[2]
Can, Ö.D.; Turan, N.; Demir Özkay, Ü.; Öztürk, Y. Antidepressant- like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems. Life Sci., 2017, 190, 110-117.
[3]
Gonçalves, A.E.; Bürger, C.; Amoah, S.K.; Tolardo, R.; Biavatti, M.W.; de Souza, M.M. The antidepressant-like effect of Hedyosmum brasiliense and its sesquiterpene lactone, podoandin in mice: Evidence for the involvement of adrenergic, dopaminergic and serotonergic systems. Eur. J. Pharmacol., 2012, 674(2-3), 307-314.
[4]
Khalafi-Nezhad, A.; Soltani Rad, M.N.; Mohabatkar, H.; Asrari, Z.; Hemmateenejad, B. Design, synthesis, antibacterial and QSAR studies of benzimidazole and imidazole chloroaryloxyalkyl derivatives. Bioorg. Med. Chem., 2005, 13(6), 1931-1938.
[5]
Srivastava, R.; Gupta, S.K.; Naaz, F.; Singh, A.; Singh, V.K.; Verma, R.; Singh, N.; Singh, R.K. Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues. Comput. Biol. Chem., 2018, 76, 1-16.
[6]
Singh, A.; Yadav, D.; Yadav, M.; Dhamanage, A.; Kulkarni, S.; Singh, R.K. Molecular modeling, synthesis and biological evaluation of N-heteroaryl compounds as reverse transcriptase inhibitors against HIV-1. Chem. Biol. Drug Des., 2015, 85(3), 336-347.
[7]
Akhtar, M.J.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Rafi, M.; Hassan, M.Q.; Akhtar, M.S.; Siddiqui, A.A.; Partap, S.; Pasha, S.; Yar, M.S. Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors. Bioorg. Chem., 2018, 78, 158-169.
[8]
Kerimov, İ.; Ayhan-Kilcigil, G.; Özdamar, E.D.; Can-Eke, B.; Çoban, T.; Özbey, S.; Kazak, C. Design and one-pot and microwave-assisted synthesis of 2-amino/5-aryl-1,3,4-oxadiazoles bearing a benzimidazole moiety as antioxidants. Arch. Pharm. (Weinheim), 2012, 345(7), 549-556.
[9]
Noor, A.; Qazi, N.G.; Nadeem, H.; Khan, A.U.; Paracha, R.Z.; Ali, F.; Saeed, A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem. Cent. J., 2017, 11(1), 85.
[10]
Vinodkumar, R.; Vaidya, S.D.; Siva Kumar, B.V.; Bhise, U.N.; Bhirud, S.B.; Mashelkar, U.C. Synthesis, anti-bacterial, antiasthmatic and anti-diabetic activities of novel N-substituted-2-(4-phenylethynyl-phenyl)-1H-benzimidazoles and N-substituted 2[4-(4,4-dimethyl-thiochroman-6-yl-ethynyl)-phenyl)-1Hbenzimidazoles. Eur. J. Med. Chem., 2008, 43(5), 986-995.
[11]
Navarrete-Vázquez, G.; Hidalgo-Figueroa, S.; Torres-Piedra, M.; Vergara-Galicia, J.; Rivera-Leyva, J.C.; Estrada-Soto, S.; León-Rivera, I.; Aguilar-Guardarrama, B.; Rios-Gómez, Y.; Villalobos-Molina, R.; Ibarra-Barajas, M. Synthesis, vasorelaxant activity and antihypertensive effect of benzo[d]imidazole derivatives. Bioorg. Med. Chem., 2010, 18(11), 3985-3991.
[12]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem., 2010, 45(5), 1753-1759.
[13]
Kwak, H.J.; Pyun, Y.M.; Kim, J.Y.; Pagire, H.S.; Kim, K.Y.; Kim, K.R.; Rhee, S.D.; Jung, W.H.; Song, J.S.; Bae, M.A.; Lee, D.H.; Ahn, J.H. Synthesis and biological evaluation of aminobenzimidazole derivatives with a phenylcyclohexyl acetic acid group as antiobesity and anti-diabetic agents. Bioorg. Med. Chem. Lett., 2013, 23(16), 4713-4718.
[14]
Alpan, A.S.; Parlar, S.; Carlino, L.; Tarikogullari, A.H.; Alptüzün, V.; Güneş, H.S. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors. Bioorg. Med. Chem., 2013, 21(17), 4928-4937.
[15]
Sondhi, S.M.; Rajvanshi, S.; Johar, M.; Bharti, N.; Azam, A.; Singh, A.K. Anti-inflammatory, analgesic and antiamoebic activity evaluation of pyrimido[1,6-a]benzimidazole derivatives synthesized by the reaction of ketoisothiocyanates with mono and diamines. Eur. J. Med. Chem., 2002, 37(10), 835-843.
[16]
El-Nezhawy, A.O.; Gaballah, S.T.; Radwan, M.A.; Baiuomy, A.R.; Abdel-Salam, O.M. Structure-based design of benzimidazole sugar conjugates: Synthesis, SAR and in vivo anti-inflammatory and analgesic activities. Med. Chem., 2009, 5(6), 558-569.
[17]
Mute, V.M.; Bodhankar, S.L. Antidepressant like effect of newly synthesized compound 2[(N-benzylacetamido) mercapto] benzimidazole (vs 25) and its possible mechanism by inhibition of monoamine oxidase enzyme in mice. Int. J. Pharm. Pharm. Sci., 2015, 7(2), 407-410.
[18]
Khan, I.; Tantray, M.A.; Hamid, H.; Alam, M.S.; Kalam, A.; Dhulap, A. Synthesis of benzimidazole based thiadiazole and carbohydrazide conjugates as glycogen synthase kinase-3β inhibitors with anti-depressant activity. Bioorg. Med. Chem. Lett., 2016, 26(16), 4020-4024.
[19]
Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-based 1,3,4- oxadiazole-1,2,3-triazole conjugates as glycogen synthase kinase-3b inhibitors with antidepressant activity in in vivo models. SC. Adv., 2016, 6, 43345-43355.
[20]
Kamil, A.; Akhtar, S.; Khan, A.; Farooq, E.; Nishan, U.; Uddin, R.; Farooq, U. Synthesis, structure–activity relationship and antinociceptive activities of some 2-(2′-pyridyl) benzimidazole derivatives. Med. Chem. Res., 2016, 25(6), 1216-1228.
[21]
Jain, P.; Sharma, P.K.; Rajak, H.; Pawar, R.S.; Patil, U.K.; Singour, P.K. Design, synthesis and biological evaluation of some novel benzimidazole derivatives for their potential anticonvulsant activity. Arch. Pharm. Res., 2010, 33(7), 971-980.
[22]
Yuan, Y.P.; Wang, S.B.; Gong, G.H.; Quan, Z.S. Synthesis and studies on anticonvulsant and antibacterial activities of 1-alkyl-4- (4H-1,2,4-triazol-4-yl)piperidine derivatives. Lett. Drug Des. Discov., 2014, 11, 1070-1078.
[23]
Jiang, Z.; Gu, J.; Wang, C.; Wang, S.; Liu, N.; Jiang, Y.; Dong, G.; Wang, Y.; Liu, Y.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains. Eur. J. Med. Chem., 2014, 82, 490-497.
[24]
Wang, P.; Cai, J.; Chen, J.; Ji, M. Synthesis and anticancer activities of ceritinib analogs modified in the terminal piperidine ring. Eur. J. Med. Chem., 2015, 93, 1-8.
[25]
Kim, J.H.; Shyam, P.K.; Kim, M.J.; Lee, H.J.; Lee, J.T.; Jang, H.Y. Enantioselective synthesis and antioxidant activity of 3,4,5-substituted piperidine derivatives. Bioorg. Med. Chem. Lett., 2016, 26(13), 3119-3121.
[26]
Ahmad Bhat, M.; Al-Omar, M.A.; Naglah, A.M. Synthesis and in vivo anti-ulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 978-988.
[27]
Chen, X.; Zhan, P.; Pannecouque, C.; Balzarini, J.; De Clercq, E.; Liu, X. Synthesis and biological evaluation of piperidinesubstituted triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors. Eur. J. Med. Chem., 2012, 51, 60-66.
[28]
Imaeda, Y.; Tawada, M.; Suzuki, S.; Tomimoto, M.; Kondo, M.; Tarui, N.; Sanada, T.; Kanagawa, R.; Snell, G.; Behnke, C.A.; Kubo, K.; Kuroita, T. Structure-based design of a new series of N-(piperidin-3-yl)pyrimidine-5-carboxamides as renin inhibitors. Bioorg. Med. Chem., 2016, 24, 5771-5780.
[29]
El Ahmad, Y.; Maillet, P.; Laurent, E.; Talab, A.; Teste, J.F.; Cédat, M.J.; Fiez-Vandal, P.Y.; Dokhan, R.; Ollivier, R. New N-(benzhydryloxyalkyl)-4-(carboxy/carbamoylmethyl) piperidine derivatives with antidepressant activity. Eur. J. Med. Chem., 1997, 32, 205-218.
[30]
Köksal, M.; Bilge, S.S. Synthesis and antidepressant-like profile of novel 1-Aryl-3- [(4-benzyl)piperidine-1-yl]propane derivatives. Arch. Pharm. Chem. Life Sci, 2007, 340, 299-303.
[31]
Trabanco, A.A.; Aerts, N.; Alvarez, R.M.; Andrés, J.I.; Boeckx, I.; Fernández, J.; Gómez, A.; Janssens, F.E.; Leenaerts, J.E.; De Lucas, A.I.; Matesanz, E.; Steckler, T.; Pullan, S. 4-Phenyl-4-[1Himidazol-2-yl]-piperidine derivatives as non-peptidic selective delta-opioid agonists with potential anxiolytic/antidepressant properties. Part 2. Bioorg. Med. Chem. Lett., 2007, 17, 3860-3863.
[32]
Wang, J.; Mack, A.L.; Coop, A.; Matsumoto, R.R. Novel sigma (sigma) receptor agonists produce antidepressant-like effects in mice. Eur. Neuropsychopharmacol., 2007, 17, 708-716.
[33]
Zheng, Y.Y.; Guo, L.; Zhen, X.C.; Li, J.Q. Synthesis and antidepressant activity of arylalkanol-piperidine derivatives as triple reuptake inhibitors. Eur. J. Med. Chem., 2012, 54, 123-136.
[34]
Garner, R.; Gopalakrishnan, S.; McCauley, J.A.; Bednar, R.A.; Gaul, S.L.; Mosser, S.D.; Kiss, L.; Lynch, J.J.; Patel, S.; Fandozzi, C.; Lagrutta, A.; Briscoe, R.; Liverton, N.J.; Paterson, B.M.; Vornov, J.J. Mazhari, R3. Preclinical pharmacology and pharmacokinetics of CERC-301, a GluN2B-selective N-methyl-D-aspartate receptor antagonist. Pharmacol. Res. Perspect., 2015, 3(6), e00198.
[35]
Sadek, B.; Kuder, K.; Subramanian, D.; Shafiullah, M.; Stark, H.; Lażewska, D.; Adem, A.; Kieć-Kononowicz, K. Anticonvulsive effect of nonimidazole histamine H3 receptor antagonists. Behav. Pharmacol., 2014, 25, 245-252.
[36]
Tripathi, P.; Tripathi, A.C.; Chawla, V.; Saraf, S.K. Syntheses, characterization and evaluation of novel 2,6-diarylpiperidin-4-ones as potential analgesic-antipyretic agents. Eur. J. Med. Chem., 2014, 82, 439-448.
[37]
Jahan, S.; Akhtar, S.; Kamil, A.; Mushtaq, N.; Saify, Z.S.; Arif, M. Analgesic activity of alkyl piperidine derivatives. Pak. J. Pharm. Sci., 2016, 29(1), 77-82.
[38]
Huang, L.; Zhang, W.; Zhang, X.; Yin, L.; Chen, B.; Song, J. Synthesis and pharmacological evaluation of piperidine (piperazine)- substituted benzoxazole derivatives as multi-target antipsychotics. Bioorg. Med. Chem. Lett., 2015, 25(22), 5299-5305.
[39]
Więckowska, A.; Więckowski, K.; Bajda, M.; Brus, B.; Sałat, K.; Czerwińska, P.; Gobec, S.; Filipek, B.; Malawska, B. Synthesis of new N-benzylpiperidine derivatives as cholinesterase inhibitors with β-amyloid anti-aggregation properties and beneficial effects on memory in vivo. Bioorg. Med. Chem., 2015, 23(10), 2445-2457.
[40]
Schwartz, J.C. The histamine H3 receptor: From discovery to clinical trials with pitolisant. Br. J. Pharmacol., 2011, 163, 713-721.
[41]
Sadek, B.; Khan, N.; Darras, F.H.; Pockes, S.; Decker, M. The dual-acting AChE inhibitor and H3 receptor antagonist UW-MD-72 reverses amnesia induced by scopolamine or dizocilpine in passive avoidance paradigm in rats. Physiol. Behav., 2016, 165, 383-391.
[42]
Liu, J.; Huang, D.; Xu, J.; Tong, J.; Wang, Z.; Huang, L.; Yang, Y.; Bai, X.; Wang, P.; Suo, H.; Ma, Y.; Yu, M.; Fei, J.; Huang, F. Tiagabine protects dopaminergic neurons against neurotoxins by inhibiting microglial activation. Sci. Rep., 2015, 5, 15720.
[43]
Statnick, M.A.; Chen, Y.; Ansonoff, M.; Witkin, J.M. Rorick- Kehn, L.; Suter, T.M.; Song, M.; Hu, C.; Lafuente, C.; Jiménez, A.; Benito, A.; Diaz, N.; Martínez-Grau, M.A.; Toledo, M.A.; Pintar, J.E. A novel nociceptin receptor antagonist LY2940094 inhibits excessive feeding behavior in rodents: A possible mechanism for the treatment of binge eating disorder. J. Pharmacol. Exp. Ther., 2016, 356(2), 493-502.
[44]
Demir Özkay, Ü.; Can, Ö.D.; Turan, N.; Kaya Cavuşoğlu, B. Synthesis and antinociceptive activities of some novel enzimidazolepiperidine derivatives. Turk. J. Chem., 2017, 41, 672-684.
[45]
Demir Özkay, Ü. Yurttas ̧, L.; Özkay, Y.; Üçel, U.I.; Can, Ö.D.; Öztürk, Y. Synthesis of new 1-phenyl-2-(4- substituted-piperazin-1-yl)-propanol derivatives and evaluation of their antidepressantlike effects. Arch. Pharm. Res., 2013, 36, 802-811.
[46]
Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, (Berl.), 1985, 85, 367-370.
[47]
Demir Özkay, Ü.; Kaya, C.; Acar Çevik, U.; Can, Ö.D. Synthesis and antidepressant activity profile of some novel benzothiazole derivatives. Molecules, 2017, 22(9), E1490.
[48]
Cryan, J.F.; Markou, A.; Lucki, I. Assessing antidepressant activity in rodents: Recent developments and future needs. Trends Pharmacol. Sci., 2002, 23, 238-245.
[49]
Can, O.D.; Demir Ozkay, U.; Ucel, U.I. Anti-depressant-like effect of vitexin in BALB/c mice and evidence for the involvement of monoaminergic mechanisms. Eur. J. Pharmacol., 2013, 699, 250-257.
[50]
Votava, M.; Hess, L.; Slíva, J.; Krsiak, M.; Agová, V. Dexmedetomidine selectively suppresses dominant behavior in aggressive and sociable mice. Eur. J. Pharmacol., 2005, 523, 79-85.
[51]
Can, N.Ö.; Can, Ö.D.; Osmaniye, D.; Demir Özkay, Ü. Synthesis of some novel thiadiazole derivative compounds and screening their antidepressant-like activities. Molecules, 2018, 23(4), E716.
[52]
Patel, S.S.; Ray, R.S.; Sharma, A.; Mehta, V.; Katyal, A.; Udayabanu, M. Antidepressant and anxiolytic like effects of Urtica dioica leaves in streptozotocin induced diabetic mice. Metab. Brain Dis., 2018. in press
[53]
Amoateng, P.; Kukuia, K.K.E.; Mensah, J.A.; Osei-Safo, D.; Adjei, S.; Eklemet, A.A.; Vinyo, E.A.; Karikari, T.K. An extract of Synedrella nodiflora (L) Gaertn exhibits antidepressant properties through monoaminergic mechanisms. Metab. Brain Dis., 2018. in press
[54]
da Silva, D.M.; Sanz, G.; Vaz, B.G.; de Carvalho, F.S.; Lião, L.M.; de Oliveira, D.R.; Moreira, L.K.D.S.; Cardoso, C.S.; de Brito, A.F.; da Silva, D.P.B.; da Rocha, F.F.; Santana, I.G.C.; Galdino, P.M.; Costa, E.A.; Menegatti, R. Tert-butyl 4-((1-phenyl-1H-pyrazol-4-yl) methyl) piperazine-1-carboxylate (LQFM104)- New piperazine derivative with antianxiety and antidepressant-like effects: Putative role of serotonergic system. Biomed. Pharmacother., 2018, 103, 546-552.
[55]
Pytka, K.; Podkowa, K.; Rapacz, A.; Podkowa, A.; Żmudzka, E.; Olczyk, A.; Sapa, J.; Filipek, B. The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacol. Rep., 2016, 68(2), 263-274.
[56]
Oliveira, C.E.; Sari, M.H.; Zborowski, V.A.; Araujo, P.C.; Nogueira, C.W.; Zeni, G. p,p′-Methoxyl-diphenyl diselenide elicits an antidepressant-like effect in mice without discontinuation anxiety phenotype. Pharmacol. Biochem. Behav., 2017, 154, 31-38.