[1]
Boelsterli, U.A. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol., 2003, 192, 307-322.
[2]
Aithal, G.P. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Expert Opin. Drug Saf., 2004, 3, 519-523.
[3]
Aithal, G.P.; Day, C.P. Nonsteroidal anti-inflammatory drug–induced hepatotoxicity. Clin. Liver Dis., 2007, 11, 563-575.
[4]
Harmalker, S.P.; Sawyer, D.T. Electrochemical and spectroscopic studies of 3, 5-di-tert-butyl-2-aminophenol and of electrosynthesized 3, 5-di-tert-butyl-2-iminocyclohexa-3, 5-dienone in aprotic solvents. J. Org. Chem., 1984, 49, 3579-3583.
[5]
Young, T.E.; Babbitt, B.W. Electrochemical study of the oxidation of. alpha.-methyldopamine. alpha.-methylnoradrenaline, and dopamine. J. Org. Chem., 1989, 48, 562-566.
[6]
Koymans, L.; Van Lenthe, J.H.; Van de Straat, R.; Donne-Op den Kelder, G.M.; Vermeulen, N.P. A theoretical study on the metabolic activation of paracetamol by cytochrome P-450: indications for a uniform oxidation mechanism. Chem. Res. Toxicol., 1989, 2, 60-66.
[7]
Bessems, J.G.; Vermeulen, N.P. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol., 2001, 31, 55-138.
[8]
Nassini, R.; Materazzi, S.; Andrè, E.; Sartiani, L.; Aldini, G.; Trevisani, M.; Carnini, C.; Massi, D.; Pedretti, P.; Carini, M.; Cerbai, E.; Preti, D.; Villetti, G.; Civelli, M.; Trevisan, G.; Azzari, C.; Stokesberry, S.; Sadofsky, L.; McGarvey, L.; Patacchini, R.; Geppetti, P. Acetaminophen, via its reactive metabolite N-acetyl-p-benzo-quinoneimine and transient receptor potential ankyrin-1 stimulation, causes neurogenic inflammation in the airways and other tissues in rodents. FASEB J., 2010, 24, 4904-4916.
[9]
Tang, W.; Stearns, R.A.; Wang, R.W.; Chiu, S.H.; Baillie, T.A. Roles of human hepatic cytochrome P450s 2C9 and 3A4 in the metabolic activation of diclofenac. Chem. Res. Toxicol., 1999, 12, 192-199.
[10]
Naisbitt, D.J.; Williams, D.P.; O’Neill, P.M.; Maggs, J.L.; Willock, D.J.; Pirmohamed, M.; Park, B.K. Metabolism-dependent neutrophil cytotoxicity of amodiaquine: a comparison with pyronaridine and related antimalarial drugs. Chem. Res. Toxicol., 1998, 11, 1586-1595.
[11]
Martínez-Cabot, A.; Messeguer, A. Generation of quinoneimine intermediates in the bioactivation of 3-(N-phenylamino) alanine (PAA) by human liver microsomes: a potential link between eosinophilia-myalgia syndrome and toxic oil syndrome. Chem. Res. Toxicol., 2007, 20, 1556-1562.
[12]
Kalgutkar, A.S.; Obach, R.S.; Maurer, T.S. Mechanism-based inactivation of cytochrome P450 enzymes: chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions. Curr. Drug Metab., 2007, 8, 407-447.
[13]
Shiraki, H.; Kozar, M.P.; Melendez, V.; Hudson, T.H.; Ohrt, C.; Magill, A.J.; Lin, A.J. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives. J. Med. Chem., 2010, 54, 131-142.
[14]
Teng, W.C.; Oh, J.W.; New, L.S.; Wahlin, M.D.; Nelson, S.D.; Ho, H.K.; Chan, E.C.Y. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol. Pharm., 2010, 78, 693-703.
[15]
Balvers, W.G.; Boersma, M.G.; Vervoort, J.; Rietjens, I.M. Experimental and theoretical study on the redox cycling of resorufin by solubilized and membrane-bound NADPH-cytochrome reductase. Chem. Res. Toxicol., 1992, 5, 268-273.
[16]
Boersma, M.G.; Balvers, W.G.; Boeren, S.; Vervoort, J.; Rietjens, I.M. NADPH-cytochrome reductase catalysed redox cycling of 1, 4-benzoquinone; hampered at physiological conditions, initiated at increased pH values. Biochem. Pharmacol., 1994, 47, 1949-1955.
[17]
Kenny, J.R.; Maggs, J.L.; Meng, X.; Sinnott, D.; Clarke, S.E.; Park, B.K.; Stachulski, A.V. Syntheses and characterization of the acyl glucuronide and hydroxy metabolites of diclofenac. J. Med. Chem., 2004, 47, 2816-2825.
[18]
Freccero, M.; Di Valentin, C.; Sarzi-Amadè, M. Modeling H-bonding and solvent effects in the alkylation of pyrimidine bases by a prototype quinone methide: a DFT study. J. Am. Chem. Soc., 2003, 125, 3544-3553.
[19]
Valentin, C.D.; Freccero, M.; Zanaletti, R.; Sarzi-Amadè, M. o-Quinone methide as alkylating agent of nitrogen, oxygen, and sulfur nucleophiles. The role of H-bonding and solvent effects on the reactivity through a DFT computational study. J. Am. Chem. Soc., 2001, 123, 8366-8377.
[20]
Freccero, M.; Gandolfi, R.; Sarzi-Amadè, M. Selectivity of purine alkylation by a quinone methide. Kinetic or thermodynamic control? J. Org. Chem., 2003, 68, 6411-6423.
[21]
Boersma, M.G.; Vervoort, J.; Szymusiak, H.; Lemanska, K.; Tyrakowska, B.; Cenas, N.; Segura-Aguilar, J.; Rietjens, I.M. Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide. Chem. Res. Toxicol., 2000, 13, 185-191.
[22]
Miyamoto, G.; Zahid, N.; Uetrecht, J.P. Oxidation of diclofenac to reactive intermediates by neutrophils, myeloperoxidase, and hypochlorous acid. Chem. Res. Toxicol., 1997, 10, 414-419.
[23]
Shen, S.; Hargus, S.J.; Martin, B.M.; Pohl, L.R. Cytochrome P4502C11 is a target of diclofenac covalent binding in rats. Chem. Res. Toxicol., 1997, 10, 420-423.
[24]
Ulrich, R.G. Idiosyncratic toxicity: a convergence of risk factors. Annu. Rev. Med., 2007, 58, 17-34.
[25]
Kawase, A.; Hashimoto, R.; Shibata, M.; Shimada, H.; Iwaki, M. Involvement of reactive metabolites of diclofenac in cytotoxicity in sandwich-cultured rat hepatocytes. Int. J. Toxicol., 2017, 36, 260-267.
[26]
Yamazaki, H.; Inoue, K.; Chiba, K.; Ozawa, N.; Kawai, T.; Suzuki, Y.; Goldstein, J.A.; Guengerich, F.P.; Shimada, T. Comparative studies on the catalytic roles of cytochrome P450 2C9 and its Cys-and Leu-variants in the oxidation of warfarin, flurbiprofen, and diclofenac by human liver microsomes. Biochem. Pharmacol., 1998, 56, 243-251.
[27]
Melet, A.; Assrir, N.; Jean, P.; Lopez-Garcia, M.P.; Marques-Soares, C.; Jaouen, M.; Dansette, P.M.; Sari, M.A.; Mansuy, D. Substrate selectivity of human cytochrome P450 2C9: importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Arch. Biochem. Biophys., 2003, 409, 80-91.
[28]
den Braver, M.W.; den Braver-Sewradj, S.P.; Vermeulen, N.P.; Commandeur, J.N. Characterization of cytochrome P450 isoforms involved in sequential two-step bioactivation of diclofenac to reactive p-benzoquinone imines. Toxicol. Lett., 2016, 253, 46-54.
[29]
Bort, R.; Macé, K.; Boobis, A.; Gómez-Lechón, M.J.; Pfeifer, A.; Castell, J. Hepatic metabolism of diclofenac: role of human CYP in the minor oxidative pathways. Biochem. Pharmacol., 1999, 58, 787-796.
[30]
Rainsford, K.D. Anti-inflammatory and anti-rheumatic drugs; CRC Press: Boca Raton, 1985.
[31]
Ramesh, M.; Bharatam, P.V. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis. J. Mol. Model., 2012, 18, 709-720.
[32]
Dunk, A.; Walt, R.; Jenkins, W.; Sherlock, S. Diclofenac hepatitis. Brit. Med. J. , 1982, 284, 1605.
[33]
Scully, L.; Clarke, D.; Barr, R. Diclofenac induced hepatitis. Dig. Dis. Sci., 1993, 38, 744-751.
[34]
Banks, A.T.; Zimmerman, H.J.; Ishak, K.G.; Harter, J.G. Diclofenac‐associated hepatotoxicity: analysis of 180 cases reported to the Food and Drug Administration as adverse reactions. Hepatology, 1995, 22, 820-827.
[35]
Boelsterli, U.A. Xenobiotic acyl glucuronides and acyl CoA thioesters as protein-reactive metabolites with the potential to cause idiosyncratic drug reactions. Curr. Drug Metab., 2002, 3, 439-450.
[36]
Tang, W. The metabolism of diclofenac-enzymology and toxicology perspectives. Curr. Drug Metab., 2003, 4, 319-329.
[37]
Sallie, R.; Quinlan, M.; McKenzie, T.; Shilkin, K.; Reed, W. Diclofenac hepatitis. Int. Med. J., 1991, 21, 251-255.
[38]
Bhogaraju, A.; Nazeer, S.; Al-Baghdadi, Y.; Rahman, M.; Wrestler, F.; Patel, N. Diclofenac-associated hepatitis. South. Med. J., 1999, 92, 711-713.
[39]
] National Library of Medicine HSDB Database. Hazardous Substances¶
Databank Number: 7234, 2012.
[40]
Koymans, L.; Van Lenthe, J.H. Donné-op Den K.G.; Vermeulen, N. Mechanisms of activation of phenacetin to reactive metabolites by cytochrome P-450: a theoretical study involving radical intermediates. Mol. Pharmacol., 1990, 37, 452-460.
[41]
Mariam, Y.H.; Chantranupong, L. Electron affinities of p-benzoquinone, p-benzoquinone imine and p-benzoquinone diimine, and spin densities of their p-benzosemiq. J. Comput. Aided Mol. Des., 1997, 11, 345-356.
[42]
Liu, H.; Walker, L.A.; Doerksen, R.J. DFT study on the radical anions formed by primaquine and its derivatives. Chem. Res. Toxicol., 2011, 24, 1476-1485.
[43]
Fragoso, T.P.; de Mesquita Carneiro, J.W.; Vargas, M.D. Aminequinone-hydroxylquinoneimine tautomeric equilibrium revisited: molecular modeling study of the tautomeric equilibrium and substituent effects in 4-(4-R-phenylamino) naphthalene-1, 2-diones. J. Mol. Model., 2010, 16, 825-830.
[44]
Song, Y. Theoretical studies on electrochemistry of p-aminophenol. Spectrochimica Acta Part A, 2007, 67, 611-618.
[45]
Kalgutkar, A.S.; Vaz, A.D.; Lame, M.E.; Henne, K.R.; Soglia, J.; Zhao, S.X.; Abramov, Y.A.; Lombardo, F.; Collin, C.; Hendsch, Z.S.; Hope, C.E. Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab. Dispos., 2004, 33, 243-253.
[46]
Shafiei, H.; Haqgu, M.; Nematollahi, D.; Gholami, M.R. An experimental and computational study on the rate constant of electrochemically generated N-acetyl-p-quinoneimine with dimethylamine. Int. J. Electrochem. Sci., 2008, 3, 1092-1107.
[47]
Alves, C.; Borges, R.; Da Silva, A. Density functional theory study of metabolic derivatives of the oxidation of paracetamol. Int. J. Quantum Chem., 2006, 106, 2617-2623.
[48]
Friedman, M.A.; Woodcock, J.; Lumpkin, M.M.; Shuren, J.E.; Hass, A.E.; Thompson, L.J. The safety of newly approved medicines: do recent market removals mean there is a problem? JAMA, 1999, 281, 1728-1734.
[49]
Cruciani, G.; Carosati, E.; De Boeck, B.; Ethirajulu, K.; Mackie, C.; Howe, T.; Vianello, R. MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist. J. Med. Chem., 2005, 48, 6970-6979.
[50]
Sanderson, D.; Earnshaw, C. Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum. Exp. Toxicol., 1991, 10, 261-273.
[51]
Cariello, N.F.; Wilson, J.D.; Britt, B.H.; Wedd, D.J.; Burlinson, B.; Gombar, V. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive estimate of risk from existing knowledge. Toxicity prediction by komputer assisted technology. Mutagenesis, 2002, 17, 321-329.
[52]
Ridings, J.E.; Barratt, M.D.; Cary, R.; Earnshaw, C.G.; Eggington, C.E.; Ellis, M.K.; Judson, P.N.; Langowski, J.J.; Marchant, C.A.; Payne, M.P.; Watson, W.P.; Yih, T.D. Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology, 1996, 106, 267-279.
[53]
MAESTRO, version 9.2; Schrodinger, LLC: New York, 2011.
[54]
Frisch, M.J.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A.J.; Stratmann, R.E.; Burant, J.C.; Dapprich, S.; Millam, J.M.; Daniels, A.D.; Kudin, K.N.; Strain, M.C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Cioslowski, J.; Ortiz, J.V.; Baboul, A.G.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Andres, J.L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E.S.; and Pople, J.A. Gaussian, Inc., Wallingford CT, , 2004.
[55]
Chen, H.; Hirao, H.; Derat, E.; Schlichting, I.; Shaik, S. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes. J. Phys. Chem. B, 2008, 112, 9490-9500.
[56]
Shaik, S.; de Visser, S.P.; Ogliaro, F.; Schwarz, H.; Schröder, D. Two-state reactivity mechanisms of hydroxylation and epoxidation by cytochrome P-450 revealed by theory. Curr. Opin. Chem. Biol., 2002, 6, 556-567.
[57]
Ortiz de Montellano, P.R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem. Rev., 2010, 110, 932-948.
[58]
Shaik, S.; Cohen, S.; Wang, Y.; Chen, H.; Kumar, D.; Thiel, W. P450 enzymes: their structure, reactivity, and selectivity-modeled by QM/MM calculations. Chem. Rev., 2010, 110, 949-1017.
[59]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648-5652.
[60]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37, 785-789.
[61]
Perdew, J.P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B Condens. Matter, 1992, 45, 13244-13249.
[62]
Parr, R.G.; Yang, W. Density functional theory of atoms and molecules; Oxford University Press: New York, 1989.
[63]
Lipkowitz, K.B.; Boyd, D.B. In reviews in computational chemistry; VCH Publishers: New York, 1996.
[64]
Foresman, J.B.; Frisch, A. Exploring chemistry with electronic structure methods, 2nd ed; Gaussian: Pittsburgh, 1996.
[65]
Scott, A.P.; Radom, L. Harmonic vibrational frequencies: an evaluation of Hartree− Fock, Møller− Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J. Phys. Chem., 1996, 100, 16502-16513.
[66]
Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural population analysis. J. Chem. Phys., 1985, 83, 735-746.
[67]
Patel, D.S.; Bharatam, P.V.; Divalent, N. I) compounds with two lone pairs on nitrogen. J. Phys. Chem. A, 2011, 115, 7645-7655.
[68]
Ramesh, M.; Bharatam, P.V. Importance of hydrophobic parameters in identifying appropriate pose of CYP substrates in cytochromes. Eur. J. Med. Chem., 2014, 71, 15-23.
[69]
Poon, G.K.; Chen, Q.; Teffera, Y.; Ngui, J.S.; Griffin, P.R.; Braun, M.P.; Doss, G.A.; Freeden, C.; Stearns, R.A.; Evans, D.C.; Baillie, T.A.; Tang, W. Bioactivation of diclofenac via benzoquinone imine intermediates—identification of urinary mercapturic acid derivatives in rats and humans. Drug Metab. Dispos., 2001, 29, 1608-1613.
[70]
Stierlin, H.; Faigle, J. Biotransformation of diclofenac sodium (Voltaren®) in animals and in man.: II. Quantitative determination of the unchanged drug and principal phenolic metabolites, in urine and bile. Xenobiotica, 1979, 9, 611-621.
[71]
Stierlin, H.; Faigle, J.W.; Sallmann, A.; Küng, W.; Richter, W.J.; Kriemler, H.P.; Alt, K.O. Win kler, T. Biotransformation of diclofenac sodium (Voltaren®) in animals and in man: I. Isolation and identification of principal metabolites. Xenobiotica, 1979, 9, 601-610.
[72]
Olsen, L.; Rydberg, P.; Rod, T.H.; Ryde, U. Prediction of activation energies for hydrogen abstraction by cytochrome P450. J. Med. Chem., 2006, 49, 6489-6499.
[73]
Chandra, A.K.; Uchimaru, T. The OH bond dissociation energies of substituted phenols and proton affinities of substituted phenoxide ions: a DFT study. Int. J. Mol. Sci., 2002, 3, 407-422.
[74]
Wang, L.F.; Zhang, H.Y. A theoretical investigation on DPPH radical-scavenging mechanism of edaravone. Bioorg. Med. Chem. Lett., 2003, 13, 3789-3792.
[75]
Bathelt, C.M.; Mulholland, A.J.; Harvey, J.N. QM/MM modeling of benzene hydroxylation in human cytochrome P450 2C9. J. Phys. Chem., 2008, 112, 13149-13156.
[76]
de Visser, S.P.; Shaik, S. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome P450 enzymes. J. Am. Chem. Soc., 2003, 125, 7413-7424.
[77]
Parr, R.G.; Szentpaly, L.V.; Liu, S. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, 1922-1924.
[78]
Chattaraj, P.K.; Roy, D.R. Update 1 of: electrophilicity index. Chem. Rev., 2007, 107, PR46-PR74.
[79]
Fukui, K. The role of frontier orbitals in chemical reactions In
Frontier Orbitals and Reaction Paths: Selected Papers of Kenichi
Fukui;, Fukui, K.; Fujimoto, H., Eds.; World Scientific Series in
20th Century Chemistry: London,. 1997, 150-170.
[80]
Fukui, K. The role of frontier orbitals in chemical reactions. Science, 1982, 218, 747-754.
[81]
Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 1984, 106, 4049-4050.
[82]
Domingo, L.R.; Pérez, P.; Contreras, R. Reactivity of the carbon–carbon double bond towards nucleophilic additions. A DFT analysis. Tetrahedron, 2004, 60, 6585-6591.
[83]
Greenidge, P.A.; Kramer, C.; Mozziconacci, J.C.; Wolf, R.M. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J. Chem. Inf. Model., 2013, 53, 201-209.