Abstract
Antibody-toxin fused agents or immunotoxins, are a newly engineered class of cytotoxic agents consisting of a bacterial or plant toxin moiety hooked up either to a monoclonal antibody or a specific growth factor. Nevertheless, acquiring a full potency in clinic is mostly restricted due to the Capillary leak syndrome (CLS), a serious immune provoked, life-threatening side effect, subsequent to the endothelial damage, resulting in fluid escape from the bloodstream into tissues including lungs, muscle and brain, developing organ failure and eventually death. Proposed underlying mechanisms include direct damage to endothelial cells, acute inflammation, Lymphokine-activated killer (LAK) cells engagement, alteration in cell-cell/cell-matrix connectivities and cytoskeletal dysfunction. Very poor biodistribution and heterogeneous extravasation pattern in tumor site result in accumulation of ITs close to the extravasation site, gradual toxin release and initiation of nearby endothelial cells lysis, secretion of pro-inflammatory cytokines, development of acute inflammation and engagement of Lymphokine-activated killer (LAK) cells. Intrinsic immunogenicity of applied toxin moiety is another important determinant of CLS incidence. Toxins with more intrinsic immunogenicity possess more probability for CLS development. Recently, development of new generations of antibodies and mutated toxins with conserved cytotoxicity has partly tapered risk of CLS development. Here, we describe probable mechanisms involved in CLS and introduce some of the recently applied strategies for lessening incidence of CLS as much as possible.
Keywords: Vascular leak syndrome, immunogenicity, cytokines, immunotoxins, binding side barrier, lymphokineactivated killer cells.