Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design and Synthesis of Novel Thiosemicarbazones as Potent Anti-breast Cancer Agents

Author(s): Mashooq Ahmad Bhat*, M. Al-Tahhan, Mohamed A. Al-Omar, Ahmed M. Naglah and Abdullah Al-Dhfyan

Volume 16, Issue 4, 2019

Page: [446 - 452] Pages: 7

DOI: 10.2174/1570180815666181008100944

Abstract

Background: Thiosemicarbazones and its derivatives received a great pharmaceutical importance due to their prominent biological activities.

Methods: A series of disubstituted thiosemicarbazone derivatives (1-12) were designed and synthesized as pure compounds in good yield. All the synthesized compounds were analyzed by spectral data. The anticancer activity of all the compounds was performed against breast cancer MCF-7 and MDA-MB-231 cell lines.

Results: Most of the compounds showed activity against breast cancer MCF-7 and MDA-MB-231 cell lines with (IC50 = 12.25 µM ‒ 185.35 µM) and (IC50 = 12.97 µM ‒ 107.33 µM), respectively. Compound 9 presented (IC50 = 12.76 µM and 12.97 µM) against MCF-7 and MDA-MB-231 cell lines, respectively.

Conclusion: Compound 9, was found to exhibit significant anti-breast cancer activity. This compound was further evaluated for side population percent inhibition assay on the breast cancer cell line MCF-7 at 5 and 10 µM concentration. It showed superiority to block side population by more than 80% at 5 μM concentration compared to the reference drug verapamil.

Keywords: Thiosemicarbazones, MCF-7 cell line, MDA-MB-231 cell line, breast cancer, anti-cancer activity, verapamil.

Graphical Abstract

[1]
Sau, D.K.; Butcher, R.J.; Chaudhuri, S.; Saha, N. Spectroscopic, structural and antibacterial properties of copper(II) complexes with bio-relevant 5-methyl-3- formylpyrazole N(4)-benzyl-N(4)-methylthiosemicarbazone. Mol. Cell. Biochem., 2003, 253, 21-29.
[2]
Pelosi, G. Thiosemicarbazone metal complexes: From structure to activity. Open Crystallogr. J., 2010, 3, 16-28.
[3]
Dilović, I.; Rubcić, M.; Vrdoljak, V.; Pavelić, S.K.; Kralj, M.; Piantanida, I.; Cindrić, M. Novel 11 thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and 12 structural properties, DNA interactions and antiproliferative activity. Bioorg. Med. Chem., 2008, 16, 5189-5198.
[4]
Kovacevic, Z.; Chikhani, S.; Lui, G.Y.; Sivagurunathan, S.; Richardson, D.R. The iron-15 regulated metastasis suppressor NDRG1 targets NEDD4L, PTEN, and SMAD4 and inhibits the 16 PI3K and Ras signaling pathways. Antioxid. Redox Signal., 2013, 10, 874-887.
[5]
Heiner, G.G.; Fatima, N.; Russell, P.K.; Haase, A.T.; Ahmad, N.; Mohammed, N.; Thomas, D.B.; Mack, T.M.; Khan, M.M.; Knatterud, G.L.; Anthony, R.L.; McCrumb, F.R., Jr Field trials 19 of methisazone as a prophylactic agent against smallpox. Am. J. Epidemiol., 1971, 94, 435-449.
[6]
Jutten, P.; Schumann, W.; Hartl, A.; Dahse, H.M.; Grafe, U. Thiosemicarbazones of formyl benzoic acids as novel potent inhibitors of estrone sulfatase. J. Med. Chem., 2007, 50, 3661-3666.
[7]
Yogeeswari, P.; Sriram, D.; Thirumurugan, R.; Raghavendran, J.V.; Sudhan, K.; Pavana, R.K.; Stables, J. Discovery of N-(2,6-dimethylphenyl)-substituted semicarbazones as anticonvulsants: Hybrid pharmacophore-based design. J. Med. Chem., 2005, 48, 6202-6211.
[8]
Greenbaum, D.C.; Mackey, Z.; Hansell, E.; Doyle, P.; Gut, J.; Caffrey, C.R.; Lehrman, J.; Rosenthal, P.J.; McKerrow, J.H.; Chibale, K. Synthesis and structure-activity relationships of parasiticidal thiosemicarbazone cysteine protease inhibitors against Plasmodium falciparum, Trypanosoma brucei, and Trypanosoma cruzi. J. Med. Chem., 2004, 47, 3212-3219.
[9]
Neve, R.M.; Chin, K.; Fridlyand, J.; Yeh, J.; Baehner, F.L.; Fevr, T.; Clark, L.; Bayani, N.; Coppe, J.P.; Tong, F.; Speed, T.; Spellman, P.T.; DeVries, S.; Lapuk, A.; Wang, N.J.; Kuo, W.L.; Stilwell, J.L.; Pinkel, D.; Albertson, D.G.; Waldman, F.M.; McCormick, F.; Dickson, R.B.; Johnson, M.D.; Lippman, M.; Ethier, S.; Gazdar, A.; Gray, J.W. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 2006, 10, 515-527.
[10]
Chen, J.; Huang, Y.W.; Liu, G.; Afrasiabi, Z.; Sinn, E.; Padhye, S.; Ma, Y. The cytotoxicity and mechanisms of 1,2-naphthoquinone thiosemicarbazone and its metal derivatives against MCF-7 human breast cancer cells. Toxicol. Appl. Pharmacol., 2004, 197, 40-48.
[11]
Li, J.; Zheng, L.M.; King, I.; Doyle, T.W.; Chen, S.H. Syntheses and antitumor activities of potent inhibitors of ribonucleotide reductase: 3-amino-4-methylpyridine-2-carboxaldehyde-thiosemicarba-zone (3-AMP), 3-amino-pyridine-2-carboxaldehyde-thiosemicarbazone (3-AP) and its water-soluble prodrugs. Curr. Med. Chem., 2001, 2, 121-133.
[12]
Finch, R.A.; Liu, M.; Grill, S.P.; Rose, W.C.; Loomis, R.; Vasquez, K.M.; Cheng, Y.; Sartorelli, A.C. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): A potent 34 inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem. Pharmacol., 2000, 59, 983-991.
[13]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective 3 identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100, 39834-3988.
[14]
Kondo, T.; Setoguchi, T.; Taga, T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc. Natl. Acad. Sci. USA, 2004, 101, 781-786.
[15]
Patrawala, L.; Calhoun, T.; Schneider-Broussard, R.; Zhou, J.; Claypool, K.; Tang, D.G. Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res., 2005, 65, 6207-6219.
[16]
Al-Hajj, M.; Becker, M.W.; Wicha, M.; Weissman, I.; Clarke, M.F. Therapeutic implications of cancer stem cells. Curr. Opin. Genet. Dev., 2004, 14, 43-47.
[17]
Bhat, M.A.; Al-Dhfyan, A.; Al-Omar, M.A. Targeting Cancer Stem Cells with Novel 4-(4-2 substituted phenyl)-5-(3,4,5-trimethoxy/ 3,4-dimethoxy)-3 benzoyl-3,4-dihydropyrimidine-2(1H)-one/thiones. Molecules, 2016, 21, 1746-1755.
[18]
Naglah, A.M.; Shinwari, Z.; Bhat, M.A.; Al-Tahhan, M.; Al-Omar, M.A. Al- Dhfyan, A. Targeting leukemic side population cells by isatin derivatives of nicotinic acid amide. J. Biol. Regul. Homeost. Agents, 2016, 30, 624-628.
[19]
Bhat, M.A.; Al-Dhfyan, A.; Khan, A.A.; Al-Harbi, N.; Manogaran, P.S.; Alanazi, A.M.; Fun, H.K.; Al-Omar, M.A. Targeting HER-2 over expressed breast cancer cells with 2-cyclohexyl-N-[(Z)-(substituted phenyl/furan-2-yl/thiophene-2-yl)methylidene]hydra-zinecarbothioamide. Bioorg. Med. Chem. Lett., 2015, 25, 83-87.
[20]
Bhat, M.A.; Al-Dhfyan, A.; Naglah, A.M.; Khan, A.A.; Al-Omar, M.A. Lead optimization of 2-cyclohexyl-N-[(Z)-(3-methoxyphenyl/ 3-hydroxyphenyl) methylidene] hydrazinecarbothioamide for targeting HER-2 over expressed breast cancer cell line SKBr-3. Molecules, 2015, 20, 18246-18263.
[21]
Hu, W.X.; Zhou, W.; Xia, C.N.; Wen, X. Synthesis and anticancer activity of thiosemicarbazones. Bioorg. Med. Chem. Lett., 2006, 16, 2213-2218.
[22]
Cunha, S. da Silva, T.L. One-pot and catalyst-free synthesis of thiosemicarbazones via multicomponent coupling reactions. Tetrahedron Lett., 2009, 50, 2090-2093.
[23]
Dilović, I.; Rubcić, M.; Vrdoljak, V.; Kraljević, P.S.; Kralj, M.; Piantanida, I.; Cindrić, M. Novel thiosemicarbazone derivatives as potential antitumor agents: Synthesis, physicochemical and structural properties, DNA interactions and antiproliferative activity. Bioorg. Med. Chem., 2008, 16, 5189-5198.
[24]
Eldehna, W.M.; Almahli, H.; Al-Ansary, G.H.; Ghabbour, H.A.; Aly, M.H.; Ismael, O.E.; Al-Dhfyan, A.; Abdel-Aziz, H.A. Synthesis and in vitro anti-proliferative activity of some novel isatins conjugated with quinazoline/phthalazine hydrazines against triple-negative breast cancer MDA-MB-231 cells as apoptosis-inducing agents. J. Enzyme Inhib. Med. Chem., 2017, 32, 600-613.
[25]
Abdel-Aziz, H.A.; Elsaman, T.; Al-Dhfyan, A.; Attia, M.I.; Al-Rashood, K.A.; Al-Obaid, A.R. Synthesis and anticancer potential of certain novel 2-oxo-N'-(2-oxoindolin-3-ylidene)-2H-chromene-3-carbohydrazides. Eur. J. Med. Chem., 2013, 70, 358-363.

© 2024 Bentham Science Publishers | Privacy Policy