Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Action of Polyphenols in Diabetes Mellitus and Alzheimer's Disease: A Common Agent for Overlapping Pathologies

Author(s): Ana C. Silveira, Jane Pires Dias, Vanessa M. Santos, Pedro Fontes Oliveira, Marco G. Alves, Luís Rato and Branca M. Silva*

Volume 17, Issue 7, 2019

Page: [590 - 613] Pages: 24

DOI: 10.2174/1570159X16666180803162059

Price: $65

Abstract

Diabetes Mellitus (DM) and Alzheimer's disease (AD) are two prevalent diseases in modern societies, which are caused mainly by current lifestyle, aging and genetic alterations. It has already been demonstrated that these two diseases are associated, since individuals suffering from DM are prone to develop AD. Conversely, it is also known that individuals with AD are more susceptible to DM, namely type 2 diabetes (T2DM). Therefore, these two pathologies, although completely different in terms of symptomatology, end up sharing several mechanisms at the molecular level, with the most obvious being the increase of oxidative stress and inflammation.

Polyphenols are natural compounds widely spread in fruits and vegetables whose dietary intake has been considered inversely proportional to the incidence of DM and AD. So, it is believed that this group of phytochemicals may have preventive and therapeutic potential, not only by reducing the risk and delaying the development of these pathologies, but also by improving brain’s metabolic profile and cognitive function.

The aim of this review is to understand the extent to which DM and AD are related pathologies, the degree of similarity and the relationship between them, to detail the molecular mechanisms by which polyphenols may exert a protective effect, such as antioxidant and anti-inflammatory effects, and highlight possible advantages of their use as common preventive and therapeutic alternatives.

Keywords: Polyphenols, diabetes mellitus, Alzheimer's disease, diabetes mellitus and alzheimer's disease link, antidiabetic therapy, neuroprotection.

Graphical Abstract

[1]
Federation, I.D. IDF Diabetes Atlas, 8th ed; International Diabetes Federation: Brussels, Belgium, 2017.
[2]
Abate, G.; Marziano, M.; Rungratanawanich, W.; Memo, M.; Uberti, D. Nutrition and AGE-ing: Focusing on Alzheimer’s Disease. Oxid. Med. Cell. Longev., 2017, 2017, 7039816. [http://dx.doi.org/ 10.1155/2017/7039816]. [PMID: 28168012].
[3]
Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract., 2010, 87(1), 4-14. [http://dx.doi.org/10.1016/j.diabres.2009. 10.007]. [PMID: 19896746].
[4]
Chen, L.; Magliano, D.J.; Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat. Rev. Endocrinol., 2011, 8(4), 228-236. [http://dx.doi.org/10. 1038/nrendo.2011.183]. [PMID: 22064493].
[5]
Andreeva, T.V.; Lukiw, W.J.; Rogaev, E.I. Biological basis for amyloidogenesis in Alzheimer’s disease. Biochemistry (Mosc.), 2017, 82(2), 122-139. [http://dx.doi.org/10.1134/S0006297917020043]. [PMID: 28320296].
[7]
Prince, M.; Comas-Herrera, A.; Knapp, M.; Guerchet, M.; Karagiannidou, M. World Alzheimer Report - Improving healthcare for people living with dementia; Alzheimer's Disease International: London, 2016.
[8]
Sandu, L.; Ciobica, A.; Lefter, R.; Timofte, D.; Anton, E. Neuroprotective strategies using vegetal compounds in the treatment of alzheimer’s disease. Int. Lett. Nat. Sci., 2015, 45, 56-62.
[9]
Povova, J.; Ambroz, P.; Bar, M.; Pavukova, V.; Sery, O.; Tomaskova, H.; Janout, V. Epidemiological of and risk factors for Alzheimer’s disease: a review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub., 2012, 156(2), 108-114. [http://dx.doi.org/ 10.5507/bp.2012.055]. [PMID: 22837131].
[10]
Raciti, G.A.; Longo, M.; Parrillo, L.; Ciccarelli, M.; Mirra, P.; Ungaro, P.; Formisano, P.; Miele, C.; Béguinot, F. Understanding type 2 diabetes: from genetics to epigenetics. Acta Diabetol., 2015, 52(5), 821-827. [http://dx.doi.org/10.1007/s00592-015-0741-0]. [PMID: 25841587].
[11]
Lövdén, M.; Xu, W.; Wang, H.X. Lifestyle change and the prevention of cognitive decline and dementia: what is the evidence? Curr. Opin. Psychiatry, 2013, 26(3), 239-243. [http://dx.doi.org/10.1097/ YCO.0b013e32835f4135]. [PMID: 23493129].
[12]
Leibson, C.L.; Rocca, W.A.; Hanson, V.A.; Cha, R.; Kokmen, E.; O’Brien, P.C.; Palumbo, P.J. The risk of dementia among persons with diabetes mellitus: a population-based cohort study. Ann. N. Y. Acad. Sci., 1997, 826, 422-427. [http://dx.doi.org/10.1111/j.1749-6632.1997.tb48496.x]. [PMID: 9329716].
[13]
Barbagallo, M.; Dominguez, L.J. Type 2 diabetes mellitus and Alzheimer’s disease. World J. Diabetes, 2014, 5(6), 889-893. [http://dx.doi.org/10.4239/wjd.v5.i6.889]. [PMID: 25512792].
[14]
Kodl, C.T.; Seaquist, E.R. Cognitive dysfunction and diabetes mellitus. Endocr. Rev., 2008, 29(4), 494-511. [http://dx.doi.org/10. 1210/er.2007-0034]. [PMID: 18436709].
[15]
Bucht, G.; Adolfsson, R.; Lithner, F.; Winblad, B. Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med. Scand., 1983, 213(5), 387-392. [http:// dx.doi.org/10.1111/j.0954-6820.1983.tb03756.x]. [PMID: 6349261].
[16]
Ojo, O.; Brooke, J. Evaluating the Association between Diabetes, Cognitive Decline and Dementia. Int. J. Environ. Res. Public Health, 2015, 12(7), 8281-8294. [http://dx.doi.org/10.3390/ijerph 120708281]. [PMID: 26193295].
[17]
Schilling, M.A. Unraveling Alzheimer’s: Making Sense of the Relationship between Diabetes and Alzheimer’s Disease1. J. Alzheimers Dis., 2016, 51(4), 961-977. [http://dx.doi.org/10.3233/JAD-150980]. [PMID: 26967215].
[18]
Heitner, J.; Dickson, D. Diabetics do not have increased Alzheimer-type pathology compared with age-matched control subjects. A retrospective postmortem immunocytochemical and histofluorescent study. Neurology, 1997, 49(5), 1306-1311. [http://dx. doi.org/10.1212/WNL.49.5.1306]. [PMID: 9371913].
[19]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Front. Endocrinol. (Lausanne), 2017, 8, 6. [http://dx.doi.org/10.3389/fendo.2017. 00006]. [PMID: 28167928].
[20]
Espargaró, A.; Ginex, T.; Vadell, M.D.; Busquets, M.A.; Estelrich, J.; Muñoz-Torrero, D.; Luque, F.J.; Sabate, R. Combined in vitro cell-based/in silico screening of naturally occurring flavonoids and phenolic compounds as potential anti-alzheimer drugs. J. Nat. Prod., 2017, 80(2), 278-289. [http://dx.doi.org/10.1021/acs. jnatprod.6b00643]. [PMID: 28128562].
[21]
Akter, K.; Lanza, E.A.; Martin, S.A.; Myronyuk, N.; Rua, M.; Raffa, R.B. Diabetes mellitus and Alzheimer’s disease: shared pathology and treatment? Br. J. Clin. Pharmacol., 2011, 71(3), 365-376. [http://dx.doi.org/10.1111/j.1365-2125.2010.03830.x]. [PMID: 21284695].
[22]
Kovacic, P. Phenolic antioxidants as drugs for alzheimer’s disease: Oxidative stress and selectivity. Nov. Appro. Drug Des. Dev., 2017, 3(2), 555-606.
[23]
Dias, T.R.; Alves, M.G.; Casal, S.; Oliveira, P.F.; Silva, B.M. Promising potential of dietary (poly)phenolic compounds in the prevention and treatment of diabetes mellitus. Curr. Med. Chem., 2017, 24(4), 334-354. [http://dx.doi.org/10.2174/09298673236661 60905150419]. [PMID: 27593957].
[24]
Cheng, X.; Zhang, L.; Lian, Y.J. Molecular targets in alzheimer’s disease: From pathogenesis to therapeutics. BioMed Res. Int., 2015, 2015, 760758. [http://dx.doi.org/10.1155/2015/760758]. [PMID: 26665008].
[25]
Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J. Diabetes Metab. Disord., 2013, 12(1), 43. [http://dx.doi.org/10. 1186/2251-6581-12-43]. [PMID: 23938049].
[26]
Swaminathan, A.; Jicha, G.A. Nutrition and prevention of Alzheimer’s dementia. Front. Aging Neurosci., 2014, 6(22), 282. [PMID: 25368575].
[27]
Kovacsova, M.; Barta, A.; Parohova, J.; Vrankova, S.; Pechanova, O. Neuroprotective Mechanisms of Natural Polyphenolic Compounds. Act. Nerv. Super. Rediviva, 2010, 52(3), 181-186.
[28]
Kondakova, V.; Tsvetkov, I.; Batchvarova, R.; Badjakov, I.; Dzhambazova, T.; Slavov, S. Phenol Compounds-Qualitative Index in Small Fruits. Biotechnol. Biotechnol. Equip., 2014, 23(4), 1444-1448. [http://dx.doi.org/10.2478/V10133-009-0024-4].
[29]
Dembinska-Kiec, A.; Mykkanen, O.; Kiec-Wilk, B.; Mykkanen, H. Antioxidant phytochemicals against type 2 diabetes. Br. J. Nutr.,, 2008, 99 (E Suppl 1), ES109-117. [http://dx.doi.org/10.1017/ S000711450896579X]
[30]
Stefek, M. Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract. Interdiscip. Toxicol., 2011, 4(2), 69-77. [http://dx.doi.org/10.2478/v10102-011-0013-y]. [PMID: 21753902].
[31]
Xiao, J.B.; Högger, P. Dietary polyphenols and type 2 diabetes: current insights and future perspectives. Curr. Med. Chem., 2015, 22(1), 23-38. [http://dx.doi.org/10.2174/0929867321666140706130807]. [PMID: 25005188].
[32]
Association, A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90. [http://dx.doi.org/ 10.2337/dc14-S081]. [PMID: 24357215].
[33]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553. [http://dx.doi.org/10.1016/j.jsps.2015.03.013]. [PMID: 27752226].
[34]
Ferrannini, E.; Gastaldelli, A.; Iozzo, P. Pathophysiology of prediabetes. Med. Clin. North Am., 2011, 95(2), 327-339. vii-viii. [vii-viii.]. [http://dx.doi.org/10.1016/j.mcna.2010.11.005] [PMID: 21281836].
[35]
Khowailed, E.A.; Rashed, L.A.; Seddiek, H.A.; Mahmoud, M.M.; Ibrahim, F.E. Is the effect of caloric restriction on type 2 diabetes mellitus in rats mediated via sirtuin-1? Med. J. Cairo Univ., 2015, 83(1), 357-365.
[36]
Yacoub, R.; Lee, K.; He, J.C. The Role of SIRT1 in Diabetic Kidney Disease. Front. Endocrinol. (Lausanne), 2014, 5, 166. [http://dx.doi.org/10.3389/fendo.2014.00166]. [PMID: 25346724].
[37]
Cantó, C.; Gerhart-Hines, Z.; Feige, J.N.; Lagouge, M.; Noriega, L.; Milne, J.C.; Elliott, P.J.; Puigserver, P.; Auwerx, J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458(7241), 1056-1060. [http:// dx.doi.org/10.1038/nature07813]. [PMID: 19262508].
[38]
Price, N.L.; Gomes, A.P.; Ling, A.J.; Duarte, F.V.; Martin-Montalvo, A.; North, B.J.; Agarwal, B.; Ye, L.; Ramadori, G.; Teodoro, J.S.; Hubbard, B.P.; Varela, A.T.; Davis, J.G.; Varamini, B.; Hafner, A.; Moaddel, R.; Rolo, A.P.; Coppari, R.; Palmeira, C.M.; de Cabo, R.; Baur, J.A.; Sinclair, D.A. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab., 2012, 15(5), 675-690. [http://dx.doi.org/10.1016/j.cmet.2012.04.003]. [PMID: 22560220].
[39]
Bordone, L.; Cohen, D.; Robinson, A.; Motta, M.C.; van Veen, E.; Czopik, A.; Steele, A.D.; Crowe, H.; Marmor, S.; Luo, J.; Gu, W.; Guarente, L. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell, 2007, 6(6), 759-767. [http://dx.doi. org/10.1111/j.1474-9726.2007.00335.x]. [PMID: 17877786].
[40]
Rato, L.; Duarte, A.I.; Tomás, G.D.; Santos, M.S.; Moreira, P.I.; Socorro, S.; Cavaco, J.E.; Alves, M.G.; Oliveira, P.F. Pre-diabetes alters testicular PGC1-α/SIRT3 axis modulating mitochondrial bioenergetics and oxidative stress. Biochim. Biophys. Acta, 2014, 1837(3), 335-344. [http://dx.doi.org/10.1016/j.bbabio.2013.12.008]. [PMID: 24361842].
[41]
Yoon, J-W.; Jun, H-S. Autoimmune destruction of pancreatic beta cells. Am. J. Ther., 2005, 12(6), 580-591. [http://dx.doi.org/10. 1097/01.mjt.0000178767.67857.63]. [PMID: 16280652].
[42]
Canivell, S.; Gomis, R. Diagnosis and classification of autoimmune diabetes mellitus. Autoimmun. Rev., 2014, 13(4-5), 403-407. [http:// dx.doi.org/10.1016/j.autrev.2014.01.020]. [PMID: 24424179].
[43]
Nishikawa, T.; Araki, E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxid. Redox Signal., 2007, 9(3), 343-353. [http://dx.doi.org/10. 1089/ars.2006.1458]. [PMID: 17184177].
[44]
Nandhini, R.; Safina, S.S.S.; Saikumar, P. Respiratory myopathy in type II diabetes mellitus. J. Clin. Diagn. Res., 2012, 6(3), 354-357.
[45]
Davis, T.M.E.; Knuiman, M.; Kendall, P.; Vu, H.; Davis, W.A. Reduced pulmonary function and its associations in type 2 diabetes: the Fremantle Diabetes Study. Diabetes Res. Clin. Pract., 2000, 50(2), 153-159. [http://dx.doi.org/10.1016/S0168-8227(00) 00166-2]. [PMID: 10960726].
[46]
Quarijer, P.H.; Tammeling, G.J.; Cdls, J.E.O.F.P.; Peslin, R.; Yernault, J-C. Lung volumes and forced ventilatory flows report working party standardization of lung function tests european community for steel and coal official statement of the European Respiratory Society. Eur. Respir. J., 1993, 16, 5-40.
[47]
El-Azeem, I.A.A.; Hamdy, G.; Amin, M.; Rashad, A. Pulmonary function changes in diabetic lung. Egypt. J. Chest Dis. Tuberc., 2013, 62(3), 513-517. [http://dx.doi.org/10.1016/j.ejcdt.2013.07.006].
[48]
Bastaki, S. Diabetes mellitus and its treatment. Int. J. Diabetes Metab., 2005, 13, 111-134.
[49]
Dickerson, B.C.; Brickhouse, M.; McGinnis, S.; Wolk, D.A. Alzheimer’s disease: The influence of age on clinical heterogeneity through the human brain connectome. Alzheimers Dement. (Amst.), 2016, 6, 122-135. [http://dx.doi.org/10.1016/j.dadm.2016.12.007]. [PMID: 28239637].
[50]
Nowrangi, M.A.; Lyketsos, C.G.; Rosenberg, P.B. Principles and management of neuropsychiatric symptoms in Alzheimer’s dementia. Alzheimers Res. Ther., 2015, 7(1), 12. [http://dx.doi.org/10. 1186/s13195-015-0096-3]. [PMID: 27391771].
[51]
Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim. Biophys. Acta, 2017, 1863(5), 1078-1089. [http://dx.doi.org/10.1016/j.bbadis. 2016.08.018]. [PMID: 27567931].
[52]
Bali, J.; Halima, S.B.; Felmy, B.; Goodger, Z.; Zurbriggen, S.; Rajendran, L. Cellular basis of Alzheimer’s disease. Ann. Indian Acad. Neurol., 2010, 13(Suppl. 2), S89-S93. [http://dx.doi.org/10. 4103/0972-2327.74251]. [PMID: 21369424].
[53]
Goekoop, R.; Scheltens, P.; Barkhof, F.; Rombouts, S.A. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation--a pharmacological fMRI study. Brain, 2006, 129(Pt 1), 141-157. [http://dx.doi.org/10. 1093/brain/awh671]. [PMID: 16251213].
[54]
Lane, R.M.; Potkin, S.G.; Enz, A. Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int. J. Neuropsychopharmacol., 2006, 9(1), 101-124. [http://dx.doi.org/10.1017/S146114570 5005833]. [PMID: 16083515].
[55]
Omar, S.H.; Scott, C.J.; Hamlin, A.S.; Obied, H.K. The protective role of plant biophenols in mechanisms of Alzheimer’s disease. J. Nutr. Biochem., 2017, 47, 1-20. [http://dx.doi.org/10.1016/j.jnutbio. 2017.02.016]. [PMID: 28301805].
[56]
Moreira, P.I.; Santos, M.S.; Sena, C.; Seiça, R.; Oliveira, C.R. Insulin protects against amyloid beta-peptide toxicity in brain mitochondria of diabetic rats. Neurobiol. Dis., 2005, 18(3), 628-637. [http://dx.doi.org/10.1016/j.nbd.2004.10.017]. [PMID: 15755688].
[57]
Moreira, P.I.; Santos, M.S.; Oliveira, C.R. Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid. Redox Signal., 2007, 9(10), 1621-1630. [http://dx.doi.org/10.1089/ars.2007.1703]. [PMID: 17678440].
[58]
Navarro, A.; Boveris, A. The mitochondrial energy transduction system and the aging process. Am. J. Physiol. Cell Physiol., 2007, 292(2), C670-C686. [http://dx.doi.org/10.1152/ajpcell.00213.2006]. [PMID: 17020935].
[59]
Son, Y.; Kim, S.; Chung, H.T.; Pae, H.O. Reactive oxygen species in the activation of MAP kinases. Methods Enzymol., 2013, 528, 27-48. [http://dx.doi.org/10.1016/B978-0-12-405881-1.00002-1]. [PMID: 23849857].
[60]
Tamagno, E.; Guglielmotto, M.; Giliberto, L.; Vitali, A.; Borghi, R.; Autelli, R.; Danni, O.; Tabaton, M. JNK and ERK1/2 pathways have a dual opposite effect on the expression of BACE1. Neurobiol. Aging, 2009, 30(10), 1563-1573. [http://dx.doi.org/10.1016/ j.neurobiolaging.2007.12.015]. [PMID: 18255190].
[61]
Young, K.J.; Bennett, J.P. The mitochondrial secret(ase) of Alzheimer’s disease. J. Alzheimers Dis., 2010, 20(Suppl. 2), S381-S400. [http://dx.doi.org/10.3233/JAD-2010-100360]. [PMID: 20442493].
[62]
Pallàs, M.; Camins, A. Molecular and biochemical features in Alzheimer’s disease. Curr. Pharm. Des., 2006, 12(33), 4389-4408. [http://dx.doi.org/10.2174/138161206778792967]. [PMID: 17105434].
[63]
Nuovo, G.; Paniccia, B.; Mezache, L.; Quiñónez, M.; Williams, J.; Vandiver, P.; Fadda, P.; Amann, V. Diagnostic pathology of Alzheimer’s disease from routine microscopy to immunohistochemistry and experimental correlations. Ann. Diagn. Pathol., 2017, 28, 24-29. [http://dx.doi.org/10.1016/j.anndiagpath.2017.02.006]. [PMID: 28648936].
[64]
Iqbal, K.; Liu, F.; Gong, C-X.; Grundke-Iqbal, I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2010, 7(8), 656-664. [http://dx.doi.org/10.2174/156720510793611592]. [PMID: 20678074].
[65]
Zhao, J.; O’Connor, T.; Vassar, R. The contribution of activated astrocytes to Aβ production: implications for Alzheimer’s disease pathogenesis. J. Neuroinflammation, 2011, 8, 150. [http://dx.doi. org/10.1186/1742-2094-8-150]. [PMID: 22047170].
[66]
Hong, H.S.; Hwang, E.M.; Sim, H.J.; Cho, H-J.; Boo, J.H.; Oh, S.S.; Kim, S.U.; Mook-Jung, I. Interferon γ stimulates β-secretase expression and sAPPbeta production in astrocytes. Biochem. Biophys. Res. Commun., 2003, 307(4), 922-927. [http://dx.doi.org/ 10.1016/S0006-291X(03)01270-1]. [PMID: 12878199].
[67]
Cho, H.J.; Kim, S-K.; Jin, S.M.; Hwang, E-M.; Kim, Y.S.; Huh, K.; Mook-Jung, I. IFN-gamma-induced BACE1 expression is mediated by activation of JAK2 and ERK1/2 signaling pathways and direct binding of STAT1 to BACE1 promoter in astrocytes. Glia, 2007, 55(3), 253-262. [http://dx.doi.org/10.1002/glia.20451]. [PMID: 17091494].
[68]
Blasko, I.; Veerhuis, R.; Stampfer-Kountchev, M.; Saurwein-Teissl, M.; Eikelenboom, P.; Grubeck-Loebenstein, B. Costimulatory effects of interferon-gamma and interleukin-1beta or tumor necrosis factor alpha on the synthesis of Abeta1-40 and Abeta1-42 by human astrocytes. Neurobiol. Dis., 2000, 7(6 Pt B), 682-689. [http://dx.doi.org/10.1006/nbdi.2000.0321]. [PMID: 11114266].
[69]
Julien, C.; Tremblay, C.; Emond, V.; Lebbadi, M.; Salem, N., Jr; Bennett, D.A.; Calon, F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol., 2009, 68(1), 48-58. [http://dx.doi.org/10.1097/NEN.0b013e3181922348]. [PMID: 19104446].
[70]
Qin, W.; Yang, T.; Ho, L.; Zhao, Z.; Wang, J.; Chen, L.; Zhao, W.; Thiyagarajan, M.; MacGrogan, D.; Rodgers, J.T.; Puigserver, P.; Sadoshima, J.; Deng, H.; Pedrini, S.; Gandy, S.; Sauve, A.A.; Pasinetti, G.M. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J. Biol. Chem., 2006, 281(31), 21745-21754. [http://dx.doi.org/10.1074/jbc.M602909200]. [PMID: 16751189].
[71]
Anekonda, T.S.; Reddy, P.H. Neuronal protection by sirtuins in Alzheimer’s disease. J. Neurochem., 2006, 96(2), 305-313. [http:// dx.doi.org/10.1111/j.1471-4159.2005.03492.x]. [PMID: 16219030].
[72]
Hallows, W.C.; Lee, S.; Denu, J.M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10230-10235. [http://dx.doi.org/10.1073/pnas. 0604392103]. [PMID: 16790548].
[73]
Tang, B.L. Sirt1 and the Mitochondria. Mol. Cells, 2016, 39(2), 87-95. [http://dx.doi.org/10.14348/molcells.2016.2318]. [PMID: 26831453].
[74]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203. [http://dx.doi.org/10.1016/j.pharep.2014. 09.004]. [PMID: 25712639].
[75]
Park, K.W.; Baik, H.H.; Jin, B.K. IL-13-induced oxidative stress via microglial NADPH oxidase contributes to death of hippocampal neurons in vivo. J. Immunol., 2009, 183(7), 4666-4674. [http://dx.doi.org/10.4049/jimmunol.0803392]. [PMID: 19752235].
[76]
Lemere, C.A.; Lopera, F.; Kosik, K.S.; Lendon, C.L.; Ossa, J.; Saido, T.C.; Yamaguchi, H.; Ruiz, A.; Martinez, A.; Madrigal, L.; Hincapie, L.; Arango, J.C.; Anthony, D.C.; Koo, E.H.; Goate, A.M.; Selkoe, D.J.; Arango, J.C. The E280A presenilin 1 Alzheimer mutation produces increased A β 42 deposition and severe cerebellar pathology. Nat. Med., 1996, 2(10), 1146-1150. [http:// dx.doi.org/10.1038/nm1096-1146]. [PMID: 8837617].
[77]
Miklossy, J.; Taddei, K.; Suva, D.; Verdile, G.; Fonte, J.; Fisher, C.; Gnjec, A.; Ghika, J.; Suard, F.; Mehta, P.D.; McLean, C.A.; Masters, C.L.; Brooks, W.S.; Martins, R.N. Two novel presenilin-1 mutations (Y256S and Q222H) are associated with early-onset Alzheimer’s disease. Neurobiol. Aging, 2003, 24(5), 655-662. [http:// dx.doi.org/10.1016/S0197-4580(02)00192-6]. [PMID: 12885573].
[78]
Liu, C.C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118. [http://dx.doi.org/10.1038/nrneurol. 2012.263]. [PMID: 23296339].
[79]
Theendakara, V.; Patent, A.; Peters Libeu, C.A.; Philpot, B.; Flores, S.; Descamps, O.; Poksay, K.S.; Zhang, Q.; Cailing, G.; Hart, M.; John, V.; Rao, R.V.; Bredesen, D.E. Neuroprotective Sirtuin ratio reversed by ApoE4. Proc. Natl. Acad. Sci. USA, 2013, 110(45), 18303-18308. [http://dx.doi.org/10.1073/pnas.1314145110]. [PMID: 24145446].
[80]
Leszek, J.; Trypka, E.; Tarasov, V.V.; Ashraf, G.M.; Aliev, G. Type 3 Diabetes Mellitus: A Novel Implication of Alzheimers Disease. Curr. Top. Med. Chem., 2017, 17(12), 1331-1335. [http://dx. doi.org/10.2174/1568026617666170103163403]. [PMID: 28049395].
[81]
Brunet, A.; Berger, S.L. Epigenetics of aging and aging-related disease. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(Suppl. 1), S17-S20. [http://dx.doi.org/10.1093/gerona/glu042]. [PMID: 24833581].
[82]
Cacabelos, R.; Torrellas, C. Epigenetics of aging and alzheimer’s disease: Implications for pharmacogenomics and drug responsE. Int. J. Mol. Sci., 2015, 16(12), 30483-30543. [http://dx.doi.org/ 10.3390/ijms161226236]. [PMID: 26703582].
[83]
Ayissi, V.B.; Ebrahimi, A.; Schluesenner, H. Epigenetic effects of natural polyphenols: a focus on SIRT1-mediated mechanisms. Mol. Nutr. Food Res., 2014, 58(1), 22-32. [http://dx.doi.org/10.1002/ mnfr.201300195]. [PMID: 23881751].
[84]
Kadowaki, T.; Yamauchi, T.; Waki, H.; Iwabu, M.; Okada-Iwabu, M.; Nakamura, M. Adiponectin, adiponectin receptors, and epigenetic regulation of adipogenesis. Cold Spring Harb. Symp. Quant. Biol., 2011, 76, 257-265. [http://dx.doi.org/10.1101/sqb.2012.76. 010587]. [PMID: 22492282].
[85]
Pan, M-H.; Lai, C-S.; Wu, J-C.; Ho, C-T. Epigenetic and disease targets by polyphenols. Curr. Pharm. Des., 2013, 19(34), 6156-6185. [http://dx.doi.org/10.2174/1381612811319340010]. [PMID: 23448446].
[86]
Razay, G.; Wilcock, G.K. Hyperinsulinaemia and Alzheimer’s disease. Age Ageing, 1994, 23(5), 396-399. [http://dx.doi.org/10. 1093/ageing/23.5.396]. [PMID: 7825486].
[87]
Carantoni, M.; Zuliani, G.; Munari, M.R.; D’Elia, K.; Palmieri, E.; Fellin, R. Alzheimer disease and vascular dementia: relationships with fasting glucose and insulin levels. Dement. Geriatr. Cogn. Disord., 2000, 11(3), 176-180. [http://dx.doi.org/10.1159/000017232]. [PMID: 10765049].
[88]
Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, G.S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; Green, P.S.; Leverenz, J.; Cross, D.; Gerton, B. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol., 2012, 69(1), 29-38. [http://dx.doi.org/10.1001/archneurol.2011.233]. [PMID: 21911655].
[89]
de la Monte, S.M. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr. Alzheimer Res., 2012, 9(1), 35-66. [http://dx.doi.org/10.2174/156720512799015037]. [PMID: 22329651].
[90]
Lupien, S.B.; Bluhm, E.J.; Ishii, D.N. Systemic insulin-like growth factor-I administration prevents cognitive impairment in diabetic rats, and brain IGF regulates learning/memory in normal adult rats. J. Neurosci. Res., 2003, 74(4), 512-523. [http://dx.doi.org/10. 1002/jnr.10791]. [PMID: 14598295].
[91]
Schulingkamp, R.J.; Pagano, T.C.; Hung, D.; Raffa, R.B. Insulin receptors and insulin action in the brain: review and clinical implications. Neurosci. Biobehav. Rev., 2000, 24(8), 855-872. [http://dx. doi.org/10.1016/S0149-7634(00)00040-3]. [PMID: 11118610].
[92]
Miyamoto, Y.; Chen, L.; Sato, M.; Sokabe, M.; Nabeshima, T.; Pawson, T.; Sakai, R.; Mori, N. Hippocampal synaptic modulation by the phosphotyrosine adapter protein ShcC/N-Shc via interaction with the NMDA receptor. J. Neurosci., 2005, 25(7), 1826-1835. [http://dx.doi.org/10.1523/JNEUROSCI.3030-04.2005]. [PMID: 15716419].
[93]
Bredt, D.S. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic. Res., 1999, 31(6), 577-596. [http://dx.doi.org/10.1080/10715769900301161]. [PMID: 10630682].
[94]
Rivera, E.J.; Goldin, A.; Fulmer, N.; Tavares, R.; Wands, J.R.; de la Monte, S.M. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J. Alzheimers Dis., 2005, 8(3), 247-268. [http://dx.doi.org/10.3233/JAD-2005-8304]. [PMID: 16340083].
[95]
Kroner, Z. The relationship between Alzheimer’s disease and diabetes: Type 3 diabetes? Altern. Med. Rev., 2009, 14(4), 373-379. [PMID: 20030463].
[96]
Hotamisligil, G.S. Inflammatory pathways and insulin action. Int. J. Obes. Relat. Metab. Disord., 2003, 27(Suppl. 3), S53-S55. [http://dx.doi.org/10.1038/sj.ijo.0802502]. [PMID: 14704746].
[97]
Veurink, G.; Fuller, S.J.; Atwood, C.S.; Martins, R.N. Genetics, lifestyle and the roles of amyloid beta and oxidative stress in Alzheimer’s disease. Ann. Hum. Biol., 2003, 30(6), 639-667. [http:// dx.doi.org/10.1080/03014460310001620144]. [PMID: 14675907].
[98]
Hüll, M.; Strauss, S.; Berger, M.; Volk, B.; Bauer, J. The participation of interleukin-6, a stress-inducible cytokine, in the pathogenesis of Alzheimer’s disease. Behav. Brain Res., 1996, 78(1), 37-41. [http://dx.doi.org/10.1016/0166-4328(95)00213-8]. [PMID: 8793035].
[99]
Wang, X.; Zheng, W.; Xie, J.W.; Wang, T.; Wang, S.L.; Teng, W.P.; Wang, Z.Y. Insulin deficiency exacerbates cerebral amyloidosis and behavioral deficits in an Alzheimer transgenic mouse model. Mol. Neurodegener., 2010, 5, 46-58. [http://dx.doi.org/10. 1186/1750-1326-5-46]. [PMID: 21044348].
[100]
Clodfelder-Miller, B.J.; Zmijewska, A.A.; Johnson, G.V.W.; Jope, R.S. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes, 2006, 55(12), 3320-3325. [http://dx.doi.org/10.2337/db06-0485]. [PMID: 17130475].
[101]
de la Monte, S.M.; Wands, J.R. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J. Diabetes Sci. Technol., 2008, 2(6), 1101-1113. [http://dx.doi.org/10.1177/193229680800200619]. [PMID: 19885299].
[102]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516. [http://dx.doi.org/10.1080/ 01926230701320337]. [PMID: 17562483].
[103]
Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb. Perspect. Biol., 2009, 1(6), a001651. [http:// dx.doi.org/10.1101/cshperspect.a001651]. [PMID: 20457564].
[104]
Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J., 2004, 23(12), 2369-2380. [http://dx.doi.org/10.1038/sj.emboj.7600244]. [PMID: 15152190].
[105]
Chen, J.; Zhou, Y.; Mueller-Steiner, S.; Chen, L.F.; Kwon, H.; Yi, S.; Mucke, L.; Gan, L. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J. Biol. Chem., 2005, 280(48), 40364-40374. [http://dx.doi.org/10. 1074/jbc.M509329200]. [PMID: 16183991].
[106]
Beeri, M.S.; Schmeidler, J.; Silverman, J.M.; Gandy, S.; Wysocki, M.; Hannigan, C.M.; Purohit, D.P.; Lesser, G.; Grossman, H.T.; Haroutunian, V. Insulin in combination with other diabetes medication is associated with less Alzheimer neuropathology. Neurology, 2008, 71(10), 750-757. [http://dx.doi.org/10.1212/01.wnl.0000324925. 95210.6d]. [PMID: 18765651].
[107]
Liu, C.C.; Hu, J.; Tsai, C.W.; Yue, M.; Melrose, H.L.; Kanekiyo, T.; Bu, G. Neuronal LRP1 regulates glucose metabolism and insulin signaling in the brain. J. Neurosci., 2015, 35(14), 5851-5859. [http://dx.doi.org/10.1523/JNEUROSCI.5180-14.2015]. [PMID: 25855193].
[108]
Yarchoan, M.; Arnold, S.E. Repurposing diabetes drugs for brain insulin resistance in Alzheimer disease. Diabetes, 2014, 63(7), 2253-2261. [http://dx.doi.org/10.2337/db14-0287]. [PMID: 24931035].
[109]
Mushtaq, G.; Khan, J.A.; Kumosani, T.A.; Kamal, M.A. Alzheimer’s disease and type 2 diabetes via chronic inflammatory mechanisms. Saudi J. Biol. Sci., 2015, 22(1), 4-13. [http://dx.doi. org/10.1016/j.sjbs.2014.05.003]. [PMID: 25561876].
[110]
Lakey-Beitia, J.; Berrocal, R.; Rao, K.S.; Durant, A.A. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol. Neurobiol., 2015, 51(2), 466-479. [http://dx.doi.org/10.1007/s12035-014-8722-9]. [PMID: 24826916].
[111]
Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients, 2010, 2(12), 1231-1246. [http://dx.doi.org/10.3390/nu 2121231]. [PMID: 22254006].
[112]
Wolfe, K.L.; Liu, R.H. Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. J. Agric. Food Chem., 2008, 56(18), 8404-8411. [http://dx.doi.org/10.1021/jf8013074]. [PMID: 18702468].
[113]
Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem., 2011, 126(4), 1821-1835. [http://dx.doi.org/10.1016/ j.foodchem.2010.12.026]. [PMID: 25213963].
[114]
Ajila, C.M.; Brar, S.K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valéro, J.R. Extraction and analysis of polyphenols: recent trends. Crit. Rev. Biotechnol., 2011, 31(3), 227-249. [http://dx.doi.org/10. 3109/07388551.2010.513677]. [PMID: 21073258].
[115]
Choi, D.Y.; Lee, Y.J.; Hong, J.T.; Lee, H.J. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res. Bull., 2012, 87(2-3), 144-153. [http:// dx.doi.org/10.1016/j.brainresbull.2011.11.014]. [PMID: 22155297].
[116]
Han, X.; Shen, T.; Lou, H. Dietary Polyphenols and Their Biological Significance. Int. J. Mol. Sci., 2007, 8(9), 950-988. [http://dx. doi.org/10.3390/i8090950].
[117]
Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 2013, 5(9), 3367-3387. [http://dx.doi.org/10.3390/nu5093367]. [PMID: 23989753].
[118]
El Gharras, H. Polyphenols: food sources, properties and applications - a review. J. Food Sci. Technol., 2009, 44(12), 2512-2518. [http://dx.doi.org/10.1111/j.1365-2621.2009.02077.x].
[119]
Lee, W-H.; Loo, C-Y.; Bebawy, M.; Luk, F.; Mason, R.S.; Rohanizadeh, R. Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr. Neuropharmacol., 2013, 11(4), 338-378. [http://dx.doi.org/10.2174/ 1570159X11311040002]. [PMID: 24381528].
[120]
Brglez, M.E.; Knez, H.M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules, 2016, 21(7), E901. [http:// dx.doi.org/10.3390/molecules21070901]. [PMID: 27409600].
[121]
Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.P.; Li, S.; Chen, Y.M.; Li, H.B. Natural polyphenols for prevention and treatment of cancer. Nutrients, 2016, 8(8), E515. [http://dx.doi.org/10.3390/nu8080515]. [PMID: 27556486].
[122]
Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci., 2007, 30(18), 3268-3295. [http://dx.doi.org/10.1002/jssc.200700261]. [PMID: 18069740].
[123]
Tsao, R.; Deng, Z. Separation procedures for naturally occurring antioxidant phytochemicals. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 812(1-2), 85-99. [http://dx.doi.org/10. 1016/S1570-0232(04)00764-0]. [PMID: 15556490].
[124]
Lacker, T.; Strohschein, S.; Albert, K. Separation and identification of various carotenoids by C30 reversed-phase high-performance liquid chromatography coupled to UV and atmospheric pressure chemical ionization mass spectrometric detection. J. Chromatogr. A, 1999, 854(1-2), 37-44. [http://dx.doi.org/10.1016/S0021-9673 (99)00584-1]. [PMID: 10497926].
[125]
Robards, K. Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J. Chromatogr. A, 2003, 1000(1-2), 657-691. [http://dx.doi.org/10.1016/S0021-9673(03)00058-X]. [PMID: 12877194].
[126]
Flamini, R. Mass spectrometry in grape and wine chemistry. Part I: polyphenols. Mass Spectrom. Rev., 2003, 22(4), 218-250. [http:// dx.doi.org/10.1002/mas.10052]. [PMID: 12884388].
[127]
Lewandowska, H.; Kalinowska, M.; Lewandowski, W.; Stępkowski, T.M.; Brzóska, K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J. Nutr. Biochem., 2016, 32, 1-19. [http://dx.doi.org/10.1016/j.jnutbio. 2015.11.006]. [PMID: 27142731].
[128]
Commenges, D.; Scotet, V.; Renaud, S.; Jacqmin-Gadda, H.; Barberger-Gateau, P.; Dartigues, J-F. Intake of flavonoids and risk of dementia. Eur. J. Epidemiol., 2000, 16(4), 357-363. [http://dx. doi.org/10.1023/A:1007614613771]. [PMID: 10959944].
[129]
Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8S)(Suppl.), 2073S-2085S. [http:// dx.doi.org/10.1093/jn/130.8.2073S]. [PMID: 10917926].
[130]
Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur. J. Clin. Nutr., 2010, 64(Suppl. 3), S112-S120. [http://dx.doi.org/10.1038/ejcn.2010.221]. [PMID: 21045839].
[131]
Organization, W.H. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation, 2003.
[132]
Spencer, J.P.E.; Abd-el-Mohsen, M.M.; Rice-Evans, C. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity. Arch. Biochem. Biophys., 2004, 423(1), 148-161. [http://dx.doi.org/10.1016/j.abb.2003.11.010]. [PMID: 14989269].
[133]
Youdim, K.A.; Qaiser, M.Z.; Begley, D.J.; Rice-Evans, C.A.; Abbott, N.J. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radic. Biol. Med., 2004, 36(5), 592-604. [http://dx.doi.org/10.1016/j.freeradbiomed.2003.11.023]. [PMID: 14980703].
[134]
Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; Filipe, A.; McDougall, G.J.; Stewart, D.; Kim, K.S.; Palmela, I.; Brites, D.; Brito, M.A.; Brito, C.; Santos, C.N. Polyphenols journey through blood-brain barrier towards neuronal protection. Sci. Rep., 2017, 7(1), 11456. [http://dx.doi.org/10.1038/s41598-017-11512-6]. [PMID: 28904352].
[135]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies.. Am. J. Clin. Nutr.., 2005, 81(1) (Suppl.), 230S-242S. [http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[136]
D’Archivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: status and controversies. Int. J. Mol. Sci., 2010, 11(4), 1321-1342. [http://dx.doi.org/10.3390/ijms 11041321]. [PMID: 20480022].
[137]
Panagiotakos, D.B.; Lionis, C.; Zeimbekis, A.; Gelastopoulou, K.; Papairakleous, N.; Das, U.N.; Polychronopoulos, E. Long-term tea intake is associated with reduced prevalence of (type 2) diabetes mellitus among elderly people from Mediterranean islands: MEDIS epidemiological study. Yonsei Med. J., 2009, 50(1), 31-38. [http://
dx.doi.org/10.3349/ymj.2009.50.1.31]. [PMID: 19259345].
[138]
Letenneur, L.; Proust-Lima, C.; Le Gouge, A.; Dartigues, J.F.; Barberger-Gateau, P. Flavonoid intake and cognitive decline over a 10-year period. Am. J. Epidemiol., 2007, 165(12), 1364-1371. [http://dx.doi.org/10.1093/aje/kwm036]. [PMID: 17369607].
[139]
Maher, P.; Dargusch, R.; Bodai, L.; Gerard, P.E.; Purcell, J.M.; Marsh, J.L. ERK activation by the polyphenols fisetin and resveratrol provides neuroprotection in multiple models of Huntington’s disease. Hum. Mol. Genet., 2011, 20(2), 261-270. [http://dx.doi.
org/10.1093/hmg/ddq460]. [PMID: 20952447].
[140]
Aquilano, K.; Baldelli, S.; Rotilio, G.; Ciriolo, M.R. Role of nitric oxide synthases in Parkinson’s disease: a review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochem. Res., 2008, 33(12), 2416-2426. [http://dx.doi.org/10.1007/s11064-008-9697-6]. [PMID: 18415676].
[141]
Gupta, A.; Vij, G.; Sharma, S.; Tirkey, N.; Rishi, P.; Chopra, K. Curcumin, a polyphenolic antioxidant, attenuates chronic fatigue syndrome in murine water immersion stress model. Immunobiology, 2009, 214(1), 33-39. [http://dx.doi.org/10.1016/j.imbio.2008. 04.003]. [PMID: 19159825].
[142]
Zou, J.G.; Wang, Z.R.; Huang, Y.Z.; Cao, K.J.; Wu, J.M. Effect of red wine and wine polyphenol resveratrol on endothelial function in hypercholesterolemic rabbits. Int. J. Mol. Med., 2003, 11(3), 317-320. [PMID: 12579333].
[143]
Wang, L.M.; Wang, Y.J.; Cui, M.; Luo, W.J.; Wang, X.J.; Barber, P.A.; Chen, Z.Y. A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. Eur. J. Neurosci., 2013, 37(10), 1669-1681. [http://dx. doi.org/10.1111/ejn.12162]. [PMID: 23461657].
[144]
Perez-Vizcaino, F.; Duarte, J.; Andriantsitohaina, R. Endothelial function and cardiovascular disease: effects of quercetin and wine polyphenols. Free Radic. Res., 2006, 40(10), 1054-1065. [http://
dx.doi.org/10.1080/10715760600823128]. [PMID: 17015250].
[145]
Parker-Athill, E.; Luo, D.; Bailey, A.; Giunta, B.; Tian, J.; Shytle, R.D.; Murphy, T.; Legradi, G.; Tan, J. Flavonoids, a prenatal prophylaxis via targeting JAK2/STAT3 signaling to oppose IL-6/MIA associated autism. J. Neuroimmunol., 2009, 217(1-2), 20-27. [http://dx.doi.org/10.1016/j.jneuroim.2009.08.012]. [PMID: 19766327].
[146]
Jalel, A.; Soumaya, G.S.; Hamdaoui, M.H. Vitiligo treatment with vitamins, minerals and polyphenol supplementation. Indian J. Dermatol., 2009, 54(4), 357-360. [http://dx.doi.org/10.4103/0019-5154.57613]. [PMID: 20101338].
[147]
Das, J.; Ramani, R.; Suraju, M.O. Polyphenol compounds and PKC signaling. Biochim. Biophys. Acta, 2016, 1860(10), 2107-2121. [http://dx.doi.org/10.1016/j.bbagen.2016.06.022]. [PMID: 27369735].
[148]
Kaulmann, A.; Bohn, T. Bioactivity of Polyphenols: Preventive and Adjuvant Strategies toward Reducing Inflammatory Bowel Diseases-Promises, Perspectives, and Pitfalls. Oxid. Med. Cell. Longev., 2016, 2016, 9346470. [http://dx.doi.org/10.1155/2016/9346470]. [PMID: 27478535].
[149]
Wu, Y.; Xia, Z.Y.; Zhao, B.; Leng, Y.; Dou, J.; Meng, Q.T.; Lei, S.Q.; Chen, Z.Z.; Zhu, J. (-)-Epigallocatechin-3-gallate attenuates myocardial injury induced by ischemia/reperfusion in diabetic rats and in H9c2 cells under hyperglycemic conditions. Int. J. Mol. Med., 2017, 40(2), 389-399. [http://dx.doi.org/10.3892/ijmm.2017. 3014]. [PMID: 28714516].
[150]
Pasinetti, G.M.; Wang, J.; Ho, L.; Zhao, W.; Dubner, L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim. Biophys. Acta, 2015, 1852(6), 1202-1208. [http://dx.doi.org/10.1016/j.bbadis.2014.10. 006]. [PMID: 25315300].
[151]
Jiménez-Flores, L.M.; López-Briones, S.; Macías-Cervantes, M.H.; Ramírez-Emiliano, J.; Pérez-Vázquez, V.A. PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules, 2014, 19(6), 8289-8302. [http://dx.doi.org/10.3390/molecules19068289]. [PMID: 24945581].
[152]
Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxid. Med. Cell. Longev., 2015, 2015, 504253. [http://dx.doi.org/10.1155/2015/504253]. [PMID: 26180591].
[153]
Mandel, S.A.; Amit, T.; Weinreb, O.; Youdim, M.B. Understanding the broad-spectrum neuroprotective action profile of green tea polyphenols in aging and neurodegenerative diseases. J. Alzheimers Dis., 2011, 25(2), 187-208. [http://dx.doi.org/10.3233/JAD-2011-101803]. [PMID: 21368374].
[154]
Leung, L.K.; Su, Y.; Chen, R.; Zhang, Z.; Huang, Y.; Chen, Z-Y. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J. Nutr., 2001, 131(9), 2248-2251. [http://dx. doi.org/10.1093/jn/131.9.2248]. [PMID: 11533262].
[155]
Okello, E.J.; Savelev, S.U.; Perry, E.K. In vitro anti-beta-secretase and dual anti-cholinesterase activities of Camellia sinensis L. (tea) relevant to treatment of dementia. Phytother. Res., 2004, 18(8), 624-627. [http://dx.doi.org/10.1002/ptr.1519]. [PMID: 15476306].
[156]
Cao, H.; Hininger-Favier, I.; Kelly, M.A.; Benaraba, R.; Dawson, H.D.; Coves, S.; Roussel, A.M.; Anderson, R.A. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J. Agric. Food Chem., 2007, 55(15), 6372-6378. [http://dx.doi.
org/10.1021/jf070695o]. [PMID: 17616136].
[157]
Wolfram, S.; Raederstorff, D.; Preller, M.; Wang, Y.; Teixeira, S.R.; Riegger, C.; Weber, P. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J. Nutr., 2006, 136(10), 2512-2518. [http://dx.doi.org/10.1093/jn/136.10.2512]. [PMID: 16988119].
[158]
Fu, Q-Y.; Li, Q-S.; Lin, X-M.; Qiao, R-Y.; Yang, R.; Li, X-M.; Dong, Z-B.; Xiang, L-P.; Zheng, X-Q.; Lu, J-L.; Yuan, C-B.; Ye, J-H.; Liang, Y-R. Antidiabetic Effects of Tea. Molecules, 2017, 22(5), E849. [http://dx.doi.org/10.3390/molecules22050849]. [PMID: 28531120].
[159]
Frei, B.; Higdon, J.V. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J. Nutr., 2003, 133(10), 3275S-3284S. [http://dx.doi.org/10.1093/jn/133.10.3275S]. [PMID: 14519826].
[160]
Özyurt, H.; Luna, C.; Estévez, M. Redox chemistry of the molecular interactions between tea catechins and human serum proteins under simulated hyperglycemic conditions. Food Funct., 2016, 7(3), 1390-1400. [http://dx.doi.org/10.1039/C5FO01525A]. [PMID: 26839039].
[161]
Zhang, Z.; Ding, Y.; Dai, X.; Wang, J.; Li, Y. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur. J. Pharmacol., 2011, 670(1), 311-316. [http://dx.doi.org/10.1016/ j.ejphar.2011.08.033]. [PMID: 21925162].
[162]
Wimmer, R.J.; Russell, S.J.; Schneider, M.F. Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers. J. Nutr. Biochem., 2015, 26(12), 1559-1567. [http://dx.doi.org/10. 1016/j.jnutbio.2015.07.023]. [PMID: 26344776].
[163]
Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of α-amylase and α-glucosidase activity. J. Agric. Food Chem., 2012, 60(36), 8924-8929. [http://dx.doi.org/10.1021/ jf301147n]. [PMID: 22697360].
[164]
Dias, G.T.R.; Tomas, G.; Teixeira, N.F.; Alves, M.G.; Oliveria, P.F.; Silva, M.B. White Tea (Camellia Sinensis (L.)): Antioxidant properties and beneficial health effects. Int. J. Food Sci. Nutr. Diet., 2013, 2(2), 19-26.
[165]
Nunes, A.R.; Alves, M.G.; Tomás, G.D.; Conde, V.R.; Cristóvão, A.C.; Moreira, P.I.; Oliveira, P.F.; Silva, B.M. Daily consumption of white tea (Camellia sinensis (L.)) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats. Br. J. Nutr., 2015, 113(5), 832-842. [http://dx.doi.org/10.1017/S000711 4514004395]. [PMID: 25716141].
[166]
Martins, A.D.; Alves, M.G.; Bernardino, R.L.; Dias, T.R.; Silva, B.M.; Oliveira, P.F. Effect of white tea (Camellia sinensis (L.)) extract in the glycolytic profile of Sertoli cell. Eur. J. Nutr., 2014, 53(6), 1383-1391. [http://dx.doi.org/10.1007/s00394-013-0640-5]. [PMID: 24363139].
[167]
Seeram, N.P.; Henning, S.M.; Niu, Y.; Lee, R.; Scheuller, H.S.; Heber, D. Catechin and caffeine content of green tea dietary supplements and correlation with antioxidant capacity. J. Agric. Food Chem., 2006, 54(5), 1599-1603. [http://dx.doi.org/10.1021/jf052857r]. [PMID: 16506807].
[168]
Moderno, P.M.; Carvalho, M.; Silva, B.M. Recent patents on Camellia sinensis: source of health promoting compounds. Recent Pat. Food Nutr. Agric., 2009, 1(3), 182-192. [http://dx.doi.org/
10.2174/2212798410901030182]. [PMID: 20653539].
[169]
Oliveira, P.F.; Tomás, G.D.; Dias, T.R.; Martins, A.D.; Rato, L.; Alves, M.G.; Silva, B.M. White tea consumption restores sperm quality in prediabetic rats preventing testicular oxidative damage. Reprod. Biomed. Online, 2015, 31(4), 544-556. [http://dx.doi.
org/10.1016/j.rbmo.2015.06.021]. [PMID: 26276042].
[170]
Dias, T.R.; Alves, M.G.; Rato, L.; Casal, S.; Silva, B.M.; Oliveira, P.F. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J. Nutr. Biochem., 2016, 37, 83-93. [http://dx.doi.org/10.1016/j.jnutbio. 2016.07.018]. [PMID: 27637002].
[171]
Alves, M.G.; Martins, A.D.; Teixeira, N.F.; Luís, R.; Oliveira, P.F.; Silva, B.M. White tea consumption improves cardiac glycolytic and oxidative profile of prediabetic rats. J. Funct. Foods, 2015, 14, 102-110. [http://dx.doi.org/10.1016/j.jff.2015.01.019].
[172]
Park, J.H.; Jin, J.Y.; Baek, W.K.; Park, S.H.; Sung, H.Y.; Kim, Y.K.; Lee, J.; Song, D.K. Ambivalent role of gallated catechins in glucose tolerance in humans: a novel insight into non-absorbable gallated catechin-derived inhibitors of glucose absorption. J. Physiol. Pharmacol., 2009, 60(4), 101-109. [PMID: 20065503].
[173]
Igarashi, K.; Honma, K.; Yoshinari, O.; Nanjo, F.; Hara, Y. Effects of dietary catechins on glucose tolerance, blood pressure and oxidative status in Goto-Kakizaki rats. J. Nutr. Sci. Vitaminol. (Tokyo), 2007, 53(6), 496-500. [http://dx.doi.org/10.3177/jnsv.53.496]. [PMID: 18202537].
[174]
van Dam, R.M.; Dekker, J.M.; Nijpels, G.; Stehouwer, C.D.; Bouter, L.M.; Heine, R.J. Coffee consumption and incidence of impaired fasting glucose, impaired glucose tolerance, and type 2 diabetes: the Hoorn Study. Diabetologia, 2004, 47(12), 2152-2159. [http://dx.doi.org/10.1007/s00125-004-1573-6]. [PMID: 15662556].
[175]
Rodrigues, J.; Assunção, M.; Lukoyanov, N.; Cardoso, A.; Carvalho, F.; Andrade, J.P. Protective effects of a catechin-rich extract on the hippocampal formation and spatial memory in aging rats. Behav. Brain Res., 2013, 246, 94-102. [http://dx.doi.org/10.1016/ j.bbr.2013.02.040]. [PMID: 23473881].
[176]
Oršolić, N.; Sirovina, D.; Gajski, G.; Garaj-Vrhovac, V.; Jazvinšćak, J.M.; Kosalec, I. Assessment of DNA damage and lipid peroxidation in diabetic mice: effects of propolis and epigallocatechin gallate (EGCG). Mutat. Res., 2013, 757(1), 36-44. [http://dx.doi.org/10.1016/j.mrgentox.2013.04.022]. [PMID: 23859956].
[177]
Henning, S.M.; Niu, Y.; Liu, Y.; Lee, N.H.; Hara, Y.; Thames, G.D.; Minutti, R.R.; Carpenter, C.L.; Wang, H.; Heber, D. Bioavailability and antioxidant effect of epigallocatechin gallate administered in purified form versus as green tea extract in healthy individuals. J. Nutr. Biochem., 2005, 16(10), 610-616. [http://dx. doi.org/10.1016/j.jnutbio.2005.03.003]. [PMID: 16081270].
[178]
Li, N.; Zhao, Y.; Liang, Y. Cardioprotective effects of tea and its catechins. Health (N. Y.), 2013, 5(4), 23-30.
[179]
Higdon, J.V.; Frei, B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. Nutr., 2003, 43(1), 89-143. [http://dx.doi.org/10.1080/104086903 90826464]. [PMID: 12587987].
[180]
Wang, G.G.; Lu, X.H.; Li, W.; Zhao, X.; Zhang, C. Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid. Based Complement. Alternat. Med., 2011, 2011, 323171. [http://dx.doi.org/10.1155/2011/323171]. [PMID: 21584231].
[181]
Wang, H.; Wang, H.; Cheng, H.; Che, Z. Ameliorating effect of luteolin on memory impairment in an Alzheimer’s disease model. Mol. Med. Rep., 2016, 13(5), 4215-4220. [http://dx.doi.org/10. 3892/mmr.2016.5052]. [PMID: 27035793].
[182]
Yu, D.; Li, M.; Tian, Y.; Liu, J.; Shang, J. Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury. Life Sci., 2015, 122, 15-25. [http://dx.doi.org/10.1016/ j.lfs.2014.11.014]. [PMID: 25476833].
[183]
Xia, F.; Wang, C.; Jin, Y.; Liu, Q.; Meng, Q.; Liu, K.; Sun, H. Luteolin protects HUVECs from TNF-α-induced oxidative stress and inflammation via its effects on the Nox4/ROS-NF-κB and MAPK pathways. J. Atheroscler. Thromb., 2014, 21(8), 768-783. [http://dx.doi.org/10.5551/jat.23697]. [PMID: 24621786].
[184]
Sawmiller, D.; Li, S.; Shahaduzzaman, M.; Smith, A.J.; Obregon, D.; Giunta, B.; Borlongan, C.V.; Sanberg, P.R.; Tan, J. Luteolin reduces Alzheimer’s disease pathologies induced by traumatic brain injury. Int. J. Mol. Sci., 2014, 15(1), 895-904. [http://dx. doi.org/10.3390/ijms15010895]. [PMID: 24413756].
[185]
Kim, A.; Lee, W.; Yun, J-M. Luteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions. Nutr. Res. Pract., 2017, 11(5), 430-434. [http://dx.doi.org/10.4162/nrp.2017.11.5.430]. [PMID: 28989580].
[186]
Hasegawa, K.; Wakino, S.; Simic, P.; Sakamaki, Y.; Minakuchi, H.; Fujimura, K.; Hosoya, K.; Komatsu, M.; Kaneko, Y.; Kanda, T.; Kubota, E.; Tokuyama, H.; Hayashi, K.; Guarente, L.; Itoh, H. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat. Med., 2013, 19(11), 1496-1504. [http://dx.doi.org/10.1038/nm.3363]. [PMID: 24141423].
[187]
Zang, Y.; Igarashi, K.; Li, Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A(y) mice. Biosci. Biotechnol. Biochem., 2016, 80(8), 1580-1586. [http://dx.doi.org/10.1080/ 09168451.2015.1116928]. [PMID: 27170065].
[188]
Li, M.; Li, Q.; Zhao, Q.; Zhang, J.; Lin, J. Luteolin improves the impaired nerve functions in diabetic neuropathy: behavioral and biochemical evidences. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10112-10120. [PMID: 26617718].
[189]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145. [http://dx.doi.org/10.1016/j.neuropharm.2015.01.027]. [PMID: 25666032].
[190]
Tota, S.; Awasthi, H.; Kamat, P.K.; Nath, C.; Hanif, K. Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice. Behav. Brain Res., 2010, 209(1), 73-79. [http://dx.doi.org/10.1016/ j.bbr.2010.01.017]. [PMID: 20096732].
[191]
Sarubbo, F.; Ramis, M.R.; Kienzer, C.; Aparicio, S.; Esteban, S.; Miralles, A.; Moranta, D. Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal sirt1 levels improving cognition in aged rats. J. Neuroimmune Pharmacol., 2018, 13(1), 24-38. [http://dx.doi.org/10.1007/s11481-017-9759-0]. [PMID: 28808887].
[192]
Eid, H.M.; Nachar, A.; Thong, F.; Sweeney, G.; Haddad, P.S. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn. Mag., 2015, 11(41), 74-81. [http://dx.doi.org/10.4103/0973-1296.149708]. [PMID: 25709214].
[193]
Boots, A.W.; Haenen, G.R.; Bast, A. Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol., 2008, 585(2-3), 325-337. [http://dx.doi.org/10.1016/j.ejphar.2008.03.008]. [PMID: 18417116].
[194]
Hanasaki, Y.; Ogawa, S.; Fukui, S. The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic. Biol. Med., 1994, 16(6), 845-850. [http://dx.doi.org/10.1016/ 0891-5849(94)90202-X]. [PMID: 8070690].
[195]
Morand, C.; Crespy, V.; Manach, C.; Besson, C.; Demigné, C.; Rémésy, C. Plasma metabolites of quercetin and their antioxidant properties. Am. J. Physiol., 1998, 275(1 Pt 2), R212-R219. [PMID: 9688981].
[196]
Fiorani, M.; De Sanctis, R.; Menghinello, P.; Cucchiarini, L.
Cellini, B.; Dachà, M. Quercetin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells. Free Radic. Res., 2001, 34(6), 639-648. [http://dx.doi.org/10.1080/ 10715760100300531]. [PMID: 11697039].
[197]
Rifaai, R.A.; El-Tahawy, N.F.; Ali Saber, E. Effect of Quercetin on the Endocrine Pancreas of the Experimentally Induced Diabetes in Male Albino Rats: A Histological and Immunohistochemical Study. J. Diabetes Metab., 2012, 03(03) [http://dx.doi.org/10. 4172/2155-6156.1000182].
[198]
Wang, Y.; Cai, B.; Shao, J.; Wang, T.T.; Cai, R.Z.; Ma, C.J.; Han, T.; Du, J. Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer’s disease. Neural Regen. Res., 2016, 11(7), 1153-1158. [http://dx.doi.org/10. 4103/1673-5374.187056]. [PMID: 27630702].
[199]
Valsecchi, A.E.; Franchi, S.; Panerai, A.E.; Rossi, A.; Sacerdote, P.; Colleoni, M. The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur. J. Pharmacol., 2011, 650(2-3), 694-702. [http://dx.doi.org/10.1016/j.ejphar.2010.10.060]. [PMID: 21050844].
[200]
Garcia, C.; Feve, B.; Ferré, P.; Halimi, S.; Baizri, H.; Bordier, L.; Guiu, G.; Dupuy, O.; Bauduceau, B.; Mayaudon, H. Diabetes and inflammation: fundamental aspects and clinical implications. Diabetes Metab., 2010, 36(5), 327-338. [http://dx.doi.org/10.1016/ j.diabet.2010.07.001]. [PMID: 20851652].
[201]
Yousefi, H.; Alihemmati, A.; Karimi, P.; Alipour, M.R.; Habibi, P.; Ahmadiasl, N. Effect of genistein on expression of pancreatic SIRT1, inflammatory cytokines and histological changes in ovariectomized diabetic rat. Iran. J. Basic Med. Sci., 2017, 20(4), 423-429. [PMID: 28804612].
[202]
Ibrahim, A.S.; El-Shishtawy, M.M.; Peña, A., Jr; Liou, G.I. Genistein attenuates retinal inflammation associated with diabetes by targeting of microglial activation. Mol. Vis., 2010, 16, 2033-2042. [PMID: 21042558].
[203]
Behloul, N.; Wu, G. Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur. J. Pharmacol., 2013, 698(1-3), 31-38. [http://dx.doi.org/10.1016/j.ejphar.2012.11.013]. [PMID: 23178528].
[204]
Li, F.; Gong, Q.; Dong, H.; Shi, J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr. Pharm. Des., 2012, 18(1), 27-33. [http://dx.doi.org/10.2174/138161212798919075]. [PMID: 22211686].
[205]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1. [http://dx.doi.org/10.1186/s12974-016-0779-0]. [PMID: 28086917].
[206]
Al-Bishri, W.M.; Hamza, A.H.; Farran, S.K. Resveratrol treatment attenuates amyloid beta, tau protein and markers of oxidative stress, and inflammation in alzheimer’s disease rat model. Int. J. Pharm. Res. Allied Sci., 2017, 6(3), 71-78.
[207]
de la Lastra, C.A.; Villegas, I. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem. Soc. Trans., 2007, 35(Pt 5), 1156-1160. [http://dx.doi.org/10.1042/ BST0351156]. [PMID: 17956300].
[208]
Ulakcsai, Z.; Bagaméry, F.; Vincze, I.; Szökő, É.; Tábi, T. Protective effect of resveratrol against caspase 3 activation in primary mouse fibroblasts. Croat. Med. J., 2015, 56(2), 78-84. [http://dx. doi.org/10.3325/cmj.2015.56.78]. [PMID: 25891866].
[209]
Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, J.E.; Janle, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; Marambaud, P. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem., 2010, 285(12), 9100-9113. [http://dx.doi.org/10.1074/jbc. M109.060061]. [PMID: 20080969].
[210]
Porquet, D.; Griñán-Ferré, C.; Ferrer, I.; Camins, A.; Sanfeliu, C.; Del Valle, J.; Pallàs, M. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J. Alzheimers Dis., 2014, 42(4), 1209-1220. [http://dx.doi.org/10.3233/JAD-140444]. [PMID: 25024312].
[211]
Kim, D.; Nguyen, M.D.; Dobbin, M.M.; Fischer, A.; Sananbenesi, F.; Rodgers, J.T.; Delalle, I.; Baur, J.A.; Sui, G.; Armour, S.M.; Puigserver, P.; Sinclair, D.A.; Tsai, L-H. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J., 2007, 26(13), 3169-3179. [http://dx.doi.org/10.1038/sj.emboj.7601758]. [PMID: 17581637].
[212]
Sarubbo, F.; Esteban, S.; Miralles, A.; Moranta, D. Effects of resveratrol and other polyphenols on sirt1: Relevance to brain function during aging. Curr. Neuropharmacol., 2018, 16(2), 126-136. [http://dx.doi.org/10.2174/1570159X15666170703113212]. [PMID: 28676015].
[213]
Movahed, A.; Nabipour, I.; Lieben, L.X.; Thandapilly, S.J.; Yu, L.; Kalantarhormozi, M.; Rekabpour, S.J.; Netticadan, T. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evid. Based Complement. Alternat. Med., 2013, 2013, 851267. [http://dx.doi.org/10.1155/2013/851267]. [PMID: 24073011].
[214]
Pharmacologic Approaches to Glycemic Treatment. Standards of Medical Care in Diabetes-2018. Diabetes Care,, 2018, 41 (Suppl. 1), S73-S85. [http://dx.doi.org/10.2337/dc18-S008] [PMID: 29222379]
[215]
Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; Geny, B.; Laakso, M.; Puigserver, P.; Auwerx, J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell, 2006, 127(6), 1109-1122. [http://dx.doi.org/10.1016/j.cell.2006.11.013]. [PMID: 17112576].
[216]
Szkudelski, T.; Szkudelska, K. Anti-diabetic effects of resveratrol. Ann. N. Y. Acad. Sci., 2011, 1215, 34-39. [http://dx.doi.org/
10.1111/j.1749-6632.2010.05844.x]. [PMID: 21261639].
[217]
Szkudelski, T. Resveratrol-induced inhibition of insulin secretion from rat pancreatic islets: evidence for pivotal role of metabolic disturbances. Am. J. Physiol. Endocrinol. Metab., 2007, 293(4), E901-E907. [http://dx.doi.org/10.1152/ajpendo.00564.2006]. [PMID: 17578889].
[218]
Baur, J.A.; Pearson, K.J.; Price, N.L.; Jamieson, H.A.; Lerin, C.; Kalra, A.; Prabhu, V.V.; Allard, J.S.; Lopez-Lluch, G.; Lewis, K.; Pistell, P.J.; Poosala, S.; Becker, K.G.; Boss, O.; Gwinn, D.; Wang, M.; Ramaswamy, S.; Fishbein, K.W.; Spencer, R.G. Lakatta, E.G.; Le Couteur, D.; Shaw, R.J.; Navas, P.; Puigserver, P.; Ingram, D.K.; de Cabo, R.; Sinclair, D.A. Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444(7117), 337-342. [http://dx.doi.org/10.1038/nature05354]. [PMID: 17086191].
[219]
Pacholec, M.; Bleasdale, J.E.; Chrunyk, B.; Cunningham, D.; Flynn, D.; Garofalo, R.S.; Griffith, D.; Griffor, M.; Loulakis, P.; Pabst, B.; Qiu, X.; Stockman, B.; Thanabal, V.; Varghese, A.; Ward, J.; Withka, J.; Ahn, K. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem., 2010, 285(11), 8340-8351. [http://dx.doi.org/10.1074/jbc.M109.088682]. [PMID: 20061378].
[220]
Hou, X.; Rooklin, D.; Fang, H.; Zhang, Y. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation. Sci. Rep., 2016, 6, 38186. [http://dx.doi.org/10.1038/srep38186]. [PMID: 27901083].
[221]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809. [http://dx.doi.org/10.1016/j.bcp.2007.08.016]. [PMID: 17900536].
[222]
Yao, E.C.; Xue, L. Therapeutic effects of curcumin on alzheimer’s disease. Adv. Alzheimer Dis., 2014, 03(04), 145-159. [http://dx.doi.org/10.4236/aad.2014.34014].
[223]
Metzler, M.; Pfeiffer, E.; Schulz, S.I.; Dempe, J.S. Curcumin uptake and metabolism. Biofactors, 2013, 39(1), 14-20. [http://dx. doi.org/10.1002/biof.1042]. [PMID: 22996406].
[224]
Ng, T-P.; Chiam, P-C.; Lee, T.; Chua, H-C.; Lim, L.; Kua, E-H. Curry consumption and cognitive function in the elderly. Am. J. Epidemiol., 2006, 164(9), 898-906. [http://dx.doi.org/10.1093/aje/ kwj267]. [PMID: 16870699].
[225]
Lim, G.P.; Chu, T.; Yang, F.; Beech, W.; Frautschy, S.A.; Cole, G.M. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci., 2001, 21(21), 8370-8377. [http://dx.doi.org/10.1523/JNEUROSCI. 21-21-08370.2001]. [PMID: 11606625].
[226]
Garcia-Alloza, M.; Borrelli, L.A.; Rozkalne, A.; Hyman, B.T.; Bacskai, B.J. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J. Neurochem., 2007, 102(4), 1095-1104. [http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x]. [PMID: 17472706].
[227]
Sharma, S.; Chopra, K.; Kulkarni, S.K.; Agrewala, J.N. Resveratrol and curcumin suppress immune response through CD28/CTLA-4 and CD80 co-stimulatory pathway. Clin. Exp. Immunol., 2007, 147(1), 155-163. [PMID: 17177975].
[228]
Qin, X.Y.; Cheng, Y.; Yu, L.C. Potential protection of curcumin against intracellular amyloid beta-induced toxicity in cultured rat prefrontal cortical neurons. Neurosci. Lett., 2010, 480(1), 21-24. [http://dx.doi.org/10.1016/j.neulet.2010.05.062]. [PMID: 20638958].
[229]
Chougala, M.B.; Bhaskar, J.J.; Rajan, M.G.; Salimath, P.V. Effect of curcumin and quercetin on lysosomal enzyme activities in streptozotocin-induced diabetic rats. Clin. Nutr., 2012, 31(5), 749-755. [http://dx.doi.org/10.1016/j.clnu.2012.02.003]. [PMID: 22445558].
[230]
Yousef, M.I.; El-Demerdash, F.M.; Radwan, F.M. Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem. Toxicol., 2008, 46(11), 3506-3511. [http://
dx.doi.org/10.1016/j.fct.2008.08.031]. [PMID: 18809455].
[231]
Xie, X-Y.; Kong, P.R.; Wu, J.F.; Li, Y.; Li, Y-X. Curcumin attenuates lipolysis stimulated by tumor necrosis factor-α or isoproterenol in 3T3-L1 adipocytes. Phytomedicine, 2012, 20(1), 3-8. [http://dx. doi.org/10.1016/j.phymed.2012.09.003]. [PMID: 23083815].
[232]
Kumar, P.A.; Haseeb, A.; Suryanarayana, P.; Ehtesham, N.Z.; Reddy, G.B. Elevated expression of alphaA- and alphaB-crystallins in streptozotocin-induced diabetic rat. Arch. Biochem. Biophys., 2005, 444(2), 77-83. [http://dx.doi.org/10.1016/j.abb.2005.09.021]. [PMID: 16309625].
[233]
El-Moselhy, M.A.; Taye, A.; Sharkawi, S.S.; El-Sisi, S.F.; Ahmed, A.F. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem. Toxicol., 2011, 49(5), 1129-1140. [http://dx.doi.org/10.1016/j.fct.2011.02.004]. [PMID: 21310207].
[234]
Patel, S.S.; Goyal, R.K. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res., 2011, 3(4), 239-245. [http://dx.doi.org/10.4103/0974-8490.89743]. [PMID: 22224046].
[235]
Hajipour, S.; Sarkaki, A.; Farbood, Y.; Eidi, A.; Mortazavi, P.; Valizadeh, Z. Effect of gallic acid on dementia type of alzheimer disease in rats: Electrophysiological and histological studies. Basic Clin. Neurosci., 2016, 7(2), 97-106. [http://dx.doi.
org/10.15412/J.BCN.03070203]. [PMID: 27303604].
[236]
González-Sarrías, A.; Núñez-Sánchez, M.Á.; Tomás-Barberán, F.A.; Espín, J.C. Neuroprotective effects of bioavailable polyphenol-derived metabolites against oxidative stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. J. Agric. Food Chem., 2017, 65(4), 752-758. [http://dx.doi.org/10.1021/acs.jafc. 6b04538]. [PMID: 28142243].
[237]
Doan, K.V.; Ko, C.M.; Kinyua, A.W.; Yang, D.J.; Choi, Y.H.; Oh, I.Y.; Nguyen, N.M.; Ko, A.; Choi, J.W.; Jeong, Y.; Jung, M.H.; Cho, W.G.; Xu, S.; Park, K.S.; Park, W.J.; Choi, S.Y.; Kim, H.S.; Moh, S.H.; Kim, K.W. Gallic acid regulates body weight and glucose homeostasis through AMPK activation. Endocrinology, 2015, 156(1), 157-168. [http://dx.doi.org/10.1210/en.2014-1354]. [PMID: 25356824].
[238]
Stanely Mainzen Prince, P.; Kumar, M.R.; Selvakumari, C.J. Effects of gallic acid on brain lipid peroxide and lipid metabolism in streptozotocin-induced diabetic Wistar rats. J. Biochem. Mol. Toxicol., 2011, 25(2), 101-107. [http://dx.doi.org/10.1002/jbt.20365]. [PMID: 20957663].
[239]
Nayeem, N.; Smb, A. Gallic acid: A Promising lead molecule for drug development. J. Appl. Pharm., 2016, 8(2), 213. [http://dx. doi.org/10.4172/1920-4159.1000213].
[240]
Wedick, N.M.; Pan, A.; Cassidy, A.; Rimm, E.B.; Sampson, L.; Rosner, B.; Willett, W.; Hu, F.B.; Sun, Q.; van Dam, R.M. Dietary flavonoid intakes and risk of type 2 diabetes in US men and women. Am. J. Clin. Nutr., 2012, 95(4), 925-933. [http://dx.doi.org/
10.3945/ajcn.111.028894]. [PMID: 22357723].
[241]
Liu, Y-J.; Zhan, J.; Liu, X-L.; Wang, Y.; Ji, J.; He, Q-Q. Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Clin. Nutr., 2014, 33(1), 59-63. [http://dx.doi.org/10.1016/j.clnu.2013.03.011]. [PMID: 23591151].
[242]
de Bock, M.; Derraik, J.G.B.; Brennan, C.M.; Biggs, J.B.; Morgan, P.E.; Hodgkinson, S.C.; Hofman, P.L.; Cutfield, W.S. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: a randomized, placebo-controlled, crossover trial. PLoS One, 2013, 8(3), e57622. [http://dx.doi.org/10. 1371/journal.pone.0057622]. [PMID: 23516412].
[243]
Paquette, M.; Medina Larqué, A.S.; Weisnagel, S.J.; Desjardins, Y.; Marois, J.; Pilon, G.; Dudonné, S.; Marette, A.; Jacques, H. Strawberry and cranberry polyphenols improve insulin sensitivity in insulin-resistant, non-diabetic adults: a parallel, double-blind, controlled and randomised clinical trial. Br. J. Nutr., 2017, 117(4), 519-531. [http://dx.doi.org/10.1017/S0007114517000393]. [PMID: 28290272].
[244]
Dubner, L.; Wang, J.; Ho, L.; Ward, L.; Pasinetti, G.M. Recommendations for development of new standardized forms of cocoa breeds and cocoa extract processing for the prevention of alzheimer’s disease: Role of cocoa in promotion of cognitive resilience and healthy brain aging. J. Alzheimers Dis., 2015, 48(4), 879-889. [http://dx.doi.org/10.3233/JAD-150536]. [PMID: 26402120].
[245]
Neshatdousta, S.; Saundersa, C.; Castlea, S.M.; Vauzourb, D. ClaireWilliamsc; Butlerc, L.; Lovegrovea, J.A.; Spencer, J.P.E. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: Two randomised, controlled trials Nutr. Health Aging, 2016, 4, 1-93.
[246]
Krikorian, R.; Nash, T.A.; Shidler, M.D.; Shukitt-Hale, B.; Joseph, J.A. Concord grape juice supplementation improves memory function in older adults with mild cognitive impairment. Br. J. Nutr., 2010, 103(5), 730-734. [http://dx.doi.org/10.1017/S0007114509992364]. [PMID: 20028599].
[247]
Ebrahimi, A.; Schluesener, H. Natural polyphenols against neurodegenerative disorders: potentials and pitfalls. Ageing Res. Rev., 2012, 11(2), 329-345. [http://dx.doi.org/10.1016/j.arr.2012.01.006]. [PMID: 22336470].
[248]
Hügel, H.M.; Jackson, N. Polyphenols for the prevention and treatment of dementia diseases. Neural Regen. Res., 2015, 10(11), 1756-1758. [http://dx.doi.org/10.4103/1673-5374.169609]. [PMID: 26807106].

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy