[1]
Nag, A.; Dey, B. Computer aided drug design and delivery systems; The McGraw-Hill Companies, Inc New York, 2011.
[2]
Hoelder, S.; Paul, A.C.; Paul, W. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6, 155-176.
[3]
San Lucas, F.A.; Fowler, J.; Chang, K.; Kopetz, S.; Vilar, E.; Scheet, P. Cancer in silico drug discovery: A systems biology tool for identifying candidate drugs to target specific molecular tumor subtypes. Mol. Cancer Ther., 2014, 12, 13.
[4]
Gupta, P.K.; Agrawal, P.; Shivakumar, N.; Hiremath, S.B. In silico modeling and drug design. IRJP, 2011, 2(9), 15-17.
[5]
Chunxia, G. Computer aided drug design approaches in developing anti cancer inhibitors; E-thesis, University of Gothenburg. , 2016.
[6]
Katsila, T.; Spyroulias, G.A.; Patrinos, G.P.; Matsoukas, M.T. Computational approaches in target identification and drug discovery. CSBJ, 2016, 14, 177-184.
[7]
Maithri, G.; Manasa, B.; Vani, S.S.; Narendra, A.; Harshita, T. Computational drug design and molecular dynamics studies- A review. Int. J. Biomed. Data Min., 2016, 6(1), 1-7.
[8]
Wadood, A.; Ahmed, N.; Shah, L.; Ahmad, A.; Hassan, H.; Shams, S. In-silico drug design: An approach which revolutionarised the drug discovery process. OA Drug Des. Deliv., 2013, 1(1), 3.
[9]
Swen, H.; Paul, A.C.; Paul, W. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6, 155-176.
[10]
Gabriela, M.W.; Yagmur, M. Computational Strategies in Cancer Drug Discovery. In: Advances in Cancer Management. ; Prof. Ravinder Mohan Ed.; IntechOpen. , 2012.
[11]
Diego, P.G.; Sara, H.Y.; Liliana, M.M.V. Application of computational methods for anticancer drug discovery, design, and optimization. Biol. Med. Hosp. Infant Mex., 2016, 73(6), 411-423.
[12]
Mustata, G.; Li, M.; Zevola, N.; Bakan, A.; Zhang, L.; Epperly, M.; Joel, S.G.; Jian, Y.; Ivet, B. Development of small-molecule PUMA inhibitors for mitigating radiation-induced cell death. Curr. Top. Med. Chem., 2011, 11, 281-290.
[13]
Nakano, K.; Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell, 2001, 7, 683-694.
[14]
Yu, J.; Zhang, L. PUMA, a potent killer with or without p53. Oncogene, 2008, 1, S71-S83.
[15]
Chiang, Y.K.; Kuo, C.C.; Wu, Y.S.; Chen, C.T.; Coumar, M.S.; Wu, J.S.; Hsieh, H.P.; Chang, C.Y.; Jseng, H.Y.; Wu, M.H.; Leou, J.S.; Song, J.S.; Chang, J.Y.; Lyu, P.C.; Chao, Y.S.; Wu, S.Y. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity. J. Med. Chem., 2009, 52, 4221-4233.
[16]
Liou, J.P.; Mahindroo, N.; Chang, C.W.; Guo, F.M.; Lee, S.W.; Tan, U.K.; Yeh, T.K.; Kuo, C.C.; Chang, Y.W.; Lu, P.H.; Tung, Y.S.; Lin, K.T.; Chang, J.Y.; Hsieh, H.P. Structure-activity relationship studies of 3-aroylindoles as potent antimitotic agents. ChemMedChem, 2006, 1, 1106-1118.
[17]
Noha, S.M.; Atanasov, A.G.; Schuster, D.; Markt, P.; Fakhrudin, N.; Heiss, E.H.; Schrammel, O.; Rollinger, M.J.; Stuppner, H.; Dirsch, M.V.; Wolber, G. Discovery of a novel IKK-b inhibitor by ligand-based virtual screening techniques. Bioorg. Med. Chem. Lett., 2011, 21, 577-583.
[18]
Nesbit, C.E.; Grove, L.E.; Yin, X.; Prochownik, E.V. Differential apoptotic behaviors of c-myc, N-myc, and L-myc oncoproteins. Cell Growth Differ., 1998, 9, 731-741.
[19]
Mustata, G.; Follis, A.V.; Hammoudeh, D.I.; Metallo, S.J.; Wang, H.; Prochownik, E.V.; Lazo, J.S.; Bahar, I. Discovery of novel Myc-Max heterodimer disruptors with a three-dimensional pharmacophore model. J. Med. Chem., 2009, 52, 1247-1250.
[20]
Muftuoglu, Y.; Mustata, G. Pharmacophore modeling strategies for the development of novel nonsteroidal inhibitors of human aromatase (CYP19). Bioorg. Med. Chem. Lett., 2010, 20, 3050-3064.
[21]
Ghosh, D.; Griswold, J.; Erman, M.; Pangborn, W. Structural basis for androgen specificity and oestrogen synthesis in human aromatase. Nature, 2009, 457, 219-223.
[22]
Cheon, J.H.; Kim, K.S.; Yadav, D.K.; Kim, M.; Kim, H.S.; Yoon, S. The JAK2 inhibitors CEP-33779 and NVP-BSK805 have high P-gp inhibitory activity and sensitize drug-resistant cancer cells to vincristine. Biochem. Biophys. Res. Commun., 2017, 490, 1176-1182.
[23]
Ayoub, N.M.; Siddique, A.B.; Ebrahim, H.Y.; Mohyeldin, M.M.; Ayoub, K.A.S.N.M.; Siddique, A.B.; Ebrahim, H.Y.; Mohyeldin, M.M.; El Sayed, K.A. The olive oil phenolic (-)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment. Eur. J. Pharmacol., 2017, 810, 100-111.
[24]
Alam, S.; Khan, F. 3D-QSAR studies on Maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Sci. Rep., 2017, 7(1), 6019.
[25]
Pan, Y.; Shi, J.; Ni, W.; Liu, Y.; Wang, S.; Wang, X.; Wei, Z.; Wang, A.; Chen, W.; Lu, Y. Cryptotanshinone inhibition of mammalian target of rapamycin pathway is dependent on oestrogen receptor alpha in breast cancer. J. Cell. Mol. Med., 2017, 21(9), 2129-2139.
[26]
Asath, R.M.; Premkumar, R.; Mathavan, T.; Benial, A.M.F. Spectroscopic and molecular docking studies on N, N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine: A potential bioactive agent for lung cancer treatment. J. Mol. Struct., 2017, 1143, 415-423.
[27]
Mehrabi, M.; Mansouri, K.; Soleymani, B.; Hoseinkhani, Z.; Shahlaie, M.; Khodarahmi, R. Development of a human epidermal growth factor derivative withEGFR-blocking and depleted biological activities: A comparative in vitro study using EGFR-positive breast cancer cells. Int. J. Biol. Macromol., 2017, 103, 275-285.
[28]
Zwergel, C.; Czepukojc, B.; Evain-Bana, E.; Xu, Z.; Stazi, G.; Mori, M.; Patsilinakos, A.; Mai, A.; Botta, B.; Ragno, R.; Bagrel, D.; Kirsch, G.; Meiser, P.; Jacob, C.; Montenarh, M.; Valente, S. Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. Eur. J. Med. Chem., 2017, 134, 316-333.
[29]
Adhikari, N.; Amin, S.A.; Saha, A.; Jha, T. Combating breast cancer with Non-Steroidal Aromatase Inhibitors (NSAIs): Understanding the chemico-biological interactions through comparative SAR/QSAR study. Eur. J. Med. Chem., 2017, 137, 365-438.
[30]
Almeida, M.O.; Barros, D.A.S.; Araujo, S.C.; Faria Sergio, H.D.M.; Maltarollo, V.G.; Honorio, K.M. Study on molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM, HOMO-LUMO energies and docking studies of 5-fluorouracil, a substance used to treat cancer. Spectrochimi. Acta Mol. Biomol. Spectrosc, 2017, 184, 169-176.
[31]
Ren, B.Z.; Ablise, M.; Yang, X.C.; Liao, B.; Yang, Z. Synthesis and biological evaluation of α-methyl-chalcone for anticervical cancer activity. Med. Chem. Res., 2017, 26, 1871-1883.
[32]
Nivedha, R.P.; Suryanarayanan, V.; Selvaraj, C.B.; Singh, S.K.; Rajalakshmi, M. Chemopreventive effect of saponin isolated from Gymnema sylevestre on prostate cancer through in silico and in vivo analysis. Med. Chem. Res., 2017, 26, 1915-1925.
[33]
Simon, L.; Imane, A.; Srinivasan, K.K.; Pathak, L.; Daoud, I. In silico Drug-designing studies on flavanoids as anticolon cancer agents: Pharmacophore mapping, molecular docking, and monte carlo method-based QSAR modeling. Interdiscip. Sci. Comput. Life Sci., 2017, 9, 445-458.
[34]
Azuaje, F. Computational models for predicting drug responses in cancer research. Brief. Bioinform., 2017, 18, 820-829.
[35]
Rahman, M.M.; Rezaul, K.M.; Qamrul, A.M.; Khalipha, A.B.R.; Chowdhury, R.M.; Saifuzzaman, M. Use of computer in drug design and drug discovery: A review. IJPLS, 2012, 1(2), 1-21.