad, A.; Akhtar, M.; Sultana, Y.; Ali, A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: In-vitro characterization, and in-vivo appraisal. Mater. Sci. Eng. C, 2017, 75, 1198-1205.
[30]
Jia, L.; Zhang, D.; Li, Z.; Duan, C.; Wang, Y.; Feng, F.; Wang, F.; Liu, Y.; Zhang, Q. Nano-structured lipid carriers for parenteral delivery of silybin: Biodistribution and pharmacokinetic studies. Colloids Surf. B., 2010, 80, 213-218.
[31]
Imam, S.S.; Aqil, M.; Ahad, A.; Akhtar, M.; Sultana, Y.; Ali, A. Optimization of mobile phase by 32-mixture design for the validation and quantification of risperidone in bulk and pharmaceutical formulations using RP-HPLC. Anal. Methods, 2014, 6, 282-288.
[32]
Qumbar, M. Ameeduzzafar; Imam, S.S.; Ali, J.; Ahmed, J.; Ali, A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity. Biomed. Pharmacother., 2017, 93, 255-266.
[33]
Baig, M.S.; Ahad, A.; Imam, S.S.; Aqil, M. Application of Box–Behnken design for preparation of levofloxacin-loaded stearic acid solid lipid nanoparticles for ocular delivery: Optimization, in vitro release, ocular tolerance, and antibacterial activity. Int. J. Biol. Macromol., 2016, 85, 258-270.
[34]
Costa, P.; Lobo, J.M.S. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13, 123-133.
[35]
Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv., 1985, 60, 110-111.
[36]
Trevitt, J.; Vallance, C.; Harris, A.; Goode, T. Adenosine antagonists reverse the cataleptic effects of haloperidol: Implications for the treatment of Parkinson’s disease. Pharmacol. Biochem. Behavior., 2009, 92, 521-527.
[37]
Costain, W.J.; Buckley, A.T.; Evans, M.C.; Mishra, R.K.; Johnson, R.L. Modulatory effects of PLG and its peptidomimetics on haloperidol-induced catalepsy in rats. Peptides, 1999, 20(6), 761-766.
[38]
Dews, P.B. The measurement of the influence of drugs on voluntary activity in mice. Br. J. Pharmacol. Chemother., 1953, 8, 46-48.
[39]
Eskandari, S.; Varshosaz, J.; Minaiyan, M.; Tabbakhian, M. Brain delivery of valporic acid via intranasal administration of nanostructured lipid carriers: in vivo pharmacodynamic studies using rat electroshock model. Int. J. Nanomed, 2011, 6, 363-371.
[40]
Alam, M.I.; Baboota, S.; Ahuja, A.; Ali, M.; Ali, J.; Sahni, J.K. Nanostructured lipid carrier containing CNS Acting drug: Formulation, optimization and evaluation. Curr. Nanosci., 2011, 7, 1014-1027.
[41]
Patil, G.B.; Patil, N.D.; Deshmukh, P.K.; Patil, P.O.; Bari, S.B. Nanostructured lipid carriers as a potential vehicle for Carvedilol delivery: Application of factorial design approach. Artif. Cells Nanomed. Biotechnol., 2016, 44, 12-19.
[42]
Muller, R.H.; Runge, S.; Ravelli, V.; Mehnert, W.; Thunemann, A.F.; Souto, E.B. Oral bioavailability of cyclosporine: Solid lipid nanoparticles (SLN) versus drug nanocrystals. Int. J. Pharm., 2006, 317(1), 82-89.
[43]
Kumar, M.; Pandeya, R.S.; Patra, K.C.; Jain, S.K.; Sonia, M.L.; Dangi, J.S.; Madan, J. Evaluation of neuropeptide loaded trimethyl chitosan nanoparticles for nose to brain delivery. Int. J. Biol. Macromol., 2013, 61, 189-195.
[44]
Misra, A.; Ganesh, S.; Shahiwala, A. Drug delivery to the central nervous system. J. Pharm. Pharm. Sci., 2003, 6, 252-273.