[1]
Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2015, 15(5), 27. [http://dx.doi.org/10.1007/s11910-015-0545-1]. [PMID: 25796572].
[2]
Reis, C.; Gospodarev, V.; Reis, H.; Wilkinson, M.; Gaio, J.; Araujo, C.; Chen, S.; Zhang, J.H. Traumatic brain injury and stem cell: Pathophysiology and update on recent treatment modalities. Stem Cells Int., 2017, 2017, 6392592. [http://dx.doi.org/10.1155/ 2017/6392592]. [PMID: 28852409].
[3]
Ahmed, S.; Venigalla, H.; Mekala, H.M.; Dar, S.; Hassan, M.; Ayub, S. Traumatic brain injury and neuropsychiatric complications. Indian J. Psychol. Med., 2017, 39(2), 114-121. [http://dx. doi.org/10.4103/0253-7176.203129]. [PMID: 28515545].
[4]
Tanriverdi, F.; Kelestimur, F. Neuroendocrine disturbances after brain damage: an important and often undiagnosed disorder. J. Clin. Med., 2015, 4(5), 847-857. [http://dx.doi.org/10.3390/ jcm4050847]. [PMID: 26239451].
[5]
Pearn, M.L.; Niesman, I.R.; Egawa, J.; Sawada, A.; Almenar-Queralt, A.; Shah, S.B.; Duckworth, J.L.; Head, B.P. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell. Mol. Neurobiol., 2017, 37(4), 571-585. [http://dx.doi.org/10.1007/s10571-016-0400-1]. [PMID: 27383839].
[6]
Cobb, C.A.; Cole, M.P. Oxidative and nitrative stress in neurodegeneration. Neurobiol. Dis., 2015, 84, 4-21. [http://dx.doi.org/ 10.1016/j.nbd.2015.04.020]. [PMID: 26024962].
[7]
Pearn, M.L.; Niesman, I.R.; Egawa, J.; Sawada, A.; Almenar-Queralt, A.; Shah, S.B.; Duckworth, J.L.; Head, B.P. Pathophysiology associated with traumatic brain injury: current treatments and potential novel therapeutics. Cell. Mol. Neurobiol., 2017, 37(4), 571-585. [http://dx.doi.org/10.1007/s10571-016-0400-1]. [PMID: 27383839].
[8]
Sinha, V.D.; Chakrabarty, A. Quantitative research on traumatic brain injury in India: The travails and the new optimism. Neurol. India, 2017, 65(2), 261-262. [http://dx.doi.org/10.4103/0028-3886.201852]. [PMID: 28290385].
[9]
Marklund, N. Rodent models of traumatic brain injury: methods
and challenges Injury Models of the Central Nervous System:
Methods and Protocols, 2016. 29-46 [http://dx.doi.org/10.1007/ 978-1-4939-3816-2_3].
[10]
Bryan-Hancock, C.; Harrison, J. The global burden of traumatic brain injury: Preliminary results from the global burden of disease project. Inj. Prev., 2010, 16(Suppl. 1), A17-A17. [http://dx.doi. org/10.1136/ip.2010.029215.61].
[11]
Lagraoui, M.; Sukumar, G.; Latoche, J.R.; Maynard, S.K.; Dalgard, C.L.; Schaefer, B.C. Salsalate treatment following traumatic brain injury reduces inflammation and promotes a neuroprotective and neurogenic transcriptional response with concomitant functional recovery. Brain Behav. Immun., 2017, 61, 96-109. [http://dx.doi. org/10.1016/j.bbi.2016.12.005]. [PMID: 27939247].
[12]
Marklund, N. Rodent models of traumatic brain injury: methods
and challenges Injury Models of the Central Nervous System:
Methods and Protocols,, 2016. 29-46. [http://dx.doi.org/10.1007/ 978-1-4939-3816-2_3]
[13]
Traumatic brain injury-a neurobehavioural sequelae a review Journal
of evolution of medical and dental sciences-jemds, 2017, 6 (26), 2192-2207.
[14]
Kaur, P.; Sharma, S. Recent advances in pathophysiology of traumatic brain injury. Curr. Neuropharmacol., 2018, 16(8), 1224-1238. [PMID: 28606040].
[15]
Lussier, M.P.; Sanz-Clemente, A.; Roche, K.W. Dynamic regulation of N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by posttranslational modifications. J. Biol. Chem., 2015, 290(48), 28596-28603. [http://dx.doi.org/10.1074/jbc.R115.652750]. [PMID: 26453298].
[16]
Schousboe, A.; Scafidi, S.; Bak, L.K.; Waagepetersen, H.S.; McKenna, M.C. Glutamate metabolism in the brain focusing on as trocytes. In: Glutamate and ATP at the Interface of Metabolism and
Signaling in the Brain; , 2014. pp. 13-30. [http://dx.doi.org/10.
1007/978-3-319-08894-5_2]
[17]
Herbison, A.E.; Moenter, S.M. Depolarising and hyperpolarising actions of GABA(A) receptor activation on gonadotrophin-releasing hormone neurones: towards an emerging consensus. J. Neuroendocrinol., 2011, 23(7), 557-569. [http://dx.doi.org/10. 1111/j.1365-2826.2011.02145.x]. [PMID: 21518033].
[18]
Shohami, E.; Biegon, A. Novel approach to the role of NMDA
receptors in traumatic brain injury CNS & Neurological Disorders-
Drug Targets (Formerly Current Drug Targets-CNS & Neurological
Disorders),, 2014, 13 (4), 567-573. [http://dx.doi.org/10.2174/
18715273113126660196]
[19]
Köles, L.; Kató, E.; Hanuska, A.; Zádori, Z.S.; Al-Khrasani, M.; Zelles, T.; Rubini, P.; Illes, P. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal., 2016, 12(1), 1-24. [http://dx.doi.org/10.1007/s11302-015-9480-5]. [PMID: 26542977].
[20]
Chao, N.; Li, S.T. Synaptic and extrasynaptic glutamate signaling in ischemic stroke. Curr. Med. Chem., 2014, 21(18), 2043-2064. [http://dx.doi.org/10.2174/0929867321666131228204533]. [PMID: 24372211].
[21]
Katayama, Y.; Becker, D.P.; Tamura, T.; Hovda, D.A. Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J. Neurosurg., 1990, 73(6), 889-900. [http://dx.doi.org/10.3171/jns.1990.73.6.0889]. [PMID: 1977896].
[22]
Hertz, L. The glutamate–glutamine (GABA) cycle: importance of late postnatal development and potential reciprocal interactions between biosynthesis and degradation. Front. Endocrinol. (Lausanne), 2013, 4, 59. [http://dx.doi.org/10.3389/fendo.2013. 00059]. [PMID: 23750153].
[23]
Nani, F.; Bright, D.P.; Revilla-Sanchez, R.; Tretter, V.; Moss, S.J.; Smart, T.G. Tyrosine phosphorylation of GABAA receptor γ2-subunit regulates tonic and phasic inhibition in the thalamus. J. Neurosci., 2013, 33(31), 12718-12727. [http://dx.doi.org/10.1523/ JNEUROSCI.0388-13.2013]. [PMID: 23904608].
[24]
Zhang, X.; Chen, Y.; Jenkins, L.W.; Kochanek, P.M.; Clark, R.S. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury. Crit. Care, 2005, 9(1), 66-75. [http://dx.doi.org/10.1186/cc2950]. [PMID: 15693986].
[25]
Park, Y.H.; Jeong, M.S.; Jang, S.B. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF). BMB Rep., 2016, 49(3), 159-166. [http://dx.doi.org/10.5483/BMBRep.2016.49.3.205]. [PMID: 26615973].
[26]
Kalimuthu, S.; Se-Kwon, K. Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int. J. Mol. Sci., 2013, 14(2), 2334-2354. [http://dx.doi.org/10.3390/ ijms14022334]. [PMID: 23348928].
[27]
Belizário, J.; Vieira-Cordeiro, L.; Enns, S. Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediators Inflamm., 2015, 2015, 128076. [http://dx.doi.org/10. 1155/2015/128076]. [PMID: 26491219].
[28]
Bhowmick, S.; D’Mello, V.; Ponery, N.; Abdul-Muneer, P.M. Neurodegeneration and sensorimotor deficits in the mouse model of traumatic brain injury. Brain Sci., 2018, 8(1), 1-11. [PMID: 29316623].
[29]
Lorente, L. Biomarkers associated with the outcome of traumatic brain injury patients. Brain Sci., 2017, 7(11), 142-153. [http://dx. doi.org/10.3390/brainsci7110142]. [PMID: 29076989].
[30]
Huang, C.Y.; Lee, Y.C.; Li, P.C.; Liliang, P.C.; Lu, K.; Wang, K.W.; Chang, L.C.; Shiu, L.Y.; Chen, M.F.; Sun, Y.T.; Wang, H.K. TDP-43 proteolysis is associated with astrocyte reactivity after traumatic brain injury in rodents. J. Neuroimmunol., 2017, 313, 61-68. [http://dx.doi.org/10.1016/j.jneuroim.2017.10.011]. [PMID: 29153610].
[31]
Qiu, J.; Whalen, M.J.; Lowenstein, P.; Fiskum, G.; Fahy, B.; Darwish, R.; Aarabi, B.; Yuan, J.; Moskowitz, M.A. Upregulation of the Fas receptor death-inducing signaling complex after traumatic brain injury in mice and humans. J. Neurosci., 2002, 22(9), 3504-3511. [http://dx.doi.org/10.1523/JNEUROSCI.22-09-03504.2002]. [PMID: 11978827].
[32]
Weber, J.T. Altered calcium signaling following traumatic brain injury. Front. Pharmacol., 2012, 3, 60. [http://dx.doi.org/10.3389/ fphar.2012.00060]. [PMID: 22518104].
[33]
Chehab, T. The role of calcium signalling in autophagy, 2018.
[34]
Nazıroğlu, M.; Şenol, N.; Ghazizadeh, V.; Yürüker, V. Neuroprotection induced by N-acetylcysteine and selenium against traumatic brain injury-induced apoptosis and calcium entry in hippocampus of rat. Cell. Mol. Neurobiol., 2014, 34(6), 895-903. [http://dx. doi.org/10.1007/s10571-014-0069-2]. [PMID: 24842665].
[35]
Abdul-Muneer, P.M.; Long, M.; Conte, A.A.; Santhakumar, V.; Pfister, B.J. High Ca2+ influx during traumatic brain injury leads to caspase-1-dependent neuroinflammation and cell death. Mol. Neurobiol., 2017, 54(6), 3964-3975. [http://dx.doi.org/10.1007/s12035-016-9949-4]. [PMID: 27289225].
[36]
Vasco, V.R.L. Role of the phosphoinositide signal transduction pathway in the endometrium. Asian Pac. J. Reprod., 2012, 1(3), 247-252. [http://dx.doi.org/10.1016/S2305-0500(13)60086-X].
[37]
Ryan, M.J.; Gross, K.W.; Hajduczok, G. Calcium-dependent activation of phospholipase C by mechanical distension in renin-expressing As4. 1 cell. Am. J. Physiol. Endocrinol. Metab., 2000, 279(4), 823-829. [http://dx.doi.org/10.1152/ajpendo.2000.279.4.E823].
[38]
Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest., 2005, 115(10), 2656-2664. [http://dx.doi.org/10.1172/JCI26373]. [PMID: 16200199].
[39]
Sun, G.Z.; Gao, F.F.; Zhao, Z.M.; Sun, H.; Xu, W.; Wu, L.W.; He, Y.C. Endoplasmic reticulum stress-induced apoptosis in the penumbra aggravates secondary damage in rats with traumatic brain injury. Neural Regen. Res., 2016, 11(8), 1260-1266. [http://dx.doi. org/10.4103/1673-5374.189190]. [PMID: 27651773].
[40]
Shi, Z.; Qiu, W.; Xiao, G.; Cheng, J.; Zhang, N. Resveratrol attenuates cognitive deficits of traumatic brain injury by activating p38 signaling in the brain. Med. Sci. Monit., 2018, 24, 1097-1103. [http://dx.doi.org/10.12659/MSM.909042]. [PMID: 29467361].
[41]
Larner, S.F.; Hayes, R.L.; McKinsey, D.M.; Pike, B.R.; Wang, K.K. Increased expression and processing of caspase-12 after traumatic brain injury in rats. J. Neurochem., 2004, 88(1), 78-90. [http://dx.doi.org/10.1046/j.1471-4159.2003.02141.x]. [PMID: 14675152].
[42]
Weber, J.T. Altered calcium signaling following traumatic brain injury. Front. Pharmacol., 2012, 3, 60. [http://dx.doi.org/10.3389/ fphar.2012.00060]. [PMID: 22518104].
[43]
Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev., 2016, 2016, 4350965. [http://dx.doi.org/10.1155/2016/ 4350965]. [PMID: 26998193].
[44]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354. [http://dx.doi.org/10.1152/physrev.00040.2012]. [PMID: 24692350].
[45]
Kumar, A.; Sasmal, D.; Sharma, N. An insight into deltamethrin induced apoptotic calcium, p53 and oxidative stress signalling pathways. Toxicol Environ Health Sci, 2015, 7, 25-34. [http://dx. doi.org/10.1007/s13530-015-0217-1].
[46]
Lutton, E.M.; Razmpour, R.; Andrews, A.M.; Cannella, L.A.; Son, Y.J.; Shuvaev, V.V.; Muzykantov, V.R.; Ramirez, S.H. Acute administration of catalase targeted to ICAM-1 attenuates neuropathology in experimental traumatic brain injury. Sci. Rep., 2017, 7(1), 3846. [http://dx.doi.org/10.1038/s41598-017-03309-4]. [PMID: 28630485].
[47]
Cheng, G.; Kong, R.H.; Zhang, L.M.; Zhang, J.N. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br. J. Pharmacol., 2012, 167(4), 699-719. [http://dx.doi.org/10.1111/j.1476-5381.2012.02025.x]. [PMID: 23003569].
[48]
Bains, M.; Hall, E.D. Antioxidant therapies in traumatic brain and spinal cord injury. Biochim. Biophys. Acta. Mol. Basis Dis., 2012, 1822(5), 675-684. [http://dx.doi.org/10.1016/j.bbadis.2011.10.017].
[49]
Clausen, F.; Lundqvist, H.; Ekmark, S.; Lewén, A.; Ebendal, T.; Hillered, L. Oxygen free radical-dependent activation of extracellular signal-regulated kinase mediates apoptosis-like cell death after traumatic brain injury. J. Neurotrauma, 2004, 21(9), 1168-1182. [http://dx.doi.org/10.1089/neu.2004.21.1168]. [PMID: 15453987].
[50]
Huang, Y.N.; Yang, L.Y.; Greig, N.H.; Wang, Y.C.; Lai, C.C.; Wang, J.Y. Neuroprotective effects of pifithrin-α against traumatic brain injury in the striatum through suppression of neuroinflammation, oxidative stress, autophagy, and apoptosis. Sci. Rep., 2018, 8(1), 2368. [http://dx.doi.org/10.1038/s41598-018-19654-x]. [PMID: 29402897].
[51]
Anilkumar, U.; Prehn, J.H. Anti-apoptotic BCL-2 family proteins in acute neural injury. Front. Cell. Neurosci., 2014, 8, 281. [http://dx.doi.org/10.3389/fncel.2014.00281]. [PMID: 25324720].
[52]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63. [http://dx.doi.org/10.1038/nrm3722]. [PMID: 24355989].
[53]
Morrison, R.S.; Kinoshita, Y. The role of p53 in neuronal cell death. Cell Death Differ., 2000, 7(10), 868-879. [http://dx.doi.org/ 10.1038/sj.cdd.4400741]. [PMID: 11279532].
[54]
Sabirzhanov, B.; Zhao, Z.; Stoica, B.A.; Loane, D.J.; Wu, J.; Borroto, C.; Dorsey, S.G.; Faden, A.I. Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J. Neurosci., 2014, 34(30), 10055-10071. [http://dx.doi.org/ 10.1523/JNEUROSCI.1260-14.2014]. [PMID: 25057207].
[55]
Tehranian, R.; Rose, M.E.; Vagni, V.; Pickrell, A.M.; Griffith, R.P.; Liu, H.; Clark, R.S.; Dixon, C.E.; Kochanek, P.M.; Graham, S.H. Disruption of Bax protein prevents neuronal cell death but produces cognitive impairment in mice following traumatic brain injury. J. Neurotrauma, 2008, 25(7), 755-767. [http://dx.doi.org/ 10.1089/neu.2007.0441]. [PMID: 18627254].
[56]
Pisetsky, D.S. The translocation of nuclear molecules during inflammation and cell death. Antioxid. Redox Signal., 2014, 20(7), 1117-1125. [http://dx.doi.org/10.1089/ars.2012.5143].
[57]
Karve, I.P.; Taylor, J.M.; Crack, P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol., 2016, 173(4), 692-702. [http://dx.doi.org/10.1111/bph.13125]. [PMID: 25752446].
[58]
Corrigan, F.; Mander, K.A.; Leonard, A.V.; Vink, R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J. Neuroinflammation, 2016, 13(1), 264. [http://dx.doi.org/10.1186/s12974-016-0738-9]. [PMID: 27724914].
[59]
Atkins, C.M.; Oliva, A.A., Jr; Alonso, O.F.; Pearse, D.D.; Bramlett, H.M.; Dietrich, W.D. Modulation of the cAMP signaling pathway after traumatic brain injury. Exp. Neurol., 2007, 208(1), 145-158. [http://dx.doi.org/10.1016/j.expneurol.2007.08.011]. [PMID: 17916353].
[60]
Donat, C.K.; Scott, G.; Gentleman, S.M.; Sastre, M. Microglial activation in traumatic brain injury. Front. Aging Neurosci., 2017, 9, 208. [http://dx.doi.org/10.3389/fnagi.2017.00208]. [PMID: 28701948].
[61]
Don, A.S.A.; Tsang, C.K.; Kazdoba, T.M.; D’Arcangelo, G.; Young, W.; Zheng, X.F. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discov. Today, 2012, 17(15-16), 861-868. [http://dx.doi.org/10.1016/j.drudis.2012.04. 010]. [PMID: 22569182].
[62]
Garza-Lombó, C.; Gonsebatt, M.E. Mammalian target of rapamycin: its role in early neural development and in adult and aged brain function. Front. Cell. Neurosci., 2016, 10, 157. [http://dx.doi.org/ 10.3389/fncel.2016.00157]. [PMID: 27378854].
[63]
Lake, D.; Corrêa, S.A.; Müller, J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell. Mol. Life Sci., 2016, 73(23), 4397-4413. [http://dx.doi.org/10.1007/s00018-016-2297-8]. [PMID: 27342992].
[64]
Don, A.S.A.; Tsang, C.K.; Kazdoba, T.M.; D’Arcangelo, G.; Young, W.; Zheng, X.F. Targeting mTOR as a novel therapeutic strategy for traumatic CNS injuries. Drug Discov. Today, 2012, 17(15-16), 861-868. [http://dx.doi.org/10.1016/j.drudis.2012.04. 010]. [PMID: 22569182].
[65]
Wang, X.; Seekaew, P.; Gao, X.; Chen, J. Traumatic brain injury stimulates neural stem cell proliferation via mammalian target of rapamycin signaling pathway activation. eNeuro, 2016, 3(5), 1-14. [http://dx.doi.org/10.1523/ENEURO.0162-16.2016]. [PMID: 27822507].
[66]
Sun, J.; Nan, G. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target.(Review). Int. J. Mol. Med., 2017, 39(6), 1338-1346. [http://dx.doi.org/ 10.3892/ijmm.2017.2962]. [PMID: 28440493].
[67]
Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, walking, talking: integratory motor and cognitive brain function. Front. Public Health, 2016, 4, 94. [http://dx.doi.org/10.3389/fpubh.2016.00094]. [PMID: 27252937].
[68]
Ahmed, S.; Venigalla, H.; Mekala, H.M.; Dar, S.; Hassan, M.; Ayub, S. Traumatic brain injury and neuropsychiatric complications. Indian J. Psychol. Med., 2017, 39(2), 114-121. [http://dx. doi.org/10.4103/0253-7176.203129]. [PMID: 28515545].
[69]
Onwuchekwa, C.R.; Alazigha, N.S. Computed tomography pattern of traumatic head injury in Niger Delta, Nigeria: A multicenter evaluation. Int. J. Crit. Illn. Inj. Sci., 2017, 7(3), 150-155. [http://dx.doi.org/10.4103/IJCIIS.IJCIIS_6_17]. [PMID: 28971028].
[70]
Nayebaghayee, H.; Afsharian, T. Correlation between Glasgow Coma Scale and brain computed tomography-scan findings in head trauma patients. Asian J. Neurosurg., 2016, 11(1), 46-49. [http://dx.doi.org/10.4103/1793-5482.165780]. [PMID: 26889279].
[71]
Agoston, D.V.; Shutes-David, A.; Peskind, E.R. Biofluid biomarkers of traumatic brain injury. Brain Inj., 2017, 31(9), 1195-1203. [http://dx.doi.org/10.1080/02699052.2017.1357836]. [PMID: 28981341].
[72]
Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; Rubiano, A.M.; Shutter, L.; Tasker, R.C.; Vavilala, M.S.; Wilberger, J.; Wright, D.W.; Ghajar, J. Guidelines for the management of severe traumatic brain injury. Neurosurgery, 2017, 80(1), 6-15. [PMID: 27654000].
[73]
Shirley, R.; Ord, E.N.; Work, L.M. Oxidative stress and the use of antioxidants in stroke. Antioxidants, 2014, 3(3), 472-501. [http://dx.doi.org/10.3390/antiox3030472]. [PMID: 26785066].
[74]
Lin, C.J.; Chen, T.H.; Yang, L.Y.; Shih, C.M. Resveratrol protects astrocytes against traumatic brain injury through inhibiting apoptotic and autophagic cell death. Cell Death Dis., 2014, 5(3), e1147. [http://dx.doi.org/10.1038/cddis.2014.123]. [PMID: 24675465].
[75]
Venegoni, W.; Shen, Q.; Thimmesch, A.R.; Bell, M.; Hiebert, J.B.; Pierce, J.D. The use of antioxidants in the treatment of traumatic brain injury. J. Adv. Nurs., 2017, 73(6), 1331-1338. [http://dx.doi. org/10.1111/jan.13259]. [PMID: 28103389].
[76]
Arifin, M.Z.; Faried, A.; Shahib, M.N.; Wiriadisastra, K.; Bisri, T. Inhibition of activated NR2B gene- and caspase-3 protein-expression by glutathione following traumatic brain injury in a rat model. Asian J. Neurosurg., 2011, 6(2), 72-77. [http://dx.doi.org/ 10.4103/1793-5482.92160]. [PMID: 22347327].
[77]
Pereira-Leite, C.; Nunes, C.; Jamal, S.K.; Cuccovia, I.M.; Reis, S. Nonsteroidal anti‐inflammatory therapy: a journey toward safety. Med. Res. Rev., 2017, 37(4), 802-859. [http://dx.doi.org/10.1002/ med.21424]. [PMID: 28005273].
[78]
Thelin, E.P.; Hall, C.E.; Gupta, K.; Carpenter, K.L.H.; Chandran, S.; Hutchinson, P.J.; Patani, R.; Helmy, A. Elucidating pro-inflammatory cytokine responses after traumatic brain injury in a human stem cell model. J. Neurotrauma, 2018, 35(2), 341-352. [http://dx.doi.org/10.1089/neu.2017.5155]. [PMID: 28978285].
[79]
Wilson, N.M.; Gurney, M.E.; Dietrich, W.D.; Atkins, C.M. Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury. PLoS One, 2017, 12(5), e0178013. [http://dx.doi.org/ 10.1371/journal.pone.0178013]. [PMID: 28542295].
[80]
Garrido-Mesa, N.; Zarzuelo, A.; Gálvez, J. Minocycline: far beyond an antibiotic. Br. J. Pharmacol., 2013, 169(2), 337-352. [http://dx.doi.org/10.1111/bph.12139]. [PMID: 23441623].
[81]
Lei, B.; Mace, B.; Dawson, H.N.; Warner, D.S.; Laskowitz, D.T.; James, M.L. Anti-inflammatory effects of progesterone in lipopolysaccharide-stimulated BV-2 microglia. PLoS One, 2014, 9(7), e103969. [http://dx.doi.org/10.1371/journal.pone.0103969]. [PMID: 25080336].
[82]
Trippier, P.C.; Jansen Labby, K.; Hawker, D.D.; Mataka, J.J.; Silverman, R.B. Target- and mechanism-based therapeutics for neurodegenerative diseases: strength in numbers. J. Med. Chem., 2013, 56(8), 3121-3147. [http://dx.doi.org/10.1021/jm3015926]. [PMID: 23458846].
[83]
Haar, C.V.; Peterson, T.C.; Martens, K.M.; Hoane, M.R. The use of nicotinamide as a treatment for experimental traumatic brain injury and stroke: A review and evaluation. Clin. Pharmacol. Biopharmaceut. S, 2013, 1(2), 1-8.
[84]
Xu, X.; Gao, W.; Cheng, S.; Yin, D.; Li, F.; Wu, Y.; Sun, D.; Zhou, S.; Wang, D.; Zhang, Y.; Jiang, R.; Zhang, J. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J. Neuroinflammation, 2017, 14(1), 167-182. [http://dx.doi.org/10.1186/s12974-017-0934-2]. [PMID: 28835272].
[85]
Siopi, E.; Cho, A.H.; Homsi, S.; Croci, N.; Plotkine, M.; Marchand-Leroux, C.; Jafarian-Tehrani, M. Minocycline restores sAPPα levels and reduces the late histopathological consequences of traumatic brain injury in mice. J. Neurotrauma, 2011, 28(10), 2135-2143. [http://dx.doi.org/10.1089/neu.2010.1738]. [PMID: 21770756].
[86]
Wang, C.; Hu, Z.; Zou, Y.; Xiang, M.; Jiang, Y.; Botchway, B.O.A.; Huo, X.; Du, X.; Fang, M. The post-therapeutic effect of rapamycin in mild traumatic brain-injured rats ensuing in the upregulation of autophagy and mitophagy. Cell Biol. Int., 2017, 41(9), 1039-1047. [http://dx.doi.org/10.1002/cbin.10820]. [PMID: 28685977].
[87]
Erlich, S.; Alexandrovich, A.; Shohami, E.; Pinkas-Kramarski, R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis., 2007, 26(1), 86-93. [http://dx.doi.org/10. 1016/j.nbd.2006.12.003]. [PMID: 17270455].
[88]
Zhu, X.; Park, J.; Golinski, J.; Qiu, J.; Khuman, J.; Lee, C.C.; Lo, E.H.; Degterev, A.; Whalen, M.J. Role of Akt and mammalian target of rapamycin in functional outcome after concussive brain injury in mice. J. Cereb. Blood Flow Metab., 2014, 34(9), 1531-1539. [http://dx.doi.org/10.1038/jcbfm.2014.113]. [PMID: 24938400].
[89]
Shi, G.D. OuYang, Y.P.; Shi, J.G.; Liu, Y.; Yuan, W.; Jia, L.S. PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem. Biophys. Res. Commun., 2011, 404(4), 941-945. [http://dx.doi.org/10.1016/j.bbrc.2010.12.085]. [PMID: 21185267].
[90]
You, W.; Wang, Z.; Li, H.; Shen, H.; Xu, X.; Jia, G.; Chen, G. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats. J. Neurol. Sci., 2016, 367, 224-231. [http://dx.doi.org/10.1016/j.jns.2016.06.021]. [PMID: 27423593].
[91]
Gurkoff, G.; Shahlaie, K.; Lyeth, B.; Berman, R. Voltage-gated calcium channel antagonists and traumatic brain injury. Pharmaceuticals (Basel), 2013, 6(7), 788-812. [http://dx.doi.org/10.3390/ ph6070788]. [PMID: 24276315].
[92]
Hoshide, R.; Cheung, V.; Marshall, L.; Kasper, E.; Chen, C.C. Do corticosteroids play a role in the management of traumatic brain injury? Surg. Neurol. Int., 2016, 7, 84. [http://dx.doi.org/10.4103/2152-7806.190439]. [PMID: 27656315].
[93]
Wu, C.; Sun, D. GABA receptors in brain development, function, and injury. Metab. Brain Dis., 2015, 30(2), 367-379. [http://dx.doi. org/10.1007/s11011-014-9560-1]. [PMID: 24820774].
[94]
Dutertre, S.; Becker, C.M.; Betz, H. Inhibitory glycine receptors: an update. J. Biol. Chem., 2012, 287(48), 40216-40223. [http://dx. doi.org/10.1074/jbc.R112.408229]. [PMID: 23038260].
[95]
Dorsett, C.R.; McGuire, J.L.; DePasquale, E.A.; Gardner, A.E.; Floyd, C.L.; McCullumsmith, R.E. Glutamate neurotransmission in rodent models of traumatic brain injury. J. Neurotrauma, 2017, 34(2), 263-272. [http://dx.doi.org/10.1089/neu.2015.4373]. [PMID: 27256113].
[96]
Chunhua, C.; Chunhua, X.; Megumi, S.; Renyu, L. Kappa opioid receptor agonist and brain ischemia. Transl. Perioper. Pain Med., 2014, 1(2), 27-34. [PMID: 25574482].
[97]
Plesnila, N.; von Baumgarten, L.; Retiounskaia, M.; Engel, D.; Ardeshiri, A.; Zimmermann, R.; Hoffmann, F.; Landshamer, S.; Wagner, E.; Culmsee, C. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ., 2007, 14(8), 1529-1541. [http://dx.doi. org/10.1038/sj.cdd.4402159]. [PMID: 17464322].
[98]
Yang, L.Y.; Greig, N.H.; Huang, Y.N.; Hsieh, T.H.; Tweedie, D.; Yu, Q.S.; Hoffer, B.J.; Luo, Y.; Kao, Y.C.; Wang, J.Y. Post-traumatic administration of the p53 inactivator pifithrin-α oxygen analogue reduces hippocampal neuronal loss and improves cognitive deficits after experimental traumatic brain injury. Neurobiol. Dis., 2016, 96, 216-226. [http://dx.doi.org/10.1016/j.nbd.2016.08. 012]. [PMID: 27553877].
[99]
Huang, X.J.; Li, W.P.; Lin, Y.; Feng, J.F.; Jia, F.; Mao, Q.; Jiang, J.Y. Blockage of the upregulation of voltage-gated sodium channel nav1. 3 improve outcomes after experimental traumatic brain injury. J. Neurotrauma, 2014, 31(4), 346-357.
[100]
Wahl, F.; Renou, E.; Mary, V.; Stutzmann, J.M. Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury. Brain Res., 1997, 756(1-2), 247-255. [http:// dx.doi.org/10.1016/S0006-8993(97)00144-3]. [PMID: 9187339].
[101]
Stocchetti, N.; Carbonara, M.; Citerio, G.; Ercole, A.; Skrifvars, M.B.; Smielewski, P.; Zoerle, T.; Menon, D.K. Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurol., 2017, 16(6), 452-464. [http://dx.doi.org/10.1016/S1474-4422(17)30118-7]. [PMID: 28504109].
[102]
Xiong, Y.; Zhang, Y.; Mahmood, A.; Chopp, M. Investigational agents for treatment of traumatic brain injury. Expert Opin. Investig. Drugs, 2015, 24(6), 743-760. [http://dx.doi.org/10.1517/ 13543784.2015.1021919]. [PMID: 25727893].
[103]
Zhu, H.T.; Bian, C.; Yuan, J.C.; Chu, W.H.; Xiang, X.; Chen, F.; Wang, C.S.; Feng, H.; Lin, J.K. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J. Neuroinflammation, 2014, 11(1), 59. [http://dx.doi.org/10.1186/1742-2094-11-59]. [PMID: 24669820].