[1]
Tran, S.; DeGiovanni, P.J.; Piel, B.; Rai, P. Cancer nanomedicine: A review of recent success in drug delivery. Clin. Transl. Med., 2017, 6, 44.
[2]
Ye, F.; Zhao, Y.; El-Sayed, R.; Muhammed, M.; Hassan, M. Advances in nanotechnology for cancer biomarkers. Nano Today, 2018, 18, 103-123.
[3]
Akhter, S.; Ahmad, I.; Ahmad, M.Z.; Ramazani, F.; Singh, A.; Rahman, Z.; Ahmad, F.J.; Storm, G.; Kok, R.J. Nanomedicines as cancer therapeutics: Current status. Curr. Cancer Drug Targets, 2013, 13, 362-378.
[4]
Wang, J.; Sui, M.; Fan, W. Nanoparticles for tumor targeted therapies and their pharmacokinetics. Curr. Drug Metab., 2010, 11, 129-141.
[5]
Verma, M.; Sheoran, P.; Chaudhury, A. Application of Nanotechnology for Cancer Treatment.InAdvances in Animal Biotechnology and its Applications; Springer: Singapore, 2018, pp. 161-178.
[6]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: current perspective and future promise. Pharmacol. Ther., 2010, 128, 324-335.
[7]
Shapira, A.; Livney, Y.D.; Broxterman, H.J.; Assaraf, Y.G. Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist. Updat., 2011, 14, 150-163.
[8]
Rotomskis, R.; Streckyte, G.; Karabanovas, V. Nanoparticles in diagnostics and therapy: towards nanomedicine. Medicina (Kauna), 2006, 42, 542-558.
[9]
Biswas, S.; Kumari, P.; Lakhani, P.M.; Ghosh, B. Recent advances in polymeric micelles for anti-cancer drug delivery. Eur. J. Pharm. Sci., 2016, 83, 184-202.
[10]
Kim, D.; Jeong, Y.Y.; Jon, S. A drug-loaded aptamer- gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano, 2010, 4, 3689-3696.
[11]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9, 257-288.
[12]
Li, J. Nanotechnology-based platform for early diagnosis of cancer. Sci. Bull., 2015, 60, 488-490.
[13]
Gu, Z.; Yan, L.; Tian, G.; Li, S.; Chai, Z.; Zhao, Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mat. Res., 2013, 25, 3758-3779.
[14]
Ji, T.; Zhao, Y.; Wang, J.; Zheng, X.; Tian, Y.; Zhao, Y.; Nie, G. Tumor fibroblast specific activation of a hybrid ferritin nano-cage-based optical probe for tumor microenvironment imaging. Small, 2013, 9, 2427-2431.
[15]
Parungo, C.P.; Ohnishi, S.; Alec, M.; Laurence, R.G.; Soltesz, E.G.; Colson, Y.L.; Kang, P.M.; Mihaljevic, T.; Cohn, L.H.; Frangioni, J.V. In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann. Surg. Oncol., 2004, 11, 1085-1092.
[16]
Gao, X.; Cui, Y.; Levenson, R.M.; Chung, L.W.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol., 2004, 22, 969.
[17]
Dubertret, B.; Skourides, P.; Norris, D.J.; Noireaux, V.; Brivanlou, A.H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298, 1759-1762.
[18]
Hirsch, L.R.; Stafford, R.J.; Bankson, J.; Sershen, S.R.; Rivera, B.; Price, R.; Hazle, J.D.; Halas, N.J.; West, J.L. Nanoshell- mediated near-infrared thermal therapy of tumors under magneticresonance guidance. Proc. Natl. Acad. Sci. USA, 2003, 100, 13549-13554.
[19]
Loo, C.; Lin, A.; Hirsch, L.; Lee, M.H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat., 2004, 3, 33-40.
[20]
Alper, J. Shining a Light on Cancer Research.In:NCI Alliance for Nanotecnology in Cancer; National Cancer Institute: USA, 2005, pp. 1-3.
[21]
Mottram, P.L. Past, present and future drug treatment for rheumatoid arthritis and systemic lupus erythematosus. Immunol. Cell Biol., 2003, 81, 350-353.
[22]
Paciotti, G.F.; Myer, L.; Weinreich, D.; Goia, D.; Pavel, N.; McLaughlin, R.E.; Tamarkin, L. Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. J. Drug Deliv., 2004, 11, 169-183.
[23]
Purohit, R.; Singh, S. Fluorescent gold nanoclusters for efficient cancer cell targeting. Int. J. Nanomedicine, 2018, 13, 15-17.
[24]
Bangham, A.; Standish, M.; Weissmann, G. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J. Mol. Biol., 1965, 13, 253-259.
[25]
Yue, X.; Dai, Z. Liposomal nanotechnology for cancer theranostics. Curr. Med. Chem., 2018, 25, 1397-1408.
[26]
Bozzuto, G.; Molinari, A. Liposomes as nanomedical devices. Int. J. Nanomedicine, 2015, 10, 975.
[27]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8, 102.
[28]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[29]
Zhang, L.; Gu, F.; Chan, J.; Wang, A.; Langer, R.; Farokhzad, O. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83, 761-769.
[30]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[31]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol., 2014, 2014939378
[32]
James, N.; Coker, R.; Tomlinson, D.; Harris, J.; Gompels, M.; Pinching, A.; Stewart, J. Liposomal doxorubicin (Doxil): An effective new treatment for Kaposi’s sarcoma in AIDS. J. Clin. Oncol., 1994, 6, 294-296.
[33]
Singh, S. Liposome encapsulation of doxorubicin and celecoxib in combination inhibits progression of human skin cancer cells. Int. J. Nanomedicine, 2018, 13, 11-13.
[34]
Berger, J.; Smith, A.; Zorn, K.; Sukumvanich, P.; Olawaiye, A.; Kelley, J.; Krivak, T. Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era. OncoTargets Ther., 2015, 8, 593.
[35]
Chou, H.; Lin, H.; Liu, J.M. A tale of the two PEGylated liposomal doxorubicins. OncoTargets Ther., 2015, 8, 1719.
[36]
Muggia, F.M. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs, 1997, 54, 22-29.
[37]
Barenholz, Y. Doxil-the First FDA-approved Nano-Drug: From an Idea to A Product. In: Handbook of Harnessing Biomaterials in Nanomedicine: Preparation, Toxicity and Applications; Dan Peer, Ed.; Pan Standford Publishing Pte. Ltd.: Singapore,. , 2012. Chap. 12, pp. 335-398.
[38]
Bladé, J.; Sonneveld, P.; San Miguel, J.F.; Sutherland, H.J.; Hajek, R.; Nagler, A.; Spencer, A.; Robak, T.; Lantz, K.C.; Zhuang, S.H. Efficacy and safety of pegylated liposomal doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin. Lymphoma Myeloma Leuk., 2011, 11, 44-49.
[39]
Riviere, K.; Kieler-Ferguson, H.M.; Jerger, K.; Szoka Jr, F.C. Anti-tumor activity of liposome encapsulated fluoroorotic acid as a single agent and in combination with liposome irinotecan. J. Control. Release, 2011, 153, 288-296.
[40]
Goldberg, M.S.; Hook, S.S.; Wang, A.Z.; Bulte, J.W.; Patri, A.K.; Uckun, F.M.; Cryns, V.L.; Hanes, J.; Akin, D.; Hall, J.B. Biotargeted nanomedicines for cancer: six tenets before you begin. Nanomedicine, 2013, 8, 299-308.
[41]
Ko, A.; Tempero, M.; Shan, Y.; Su, W.; Lin, Y.; Dito, E.; Ong, A.; Wang, Y.; Yeh, C.; Chen, L. A multinational phase 2 study of nanoliposomal irinotecan sucrosofate (PEP02, MM-398) for patients with gemcitabine-refractory metastatic pancreatic cancer. Br. J. Cancer, 2013, 109, 920.
[42]
Roy, A.; Park, S.; Cunningham, D.; Kang, Y.; Chao, Y.; Chen, L.; Rees, C.; Lim, H.; Tabernero, J.; Ramos, F. A randomized phase II study of PEP02 (MM-398), irinotecan or docetaxel as a second-line therapy in patients with locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma. Ann. Oncol., 2013, 24, 1567-1573.
[43]
Saif, M.W. MM-398 achieves primary endpoint of overall survival in phase III study in patients with gemcitabine refractory metastatic pancreatic cancer. JOP, 2014, 15, 278-279.
[44]
Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today, 2015, 20, 536-547.
[45]
Bianco, A.; Kostarelos, K.; Prato, M. Applications of carbon nano tubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9, 674-679.
[46]
Brennan, M.E.; Coleman, J.N.; Drury, A.; Lahr, B.; Kobayashi, T.; Blau, W.J. Nonlinear photoluminescence from van Hove singularities in multiwalled carbon nanotubes. Opt. Lett., 2003, 28, 266-268.
[47]
Kam, N.W.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nano tubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102, 11600-11605.
[48]
Burlaka, A.; Lukin, S.; Prylutska, S.; Remeniak, O.; Prylutskyy, Y.; Shuba, M.; Maksimenko, S.; Ritter, U.; Scharff, P. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infra red irradiation for anticancer therapy: In vitro studies. Exp. Oncol., 2010, 32, 48-50.
[49]
Rotomskis, R.; Streckyte, G.; Karabanovas, V. Nanoparticles in diagnostics and therapy: towards nanomedicine. Medicina (Kaunas), 2006, 42, 542-558.
[50]
Elhissi, A.; Ahmed, W.; Dhanak, V.; Subramani, K. Carbon nano tubes in cancer therapy and drug delivery. J. Drug Deliv., 2012, 2012837327
[51]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3, 307-316.
[52]
Liu, K.; Sun, Y.; Zhou, R.; Zhu, H.; Wang, J.; Liu, L.; Fan, S.; Jiang, K. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method. Nanotechnology, 2009, 21045708
[53]
Lay, C.L.; Liu, H.Q.; Tan, H.R.; Liu, Y. Delivery of paclitaxel by physically loading onto poly (ethylene glycol)(PEG)-graftcarbon nanotubes for potent cancer therapeutics. Nanotechnology, 2010, 21065101
[54]
Bhirde, A.A.; Patel, V.; Gavard, J.; Zhang, G.; Sousa, A.A.; Masedunskas, A.; Leapman, R.D.; Weigert, R.; Gutkind, J.S.; Rusling, J.F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano, 2009, 3, 307-316.
[55]
Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. In vivo biodistribution and highly efficient tumour tar geting of carbon nanotubes in mice. Nat. Nanotechnol., 2007, 2, 47.
[56]
Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J-C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109, 169-188.
[57]
Xiao, K.; Luo, J.; Fowler, W.L.; Li, Y.; Lee, J.S.; Xing, L.; Cheng, R.H.; Wang, L.; Lam, K.S. A self-assembling nanoparticle for paclitaxel delivery in ovarian cancer. Biomaterials, 2009, 30, 6006-6016.
[58]
Xiao, K.; Li, Y.; Luo, J.; Lee, J.S.; Xiao, W.; Gonik, A.M.; Agarwal, R.G.; Lam, K.S. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials, 2011, 32, 3435-3446.
[59]
Trubetskoy, V.S.; Torchilin, V.P. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv. Drug Deliv. Rev., 1995, 16, 311-320.
[60]
Lukyanov, K.A.; Fradkov, A.F.; Gurskaya, N.G.; Matz, M.V.; Labas, Y.A.; Savitsky, A.P.; Markelov, M.L.; Zaraisky, A.G.; Zhao, X.; Fang, Y. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. Biol. Chem., 2000, 275, 25879-25882.
[61]
Musacchio, T.; Vaze, O.; D’Souza, G.; Torchilin, V.P. Effective stabilization and delivery of siRNA: reversible siRNA- phospholipid conjugate in nanosized mixed polymeric micelles. Bioconjug. Chem., 2010, 21, 1530-1536.
[62]
Gao, Z.; Lukyanov, A.N.; Singhal, A.; Torchilin, V.P. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett., 2002, 2, 979-982.
[63]
Wang, H.Z.; Wang, H.Y.; Liang, R.Q.; Ruan, K.C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim. Biophys. Sin., 2004, 36, 681-686.
[64]
Davis, M.E.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7, 771.
[65]
Blanco, E.; Kessinger, C.W.; Sumer, B.D.; Gao, J. Multifunctional micellar nanomedicine for cancer therapy. Exp. Biol. Med., 2009, 234, 123-131.
[66]
Blanco, E.; Bey, E.A.; Khemtong, C.; Yang, S.G.; Setti-Guthi, J.; Chen, H.; Kessinger, C.W.; Carnevale, K.A.; Bornmann, W.G.; Boothman, D.A. B-Lapachone micellar nanotherapeutics for non small cell lung cancer therapy. Cancer Res., 2010, 70(10), 3896-3904.
[67]
Mu, C.F.; Balakrishnan, P.; Cui, F.D.; Yin, Y.M.; Lee, Y.B.; Choi, H-G.; Yong, C.S.; Chung, S-J.; Shim, C-K.; Kim, D-D. The effects of mixed MPEG-PLA/Pluronic® copolymer micelles on the bioavailability and multidrug resistance of docetaxel. Biomaterials, 2010, 31, 2371-2379.
[68]
Zhang, W.; Shi, Y.; Chen, Y.; Ye, J.; Sha, X.; Fang, X. Multifunctional pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials, 2011, 32, 2894-2906.
[69]
Wang, Y.; Hao, J.; Li, Y.; Zhang, Z.; Sha, X.; Han, L.; Fang, X. Poly (caprolactone)-modified pluronic P105 micelles for reversal of paclitaxcel-resistance in SKOV-3 tumors. Biomaterials, 2012, 33, 4741-4751.
[70]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[71]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Dendritic macromolecules: Synthesis of starburst dendrimers. Macromolecules, 1986, 19, 2466-2468.
[72]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J., 1985, 17, 117.
[73]
Hawker, C.J.; Frechet, J.M. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112, 7638-7647.
[74]
Lee, C.C.; Gillies, E.R.; Fox, M.E.; Guillaudeu, S.J.; Fréchet, J.M.; Dy, E.E.; Szoka, F.C. A single dose of doxorubicinfunctionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA, 2006, 103, 16649-16654.
[75]
Wiener, E.C.; Konda, S.; Shadron, A.; Brechbiel, M.; Gansow, O. Targeting dendrimer-chelates to tumors and tumor cells expressing the high-affinity folate receptor. Invest. Radiol., 1997, 32, 748-754.
[76]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A.K.; Thomas, T.; Mulé, J.; Baker, J.R. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res., 2002, 19, 1310-1316.
[77]
Kono, K.; Liu, M.; Fréchet, J.M. Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug. Chem., 1999, 10, 1115-1121.
[78]
Woller, E.K.; Cloninger, M.J. Mannose functionalization of a sixth generation dendrimer. Biomacromolecules, 2001, 2, 1052-1054.
[79]
Roy, R.; Baek, M.G. Glycodendrimers: Novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. Rev. Mol. Biotechnol., 2002, 90, 291-309.
[80]
Lagnoux, D.; Darbre, T.; Schmitz, M.L.; Reymond, J.L. Inhibition of mitosis by glycopeptide dendrimer conjugates of colchicine. Eur. J. Med. Chem., 2005, 11, 3941-3950.
[81]
Ekimov, A.I.; Onushchenko, A.A. Quantum size effect in three dimensional microscopic semiconductor crystals. JETP Lett., 1981, 34, 345-349.
[82]
Kastner, M.A. Artificial atoms. Phys. Today, 1993, 46, 24-24.
[83]
Yang, L.; Mao, H.; Cao, Z.; Wang, Y.A.; Peng, X.; Wang, X.; Sajja, H.K.; Wang, L.; Duan, H.; Ni, C. Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. Gastroenterology, 2009, 136, 1514-1525.
[84]
Soltesz, E.G.; Kim, S.; Kim, S.W.; Laurence, R.G.; Alec, M.; Parungo, C.P.; Cohn, L.H.; Bawendi, M.G.; Frangioni, J.V. Sentinel lymph node mapping of the gastrointestinal tract by using invisible light. Ann. Surg. Oncol., 2006, 13, 386-396.
[85]
Bostick, R.M.; Kong, K.Y.; Ahearn, T.U.; Chaudry, Q.; Cohen, V.; Wang, M.D. Detecting and quantifying biomarkers of risk for colorectal cancer using quantum dots and novel image analysis algorithms. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, 1, 3313-3316.
[86]
Ruan, Y.; Yu, W.; Cheng, F.; Zhang, X.; Rao, T.; Xia, Y.; Larre, S. Comparison of quantum-dots-and fluorescein-isothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer. IET Nanobiotechnol., 2011, 5, 47-51.
[87]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4, 435.
[88]
Wang, H.Z.; Wang, H.Y.; Liang, R.Q.; Ruan, K.C. Detection of tumor marker CA125 in ovarian carcinoma using quantum dots. Acta Biochim. Biophys. Sin., 2004, 36, 681-686.
[89]
Chen, C.; Peng, J.; Xia, H.S.; Yang, G.F.; Wu, Q.S.; Chen, L.D.; Zeng, L.B.; Zhang, Z.L.; Pang, D.W.; Li, Y. Quantum dots based immunofluorescence technology for the quantitative determination of HER2 expression in breast cancer. Biomaterials, 2009, 30, 2912-2918.
[90]
O’Connor, A.E.; Gallagher, W.M.; Byrne, A.T. Porphyrin and nonporphyrin photosensitizers in oncology: Preclinical and clinical advances in photodynamic therapy. Photochem. Photobiol., 2009, 85, 1053-1074.
[91]
Liu, Y.S.; Sun, Y.; Vernier, P.T.; Liang, C.H.; Chong, S.Y.C.; Gundersen, M.A. pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C. Nanomater. Interfaces, 2007, 111, 2872-2878.
[92]
Kawashima, N.; Nakayama, K.; Itoh, K.; Itoh, T.; Ishikawa, M.; Biju, V. Reversible dimerization of EGFR revealed by single-molecule fluorescence imaging using quantum dots. Eur. J. Org. Chem., 2010, 16, 1186-1192.
[93]
Bibby, D.C.; Talmadge, J.E.; Dalal, M.K.; Kurz, S.G.; Chytil, K.M.; Barry, S.E.; Shand, D.G.; Steiert, M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm., 2005, 293, 281-290.
[94]
Pan, X.Q.; Lee, R.J. In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model. Anticancer Res., 2005, 25, 343-346.
[95]
Goren, D.; Horowitz, A.T.; Tzemach, D.; Tarshish, M.; Zalipsky, S.; Gabizon, A. Nuclear delivery of doxorubicin via folate-targeted liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res., 2000, 6, 1949-1957.
[96]
Gerasimov, O.V.; Boomer, J.A.; Qualls, M.M.; Thompson, D.H. Cytosolic drug delivery using pH-and light-sensitive liposomes. Adv. Drug Deliv. Rev., 1999, 38, 317-338.
[97]
Esmaeili, F.; Ghahremani, M.H.; Ostad, S.N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M.R.; Amini, M.; Dinarvand, R. Folate receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA-PEG-folate conjugate. J. Drug Target., 2008, 16, 415-423.
[98]
Bibby, D.C.; Talmadge, J.E.; Dalal, M.K.; Kurz, S.G.; Chytil, K.M.; Barry, S.E.; Shand, D.G.; Steiert, M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm., 2005, 293, 281-290.
[99]
Park, J.W.; Hong, K.; Kirpotin, D.B.; Colbern, G.; Shalaby, R.; Baselga, J.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Moore, D. Anti HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res., 2002, 8, 1172-1181.
[100]
Sahoo, S.K.; Ma, W.; Labhasetwar, V. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer. Int. J. Cancer, 2004, 112, 335-340.
[101]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17, 20.
[102]
Sledge, G.; Miller, K. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur. J. Cancer Prev., 2003, 39, 1668-1675.
[103]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev., 2001, 53, 283-318.
[104]
Garber, K. Improved paclitaxel formulation hints at new chemotherapy approach. J. Natl. Cancer Inst., 2004, 96, 90-91.
[105]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. J. Photochem. Photobiol. B Biol, 2006, 82, 412-417.
[106]
Svaasand, L.O.; Gomer, C.J.; Morinelli, E. On the physical rationale of laser induced hyperthermia. Lasers Med. Sci., 1990, 5, 121-128.
[107]
Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res., 2008, 41, 1578-1586.
[108]
Zharov, V.P.; Galitovskaya, E.N.; Johnson, C.; Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers Surg. Med., 2005, 37, 219-226.
[109]
Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Determination of the minimum temperature required for selective photothermal destruction of cancer cells with the use of immunotargeted gold nanoparticles. Photochem. Photobiol., 2006, 82, 412-417.
[110]
Wang, Z.; Qiao, R.; Tang, N.; Lu, Z.; Wang, H.; Zhang, Z.; Xue, X.; Huang, Z.; Zhang, S.; Zhang, G.; Li, Y. Active targeting theranostic iron oxide nanoparticles for MRI and magnetic resonance guided focused ultrasound ablation of lung cancer. Biomaterials, 2017, 127, 25-35.
[111]
Wang, K.; Kievit, F.M.; Zhang, M. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacol. Res., 2016, 114, 56-66.
[112]
Ameres, S.L.; Martinez, J.; Schroeder, R. Molecular basis for target RNA recognition and cleavage by human RISC. Cell, 2007, 130, 101-112.
[113]
Bader, A.G.; Brown, D.; Stoudemire, J.; Lammers, P. Developing therapeutic microRNAs for cancer. Gene Ther., 2011, 18, 1121-1126.
[114]
Oliveira, S.; Van Rooy, I.; Kranenburg, O.; Storm, G.; Schiffelers, R.M. Fusogenic peptides enhance endosomal escape improving siRNA-induced silencing of oncogenes. Int. J. Pharm., 2007, 331, 211-214.
[115]
Wang, C.E.; Stayton, P.S.; Pun, S.H.; Convertine, A.J. Polymer nanostructures synthesized by controlled living polymerization for tumor-targeted drug delivery. J. Control. Release, 2015, 219, 345-354.
[116]
Su, W.P.; Cheng, F.Y.; Shieh, D.B.; Yeh, C.S.; Su, W.C. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells. Int. J. Nanomedicine, 2012, 7, 4269.
[117]
Mattheolabakis, G.; Ling, D.; Ahmad, G.; Amiji, M. Enhanced anti-tumor efficacy of lipid-modified platinum derivatives in combination with survivin silencing sirna in resistant non-small cell lung cancer. Pharm. Res., 2016, 33, 2943-2953.
[118]
Oishi, M.; Nakaogami, J.; Ishii, T.; Nagasaki, Y. Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem. Lett., 2006, 35, 1046-1047.
[119]
Davis, M.E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: From concept to clinic. Mol. Pharm., 2009, 6, 659-668.
[120]
Ryu, J.H.; Koo, H.; Sun, I.C.; Yuk, S.H.; Choi, K.; Kim, K.; Kwon, I.C. Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy. Adv. Drug Deliv. Rev., 2012, 64, 1447-1458.
[121]
Wang, K.; Na, M.H.; Hoffman, A.S.; Shim, G.; Han, S.E.; Oh, Y.K.; Kwon, I.C.; Kim, I.S.; Lee, B.H. In situ dose amplification by apoptosis-targeted drug delivery. J. Control. Release, 2011, 154, 214-217.
[122]
Chen, H.; Kim, S.; Li, L.; Wang, S.; Park, K.; Cheng, J.X. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Förster resonance energy transfer imaging. Proc. Natl. Acad. Sci. USA, 2008, 105, 6596-6601.
[123]
Kwon, K.C.; Jo, E.; Kwon, Y.W.; Lee, B.; Ryu, J.H.; Lee, E.J.; Kim, K.; Lee, J. Superparamagnetic gold nanoparticles synthesized on protein particle scaffolds for cancer theragnosis. Adv. Mat. Res., 2017, 291701146
[124]
Ryu, J.H.; Lee, S.; Son, S.; Kim, S.H.; Leary, J.F.; Choi, K.; Kwon, I.C. Theranostic nanoparticles for future personalized medicine. J. Control. Release, 2014, 190, 477-484.
[125]
Huh, M.S.; Lee, S.Y.; Park, S.; Lee, S.; Chung, H.; Lee, S.; Choi, Y.; Oh, Y.K.; Park, J.H.; Jeong, S.Y.; Choi, K. Tumor-homing glycol chitosan/polyethylenimine nanoparticles for the systemic delivery of siRNA in tumor-bearing mice. J. Control. Release, 2010, 144, 134-143.
[126]
Caldorera-Moore, M.E.; Liechty, W.B.; Peppas, N.A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc. Chem. Res., 2011, 44, 1061-1070.
[127]
Montero, A.J.; Adams, B.; Diaz-Montero, C.M.; Glück, S. Nab paclitaxel in the treatment of metastatic breast cancer: A comprehensive review. Expert Rev. Clin. Pharmacol., 2011, 4, 329-334.
[128]
Mamot, C.; Ritschard, R.; Wicki, A.; Stehle, G.; Dieterle, T.; Bubendorf, L.; Hilker, C.; Deuster, S.; Herrmann, R.; Rochlitz, C. Tolerability, safety, pharmacokinetics, and efficacy of doxorubicin-loaded anti-EGFR immunoliposomes in advanced solid tumours: a phase 1 dose-escalation study. Lancet Oncol., 2012, 13, 1234-1241.
[129]
Gad, S.C.; Sharp, K.L.; Montgomery, C.; Payne, J.D.; Goodrich, G.P. Evaluation of the toxicity of intravenous delivery of auroshell particles (gold-silica nanoshells). Int. J. Toxicol., 2012, 31, 584-594.
[130]
Potera, C. Houston biostartups strong in innovation: Companies ride robust economic wave that’s been washing over the state of Texas. Genet. Eng. Biotechnol. News, 2011, 31, 45-47.
[131]
Ventola, C.L. The nanomedicine revolution: Part 2: Current and future clinical applications. Pharm. Ther., 2012, 37, 582.
[132]
Egusquiaguirre, S.P.; Igartua, M.; Hernández, R.M.; Pedraz, J.L. Nanoparticle delivery systems for cancer therapy: Advances in clinical and preclinical research. Clin. Transl. Oncol., 2012, 14, 83-93.
[133]
Cheng, J.; Teply, B.A.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.X.; Levy-Nissenbaum, E.; Radovic-Moreno, A.F.; Langer, R.; Farok-hzad, O.C. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28, 869-876.
[134]
O’Brien, M.E.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D.; Tomczak, P.; Ackland, S. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol., 2004, 15, 440-449.
[135]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464, 1067.
[136]
Friedman, R. Nano dot technology enters clinical trials. J. Natl. Cancer Inst., 2011, 103(19), 1428-1429.
[137]
Cheng, J.; Khin, K.T.; Jensen, G.S.; Liu, A.; Davis, M.E. Synthesis of linear, cyclodextrin-based polymers and their camptothecin conjugates. Bioconjug. Chem., 2003, 14, 1007-1017.
[138]
Lazarus, D.; Kabir, S.; Eliasof, S. In: CRLX301, A Novel Tumor Targeted Taxane Nanopharmaceutical, Proceedings: AACR 103rd Annual Meeting 2012 Chicago, IL, USA, Mar 31 Apr 4 2012
[139]
Libutti, S.K.; Paciotti, G.F.; Byrnes, A.A.; Alexander, H.R.; Gannon, W.E.; Walker, M.; Seidel, G.D.; Yuldasheva, N.; Tamarkin, L. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin. Cancer Res., 2010, 16(24), 6139-6149.
[140]
Petre, C.E.; Dittmer, D.P. Liposomal daunorubicin as treatment for Kaposi’s sarcoma. Int. J. Nanomedicine, 2007, 2, 277.
[141]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27, 2569-2589.
[142]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. Engl., 2014, 53, 12320-12364.
[143]
Jung, K.H.; Kim, K.P.; Yoon, D.H.; Hong, Y.S.; Choi, C.M.; Ahn, J.H.; Lee, D.H.; Lee, J.L.; Ryu, M.H.; Ryoo, B.Y. A phase I trial to determine the maximum tolerated dose and evaluate the safety and Pharmacokinetics (PK) of docetaxel-PNP, polymeric nanoparticle formulation of docetaxel, in subjects with advanced solid malignancies. J. Clin. Oncol., 2017, 30(15)(Suppl.)e13104
[144]
Barenholz, Y.C. Doxil®-the first FDA-approved nano-drug: lessons learned. J. Control. Release, 2012, 160, 117-134.
[145]
Oerlemans, C.; Bult, W.; Bos, M.; Storm, G.; Nijsen, J.F.W.; Hennink, W.E. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharm. Res., 2010, 27, 2569-2589.
[146]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65, 36-48.
[147]
Silverman, J.A.; Deitcher, S.R. Marqibo®(vincristine sulphate liposome injection) improves the pharmacokinetics and pharma-codynamics of vincristine. Cancer Chemother. Pharmacol., 2013, 71, 555-564.
[148]
Matsumura, Y.; Gotoh, M.; Muro, K.; Yamada, Y.; Shirao, K.; Shimada, Y.; Okuwa, M.; Matsumoto, S.; Miyata, Y.; Ohkura, H. Phase I and pharmacokinetic study of MCC-465, a Doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann. Oncol., 2004, 15, 517-525.
[149]
Lao, J.; Madani, J.; Puértolas, T.; Álvarez, M.; Hernández, A.; Pazo-Cid, R.; Artal, Á.; Antón Torres, A. Liposomal doxorubicin in the treatment of breast cancer patients: A review. J. Drug Deliv., 2013, 2013456409
[150]
Kato, K.; Chin, K.; Yoshikawa, T.; Yamaguchi, K.; Tsuji, Y.; Esaki, T.; Sakai, K.; Kimura, M.; Hamaguchi, T.; Shimada, Y. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest. New Drugs, 2012, 30, 1621-1627.
[151]
Iwase, Y.; Maitani, Y. Octreotide-targeted liposomes loaded with CPT-11 enhanced cytotoxicity for the treatment of medullary thyroid carcinoma. Mol. Pharm., 2010, 8, 330-337.
[152]
Dinndorf, P.A.; Gootenberg, J.; Cohen, M.H.; Keegan, P.; Pazdur, R. FDA drug approval summary: Pegaspargase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL). Oncologist, 2007, 12, 991-998.
[153]
Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol., 2003, 13, 1266-1276.