[1]
Alberto, M.E.; Butera, V.; Russo, N. Which one among the Pt-containing anticancer drugs more easily forms monoadducts with G and A DNA bases? A comparative study among oxaliplatin, nedaplatin, and carboplatin. Inorg. Chem., 2011, 50, 6965-6971.
[2]
Ballone, P.; Marchi, M. A density functional study of a new family of anticancer drugs: Paclitaxel, taxotere, epothilone, and discodermolide. J. Phys. Chem. A, 1999, 103, 3097-3102.
[3]
Chen, Y.; Zhi, D. Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins: Struct. Funct. Genet., 2001, 43, 217-226.
[4]
Deubel, D.V. The chemistry of dinuclear analogues of the anticancer drug cisplatin. A DFT/CDM study. J. Am. Chem. Soc., 2006, 128, 1654-1663.
[5]
Ghosh, S.; Nie, A.; An, J.; Huang, Z. Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 2006, 10, 194-202.
[6]
Vargiu, A.V.; Robertazzi, A.; Magistrato, A.; Ruggerone, P.; Carloni, P. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT- PCM calculations. J. Phys. Chem. B, 2008, 112, 4401-4409.
[7]
Gillet, J-P.; Calcagno, A.M.; Varma, S.; Marino, M.; Green, L.J.; Vora, M.I.; Patel, C.; Orina, J.N.; Eliseeva, T.A.; Singal, V. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proc. Natl. Acad. Sci., 2011, 108, 18708-18713.
[8]
Hambley, T.W. The influence of structure on the activity and toxicity of Pt anti-cancer drugs. Coord. Chem. Rev., 1997, 166, 181-223.
[9]
Jenwitheesuk, E.; Horst, J.A.; Rivas, K.L.; Van Voorhis, W.C.; Samudrala, R. Novel paradigms for drug discovery: Computational multitarget screening. Trends Pharmacol. Sci., 2008, 29, 62-71.
[10]
Ma, X.H.; Shi, Z.; Tan, C.; Jiang, Y.; Go, M.L.; Low, B.C.; Chen, Y.Z. In silico approaches to multi-target drug discovery. Pharm. Res., 2010, 27, 739-749.
[11]
Spiegel, K.; Magistrato, A. Modeling anticancer drug–DNA interactions via mixed QM/MM molecular dynamics simulations. Org. Biomol. Chem., 2006, 4, 2507-2517.
[12]
Shi, C.; Guo, D.; Xiao, K.; Wang, X.; Wang, L.; Luo, J. A drug-specific nanocarrier design for efficient anticancer therapy. Nat. Commun., 2015, 6, 7449.
[13]
Wilhelm, S.; Carter, C.; Lynch, M.; Lowinger, T.; Dumas, J.; Smith, R.A.; Schwartz, B.; Simantov, R.; Kelley, S. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov., 2006, 5, 835-844.
[14]
Takahara, P.M.; Frederick, C.A.; Lippard, S.J. Crystal structure of the anticancer drug cisplatin bound to duplex DNA. J. Am. Chem. Soc., 1996, 118, 12309-12321.
[15]
Rzeski, W.; Matysiak, J.; Kandefer-Szerszeń, M. Anticancer, neuroprotective activities and computational studies of 2-amino-1, 3, 4-thiadiazole based compound. Bioorg. Med. Chem., 2007, 15, 3201-3207.
[16]
Pereira, S.; Fernandes, P.A.; Ramos, M.J. Mechanism for ribonucleotide reductase inactivation by the anticancer drug gemcitabine. J. Comput. Chem., 2004, 25, 1286-1294.
[17]
Abadi, A.H.; Abou-Seri, S.M.; Abdel-Rahman, D.E.; Klein, C.; Lozach, O.; Meijer, L. Synthesis of 3-substituted-2-oxoindole analogues and their evaluation as kinase inhibitors, anticancer and antiangiogenic agents. Eur. J. Med. Chem., 2006, 41, 296-305.
[18]
Pavelka, M.; Lucas, M.F.A.; Russo, N. On the hydrolysis mechanism of the second‐generation anticancer drug carboplatin. Chem. Eur. J., 2007, 13, 10108-10116.
[19]
Nadas, J.; Sun, D. Anthracyclines as effective anticancer drugs. Expert Opin. Drug Discov., 2006, 1, 549-568.
[20]
Blencke, S.; Zech, B.; Engkvist, O.; Greff, Z.; Őrfi, L.; Horváth, Z.; Kéri, G.; Ullrich, A.; Daub, H. Characterization of a conserved structural determinant controlling protein kinase sensitivity to selective inhibitors. Chem. Biol., 2004, 11, 691-701.
[21]
Howard, S.; Berdini, V.; Boulstridge, J.A.; Carr, M.G.; Cross, D.M.; Curry, J.; Devine, L.A.; Early, T.R.; Fazal, L.; Gill, A.L. Fragment-based discovery of the pyrazol-4-yl urea (AT9283), a multitargeted kinase inhibitor with potent aurora kinase activity. J. Med. Chem., 2008, 52, 379-388.
[22]
Faivre, S.; Djelloul, S.; Raymond, E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin. Oncol., 2006, 33(4), 407-420.
[23]
Bennasroune, A.; Gardin, A.; Aunis, D.; Crémel, G.; Hubert, P. Tyrosine kinase receptors as attractive targets of cancer therapy. Crit. Rev. Oncol. Hematol., 2004, 50, 23-38.
[24]
Degenhardt, Y.; Lampkin, T. Targeting Polo-like kinase in cancer therapy. Clin. Cancer Res., 2010, 16, 384-389.
[25]
Diaz-Padilla, I.; Siu, L.L.; Duran, I. Cyclin-dependent kinase inhibitors as potential targeted anticancer agents. Invest. New Drugs, 2009, 27, 586-594.
[26]
Fu, D.H.; Jiang, W.; Zheng, J.T.; Zhao, G.Y.; Li, Y.; Yi, H.; Li, Z.R.; Jiang, J.D.; Yang, K.Q.; Wang, Y. Jadomycin B, an Aurora-B kinase inhibitor discovered through virtual screening. Mol. Cancer Ther., 2008, 7, 2386-2393.
[27]
Hasinoff, B.B.; Wu, X.; Nitiss, J.L.; Kanagasabai, R.; Yalowich, J.C. The anticancer multi-kinase inhibitor dovitinib also targets topoisomerase I and topoisomerase II. Biochem. Pharmacol., 2012, 84, 1617-1626.
[28]
Kamath, S.; Buolamwini, J.K. Targeting EGFR and HER‐2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev., 2006, 26, 569-594.
[29]
Liang, G.; Liu, Z.; Wu, J.; Cai, Y.; Li, X. Anticancer molecules targeting fibroblast growth factor receptors. Trends Pharmacol. Sci., 2012, 33, 531-541.
[30]
Lu, Z.; Xu, S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life, 2006, 58, 621-631.
[31]
Kwak, E.L.; Bang, Y-J.; Camidge, D.R.; Shaw, A.T.; Solomon, B.; Maki, R.G.; Ou, S-H.I.; Dezube, B.J.; Jänne, P.A.; Costa, D.B. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med., 2010, 363, 1693-1703.
[32]
Suárez-Castro, A.; Cortes-García, C.J.; Gamez-Montaño, R.; Chacón-García, L. Docking studies of 1, 5-disubtituted tetrazoles analogs of the anticancer drug imatinib as probable inhibitors of the ABL kinase and the T315I mutant kinase. Proceedings, 2017, 17(1), 1-21.
[33]
Kirkland, L.O.; McInnes, C. Non-ATP competitive protein kinase inhibitors as anti-tumor therapeutics. Biochem. Pharmacol., 2009, 77, 1561-1571.
[34]
Fabbro, D.; Ruetz, S.; Buchdunger, E.; Cowan-Jacob, S.W.; Fendrich, G.; Liebetanz, J.; Mestan, J.; O’Reilly, T.; Traxler, P.; Chaudhuri, B. Protein kinases as targets for anticancer agents: From inhibitors to useful drugs. Pharmacol. Ther., 2002, 93, 79-98.
[35]
Wilhelm, S.M.; Adnane, L.; Newell, P.; Villanueva, A.; Llovet, J.M.; Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther., 2008, 7, 3129-3140.
[36]
Semenza, G.L. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol. Sci., 2012, 33, 207-214.
[37]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8, 547-566.
[38]
Strebhardt, K.; Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nat. Rev. Cancer, 2006, 6, 384-389.
[39]
Pittoni, P.; Piconese, S.; Tripodo, C.; Colombo, M. Tumor-intrinsic and-extrinsic roles of c-Kit: Mast cells as the primary off-target of tyrosine kinase inhibitors. Oncogene, 2011, 30, 757-769.
[40]
Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4, 307-320.
[41]
Pogodin, P.; Lagunin, A.; Rudik, A.; Filimonov, D.; Druzhilovskiy, D. NIcklaus, M.; Poroikov, V. How to achieve better results using PASS-based virtual screening: Case study for kinase inhibitors. Front Chem., 2018, 6e00133
[42]
Lü, S.; Zheng, W.; Ji, L.; Luo, Q.; Hao, X.; Li, X.; Wang, F. Synthesis, characterization, screening and docking analysis of 4-anilinoquinazoline derivatives as tyrosine kinase inhibitors. Eur. J. Med. Chem., 2013, 61, 84-94.
[43]
Nandi, S.; Bagchi, M.C. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: A rational approach to anticancer drug design. Mol. Divers., 2010, 14, 27-38.
[44]
Vangrevelinghe, E.; Zimmermann, K.; Schoepfer, J.; Portmann, R.; Fabbro, D.; Furet, P. Discovery of a potent and selective protein kinase CK2 inhibitor by high-throughput docking. J. Med. Chem., 2003, 46, 2656-2662.
[45]
Amin, K.M.; Georgey, H.H.; Awadallah, F.M. EGFR tyrosine kinase targeted compounds: Synthesis, docking study, and in vitro antitumor activity of some new quinazoline and benzo [d] isothiazole derivatives. Med. Chem. Res., 2011, 20, 1042-1053.
[46]
El-Azab, A.S.; Al-Omar, M.A.; Alaa, A-M.; Abdel-Aziz, N.I.; Magda, A-A.; Aleisa, A.M.; Sayed-Ahmed, M.M.; Abdel-Hamide, S.G. Design, synthesis and biological evaluation of novel quinazoline derivatives as potential antitumor agents: Molecular docking study. Eur. J. Med. Chem., 2010, 45, 4188-4198.
[47]
Ali, S.; Heathcote, D.A.; Kroll, S.H.; Jogalekar, A.S.; Scheiper, B.; Patel, H.; Brackow, J.; Siwicka, A.; Fuchter, M.J.; Periyasamy, M. The development of a selective cyclin-dependent kinase inhibitor that shows antitumor activity. Cancer Res., 2009, 69, 6208-6215.
[48]
Aronov, A.M.; Tang, Q.; Martinez-Botella, G.; Bemis, G.W.; Cao, J.; Chen, G.; Ewing, N.P.; Ford, P.J.; Germann, U.A.; Green, J. Structure-guided design of potent and selective pyrimidylpyrrole inhibitors of Extracellular Signal-Regulated Kinase (ERK) using conformational control. J. Med. Chem., 2009, 52, 6362-6368.
[49]
El-Ella, D.A.A.; Ghorab, M.M.; Noaman, E.; Heiba, H.I.; Khalil, A.I. Molecular modeling study and synthesis of novel pyrrolo [2, 3-d] pyrimidines and pyrrolotriazolopyrimidines of expected antitumor and radioprotective activities. Bioorg. Med. Chem., 2008, 16, 2391-2402.
[50]
Folkes, A.J.; Ahmadi, K.; Alderton, W.K.; Alix, S.; Baker, S.J.; Box, G.; Chuckowree, I.S.; Clarke, P.A.; Depledge, P.; Eccles, S.A. The identification of 2-(1 H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno [3, 2-d] pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer. J. Med. Chem., 2008, 51, 5522-5532.
[51]
Park, H.; Jung, H-Y.; Mah, S.; Hong, S. Systematic computational design and identification of low picomolar inhibitors of aurora kinase A. J. Chem. Inf. Model., 2018, 58, 700-709.
[52]
Cherukupalli, S.; Chandrasekaran, B.; Kryštof, V.; Aleti, R.R.; Sayyad, N.; Merugu, S.R.; Kushwaha, N.D.; Karpoormath, R. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4, 6-disubstituted pyrazolo [3, 4-d] pyrimidines as Cyclin-Dependent Kinase 2 (CDK2) inhibitors. Bioorg. Chem., 2018, 79, 46-59.
[53]
Bhuva, H.A.; Kini, S.G. Synthesis, anticancer activity and docking of some substituted benzothiazoles as tyrosine kinase inhibitors. J. Mol. Graph. Model., 2010, 29, 32-37.
[54]
Fousteris, M.A.; Papakyriakou, A.; Koutsourea, A.; Manioudaki, M.; Lampropoulou, E.; Papadimitriou, E.; Spyroulias, G.A.; Nikolaropoulos, S.S. Pyrrolo [2, 3-a] carbazoles as potential Cyclin Dependent Kinase 1 (CDK1) inhibitors. Synthesis, biological evaluation, and binding mode through docking simulations. J. Med. Chem., 2008, 51, 1048-1052.
[55]
Abdul-Hameed, M.D.M.; Hamza, A.; Liu, J.; Zhan, C.G. Combined 3D-QSAR modeling and molecular docking study on indolinone derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1. J. Chem. Inf. Model., 2008, 48, 1760-1772.
[56]
Kamel, M.M.; Ali, H.I.; Anwar, M.M.; Mohamed, N.A.; Soliman, A.M. Synthesis, antitumor activity and molecular docking study of novel sulfonamide-Schiff’s bases, thiazolidinones, benzothiazinones and their C-nucleoside derivatives. Med. Res. Rev., 2010, 45, 572-580.
[57]
Kini, S.G.; Choudhary, S.; Mubeen, M. Synthesis, docking study and anticancer activity of coumarin substituted derivatives of benzothiazole. J. Comput. Methods Mol. Des., 2012, 2, 51-60.
[58]
Sugiyama, M.; Fujita, K.I.; Murayama, N.; Akiyama, Y.; Yamazaki, H.; Sasaki, Y. Sorafenib and sunitinib, two anticancer drugs, inhibit CYP3A4-mediated and activate CY3A5-mediated midazolam 1′-hydroxylation. Drug Metab. Dispos., 2011, 39, 757-762.
[59]
Phosrithong, N.; Ungwitayatorn, J. Molecular docking study on anticancer activity of plant-derived natural products. Med. Chem. Res., 2010, 19, 817-835.
[60]
Xie, L.; Evangelidis, T.; Xie, L.; Bourne, P.E. Drug discovery using chemical systems biology: Weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLOS Comput. Biol., 2011, 7e1002037
[61]
Hou, D-X.; Kumamoto, T. Flavonoids as protein kinase inhibitors for cancer chemoprevention: Direct binding and molecular modeling. Antioxid. Redox Signal., 2010, 13, 691-719.
[62]
Fatima, G.; Loubna, A.; Wiame, L.; Azeddine, I. In silico inhibition studies of AXL Kinase by curcumin and its natural derivatives. J. Appl. Bioinforma. Comput. Biol., 2017, 6e1000142
[63]
Mohan, N.; Latha, M. In silico docking and interaction analysis of ellgic acid and curcumin derivatives against human cancer. Ind. J. Sci. Res., 2018, 18, 22-28.
[64]
Rampogu, S.; Son, M.; Baek, A.; Park, C.; Rana, R.M.; Zeb, A.; Parameswaran, S.; Lee, K.W. Targeting natural compounds against HER2 kinase domain as potential anticancer drugs applying pharmacophore based molecular modelling approaches. Comput. Biol. Chem., 2018, 74, 327-338.
[65]
Tanzadehpanah, H.; Mahaki, H.; Moghadam, N.H.; Salehzadeh, S.; Rajabi, O.; Najafi, R.; Amini, R.; Saidijam, M. Binding site identification of anticancer drug gefitinib to HSA and DNA in the presence of five different probes. J. Biomol. Struct. Dyn., 2019, 37(4), 823-836.
[66]
Bommu, U.D.; Konidala, K.K.; Pamanji, R.; Yeguvapalli, S. Computational screening, ensemble docking and pharmacophore analysis of potential gefitinib analogues against epidermal growth factor receptor. J. Recept. Signal Transduct., 2018, 38, 48-60.
[67]
Zhu, J.; Huang, J.W.; Tseng, P.H.; Yang, Y.T.; Fowble, J.; Shiau, C.W.; Shaw, Y.J.; Kulp, S.K.; Chen, C.S. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res., 2004, 64, 4309-4318.
[68]
Yaguchi, S.I.; Fukui, Y.; Koshimizu, I.; Yoshimi, H.; Matsuno, T.; Gouda, H.; Hirono, S.; Yamazaki, K.; Yamori, T. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J. Natl. Cancer Inst., 2006, 98, 545-556.
[69]
Broggini, M.; Coley, H.M.; Mongelli, N.; Pesenti, E.; Wyatt, M.D.; Hartley, J.A.; Dlncaici, M. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Acids Res., 1995, 23, 81-87.
[70]
Dancey, J.; Sausville, E.A. Issues and progress with protein kinase inhibitors for cancer treatment. Nat. Rev. Drug Discov., 2003, 2, 296-313.
[71]
Hancock, C.N.; Macias, A.; Lee, E.K.; Yu, S.Y.; MacKerell, A.D.; Shapiro, P. Identification of novel extracellular signal-regulated kinase docking domain inhibitors. J. Med. Chem., 2005, 48, 4586-4595.
[72]
Mahadevan, D.; Bearss, D.J.; Vankayalapati, H. Structure-based design of novel anti-cancer agents targeting aurora kinases. Curr. Med. Chem. Anticancer Agents, 2003, 3, 25-34.
[73]
Sánchez-Martínez, C.; Gelbert, L.M.; Lallena, M.J.; de Dios, A. Cyclin Dependent Kinase (CDK) inhibitors as anticancer drugs. Bioorg. Med. Chem. Lett., 2015, 25, 3420-3435.
[74]
Thaimattam, R.; Daga, P.R.; Banerjee, R.; Iqbal, J. 3D-QSAR studies on c-Src kinase inhibitors and docking analyses of a potent dual kinase inhibitor of c-Src and c-Abl kinases. Bioorg. Med. Chem., 2005, 13, 4704-4712.
[75]
Tuccinardi, T.; Botta, M.; Giordano, A.; Martinelli, A. Protein kinases: Docking and homology modeling reliability. J. Chem. Inf. Model., 2010, 50, 1432-1441.
[76]
Zahler, S.; Tietze, S.; Totzke, F.; Kubbutat, M.; Meijer, L.; Vollmar, A.M.; Apostolakis, J. Inverse in silico screening for identification of kinase inhibitor targets. Chem. Biol., 2007, 14, 1207-1214.
[77]
Asegbeloyin, J.N.; Oyeka, E.E.; Okpareke, O.; Ibezim, A. Synthesis, structure, computational and in-silico anticancer studies of N, N-diethyl-N′-palmitoylthiourea. J. Mol. Struct., 2018, 1153, 69-77.
[78]
Trejo-Soto, P.J.; Hernández-Campos, A.; Romo-Mancillas, A.; Medina-Franco, J.L.; Castillo, R. In search of AKT kinase inhibitors as anticancer agents: structure-based design, docking, and molecular dynamics studies of 2, 4, 6-trisubstituted pyridines. J. Biomol. Struct. Dyn., 2018, 36, 423-442.
[79]
Asati, V.; Bharti, S.K. Design, synthesis and molecular modeling studies of novel thiazolidine-2, 4-dione derivatives as potential anti-cancer agents. J. Mol. Struct., 2018, 1154, 406-417.
[80]
Prada-Gracia, D.; Huerta-Yepez, S.; Moreno-Vargas, L.M. Application of computational methods for anticancer drug discovery, design, and optimization. Bol. Med. Hosp. Infant. Mex., 2016, 73, 411-423.
[81]
Fruman, D.A.; O’brien, S. Cancer: A targeted treatment with off-target risks. Nature, 2017, 542, 424-425.
[82]
Havelka, A.M.; Berndtsson, M.; Olofsson, M.H.; Shoshan, M.C.; Linder, S. Mechanisms of action of DNA-damaging anticancer drugs in treatment of carcinomas: is acute apoptosis an “off-target” effect? Mini Rev. Med. Chem., 2007, 7, 1035-1039.
[83]
Abassi, Y.A.; Xi, B.; Zhang, W.; Ye, P.; Kirstein, S.L.; Gaylord, M.R.; Feinstein, S.C.; Wang, X.; Xu, X. Kinetic cell-based morphological screening: Prediction of mechanism of compound action and off-target effects. Chem. Biol., 2009, 16, 712-723.
[84]
MacDonald, M.L.; Lamerdin, J.; Owens, S.; Keon, B.H.; Bilter, G.K.; Shang, Z.; Huang, Z.; Yu, H.; Dias, J.; Minami, T. Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat. Chem. Biol., 2006, 2, 329-337.
[85]
Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-specific targeting of an anticancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci. USA, 2005, 102, 12962-12967.
[86]
Albini, A.; Pennesi, G.; Donatelli, F.; Cammarota, R.; De Flora, S.; Noonan, D.M. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J. Natl. Cancer Inst., 2010, 102, 14-25.
[87]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2013, 65, 157-170.
[88]
Danesi, R.; Fogli, S.; Gennari, A.; Conte, P.; Del Tacca, M. Pharmacokinetic-pharmacodynamic relationships of the anthracycline anticancer drugs. Clin. Pharmacokinet., 2002, 41, 431-444.
[89]
Hartmann, J.T.; Haap, M.; Kopp, H.G.; Lipp, H.P. Tyrosine kinase inhibitors-a review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10, 470-481.
[90]
Wheate, N.J.; Walker, S.; Craig, G.E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans., 2010, 39, 8113-8127.
[91]
Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, 3, 1351-1371.
[92]
Yera, E.R.; Cleves, A.E.; Jain, A.N. Prediction of off-target drug effects through data fusion. In: Biocomputing 2014; , 2014; pp. World Scientific. 160-171.
[93]
Li, Y.Y.; An, J.; Jones, S.J. A computational approach to finding novel targets for existing drugs. PLOS Comput. Biol., 2011, 7e1002139
[94]
Fabian, M.A.; Biggs III, W.H.; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol., 2005, 23, 329-336.
[95]
Molina, D.M.; Jafari, R.; Ignatushchenko, M.; Seki, T.; Larsson, E.A.; Dan, C.; Sreekumar, L.; Cao, Y.; Nordlund, P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science, 2013, 341, 84-87.
[96]
Campillos, M.; Kuhn, M.; Gavin, A.C.; Jensen, L.J.; Bork, P. Drug target identification using side-effect similarity. Science, 2008, 321, 263-266.
[97]
Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B. Predicting new molecular targets for known drugs. Nature, 2009, 462, 175-182.
[98]
Van-Leeuwen, I.M.; Rao, B.; Sachweh, M.C.; Laín, S. An evaluation of small-molecule p53 activators as chemoprotectants ameliorating adverse effects of anticancer drugs in normal cells. Cell Cycle, 2012, 11, 1851-1861.
[99]
Komarov, P.G.; Komarova, E.A.; Kondratov, R.V.; Christov-Tselkov, K.; Coon, J.S.; Chernov, M.V.; Gudkov, A.V. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science, 1999, 285, 1733-1737.