Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Computational Studies in Drug Design Against Cancer

Author(s): Baishakhi De*, Koushik Bhandari, Francisco J.B. Mendonça, Marcus T. Scotti and Luciana Scotti*

Volume 19, Issue 5, 2019

Page: [587 - 591] Pages: 5

DOI: 10.2174/1871520618666180911125700

Price: $65

Abstract

Background: The application of in silico tools in the development of anti cancer drugs.

Objective: The summing of different computer aided drug design approaches that have been applied in the development of anti cancer drugs.

Methods: Structure based, ligand based, hybrid protein-ligand pharmacophore methods, Homology modeling, molecular docking aids in different steps of drug discovery pipeline with considerable saving in time and expenditure. In silico tools also find applications in the domain of cancer drug development.

Results: Structure-based pharmacophore modeling aided in the identification of PUMA inhibitors, structure based approach with high throughput screening for the development of Bcl-2 inhibitors, to derive the most relevant protein-protein interactions, anti mitotic agents; I-Kappa-B Kinase β (IKK- β) inhibitor, screening of new class of aromatase inhibitors that can be important targets in cancer therapy.

Conclusion: Application of computational methods in the design of anti cancer drugs was found to be effective.

Keywords: Anticancer, computational, pharmacophore modeling, molecular docking, PUMA inhibitors, aromatase inhibitors.

Graphical Abstract

[1]
Nag, A.; Dey, B. Computer aided drug design and delivery systems; The McGraw-Hill Companies, Inc New York, 2011.
[2]
Hoelder, S.; Paul, A.C.; Paul, W. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6, 155-176.
[3]
San Lucas, F.A.; Fowler, J.; Chang, K.; Kopetz, S.; Vilar, E.; Scheet, P. Cancer in silico drug discovery: A systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes. Mol. Cancer Ther., 2014, 12, 13.
[4]
Gupta, P.K.; Agrawal, P.; Shivakumar, N.; Hiremath, S.B. In silico modeling and drug design. IRJP, 2011, 2(9), 15-17.
[5]
Chunxia, G. Computer aided drug design approaches in developing anti cancer inhibitors; E-thesis, University of Gothenburg. , 2016.
[6]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. CSBJ, 2016, 14, 177-184.
[7]
Maithri, G.; Manasa, B.; Vani, S.S.; Narendra, A.; Harshita, T. Computational drug design and molecular dynamics studies- A review. Int. J. Biomed. Data Min., 2016, 6(1), 1-7.
[8]
Wadood, A.; Ahmed, N.; Shah, L.; Ahmad, A.; Hassan, H.; Shams, S. In-silico drug design: An approach which revolutionarised the drug discovery process. OA Drug Des. Deliv., 2013, 1(1), 3.
[9]
Swen, H.; Paul, A.C.; Paul, W. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6, 155-176.
[10]
Gabriela, M.W.; Yagmur, M. Computational Strategies in Cancer Drug Discovery. In: Advances in Cancer Management. ; Prof. Ravinder Mohan Ed.; IntechOpen. , 2012.
[11]
Diego, P.G.; Sara, H.Y.; Liliana, M.M.V. Application of computational methods for anticancer drug discovery, design, and optimization. Biol. Med. Hosp. Infant Mex., 2016, 73(6), 411-423.
[12]
Mustata, G.; Li, M.; Zevola, N.; Bakan, A.; Zhang, L.; Epperly, M.; Joel, S.G.; Jian, Y.; Ivet, B. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr. Top. Med. Chem., 2011, 11, 281-290.
[13]
Nakano, K.; Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell, 2001, 7, 683-694.
[14]
Yu, J.; Zhang, L. PUMA, a potent killer with or without p53. Oncogene, 2008, 1, S71-S83.
[15]
Chiang, Y.K.; Kuo, C.C.; Wu, Y.S.; Chen, C.T.; Coumar, M.S.; Wu, J.S.; Hsieh, H.P.; Chang, C.Y.; Jseng, H.Y.; Wu, M.H.; Leou, J.S.; Song, J.S.; Chang, J.Y.; Lyu, P.C.; Chao, Y.S.; Wu, S.Y. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity. J. Med. Chem., 2009, 52, 4221-4233.
[16]
Liou, J.P.; Mahindroo, N.; Chang, C.W.; Guo, F.M.; Lee, S.W.; Tan, U.K.; Yeh, T.K.; Kuo, C.C.; Chang, Y.W.; Lu, P.H.; Tung, Y.S.; Lin, K.T.; Chang, J.Y.; Hsieh, H.P. Structure-activity relationship studies of 3-aroylindoles as potent antimitotic agents. ChemMedChem, 2006, 1, 1106-1118.
[17]
Noha, S.M.; Atanasov, A.G.; Schuster, D.; Markt, P.; Fakhrudin, N.; Heiss, E.H.; Schrammel, O.; Rollinger, M.J.; Stuppner, H.; Dirsch, M.V.; Wolber, G. Discovery of a novel IKK-b inhibitor by ligand-based virtual screening techniques. Bioorg. Med. Chem. Lett., 2011, 21, 577-583.
[18]
Nesbit, C.E.; Grove, L.E.; Yin, X.; Prochownik, E.V. Differential apoptotic behaviors of c-myc, N-myc, and L-myc oncoproteins. Cell Growth Differ., 1998, 9, 731-741.
[19]
Mustata, G.; Follis, A.V.; Hammoudeh, D.I.; Metallo, S.J.; Wang, H.; Prochownik, E.V.; Lazo, J.S.; Bahar, I. Discovery of novel Myc-Max heterodimer disruptors with a three-dimensional pharmacophore model. J. Med. Chem., 2009, 52, 1247-1250.
[20]
Muftuoglu, Y.; Mustata, G. Pharmacophore modeling strategies for the development of novel nonsteroidal inhibitors of human aromatase (CYP19). Bioorg. Med. Chem. Lett., 2010, 20, 3050-3064.
[21]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457, 219-223.
[22]
Cheon, J.H.; Kim, K.S.; Yadav, D.K.; Kim, M.; Kim, H.S.; Yoon, S. The JAK2 inhibitors CEP-33779 and NVP-BSK805 have high P-gp inhibitory activity and sensitize drug-resistant cancer cells to vincristine. Biochem. Biophys. Res. Commun., 2017, 490, 1176-1182.
[23]
Ayoub, N.M.; Siddique, A.B.; Ebrahim, H.Y.; Mohyeldin, M.M.; Ayoub, K.A.S.N.M.; Siddique, A.B.; Ebrahim, H.Y.; Mohyeldin, M.M.; El Sayed, K.A. The olive oil phenolic (-)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment. Eur. J. Pharmacol., 2017, 810, 100-111.
[24]
Alam, S.; Khan, F. 3D-QSAR studies on Maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Sci. Rep., 2017, 7(1), 6019.
[25]
Pan, Y.; Shi, J.; Ni, W.; Liu, Y.; Wang, S.; Wang, X.; Wei, Z.; Wang, A.; Chen, W.; Lu, Y. Cryptotanshinone inhibition of mammalian target of rapamycin pathway is dependent on oestrogen receptor alpha in breast cancer. J. Cell. Mol. Med., 2017, 21(9), 2129-2139.
[26]
Asath, R.M.; Premkumar, R.; Mathavan, T.; Benial, A.M.F. Spectroscopic and molecular docking studies on N, N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine: A potential bioactive agent for lung cancer treatment. J. Mol. Struct., 2017, 1143, 415-423.
[27]
Mehrabi, M.; Mansouri, K.; Soleymani, B.; Hoseinkhani, Z.; Shahlaie, M.; Khodarahmi, R. Development of a human epidermal growth factor derivative withEGFR-blocking and depleted biological activities: A comparative in vitro study using EGFR-positive breast cancer cells. Int. J. Biol. Macromol., 2017, 103, 275-285.
[28]
Zwergel, C.; Czepukojc, B.; Evain-Bana, E.; Xu, Z.; Stazi, G.; Mori, M.; Patsilinakos, A.; Mai, A.; Botta, B.; Ragno, R.; Bagrel, D.; Kirsch, G.; Meiser, P.; Jacob, C.; Montenarh, M.; Valente, S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur. J. Med. Chem., 2017, 134, 316-333.
[29]
Adhikari, N.; Amin, S.A.; Saha, A.; Jha, T. Combating breast cancer with Non-Steroidal Aromatase Inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study. Eur. J. Med. Chem., 2017, 137, 365-438.
[30]
Almeida, M.O.; Barros, D.A.S.; Araujo, S.C.; Faria Sergio, H.D.M.; Maltarollo, V.G.; Honorio, K.M. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer. Spectrochimi. Acta Mol. Biomol. Spectrosc, 2017, 184, 169-176.
[31]
Ren, B.Z.; Ablise, M.; Yang, X.C.; Liao, B.; Yang, Z. Synthesis and biological evaluation of α-methyl-chalcone for anticervical cancer activity. Med. Chem. Res., 2017, 26, 1871-1883.
[32]
Nivedha, R.P.; Suryanarayanan, V.; Selvaraj, C.B.; Singh, S.K.; Rajalakshmi, M. Chemopreventive effect of saponin isolated from Gymnema sylevestre on prostate cancer through in silico and in vivo analysis. Med. Chem. Res., 2017, 26, 1915-1925.
[33]
Simon, L.; Imane, A.; Srinivasan, K.K.; Pathak, L.; Daoud, I. In silico Drug-designing studies on flavanoids as anticolon cancer agents: Pharmacophore mapping, molecular docking, and monte carlo method-based QSAR modeling. Interdiscip. Sci. Comput. Life Sci., 2017, 9, 445-458.
[34]
Azuaje, F. Computational models for predicting drug responses in cancer research. Brief. Bioinform., 2017, 18, 820-829.
[35]
Rahman, M.M.; Rezaul, K.M.; Qamrul, A.M.; Khalipha, A.B.R.; Chowdhury, R.M.; Saifuzzaman, M. Use of computer in drug design and drug discovery: A review. IJPLS, 2012, 1(2), 1-21.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy