[1]
Broderick, J.P.; Adeoye, O.; Elm, J. Evolution of the modified rankin scale and its use in future Stroke Trials. Stroke, 2017, 48(7), 2007-2012. [http://dx.doi.org/10.1161/strokeaha.117.017866]. [PMID:28626052].
[2]
Zhou, Y.; Wang, Y.; Wang, J.; Anne, S.R.; Yang, Q.W. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog. Neurobiol., 2014, 115, 25-44. [http://dx.doi.org/10.1016/j.pneurobio.2013.11.003]. [PMID:24291544].
[3]
Ren, H. Kong. Y., Liu, Z., Zang, D., Yang, X., Wood, K., Li, M. Liu, Q. Selective NLRP3 (Pyrin domain-containing protein 3) inflammasome inhibitor reduces brain injury after intracerebral hemorrhage. Stroke, 2018, 49(1), 184-192. [http://dx.doi.org/10.1161/strokeaha.117.018904]. [PMID:29212744].
[4]
Yang, S.J.; Shao, G.F.; Chen, J.L.; Gong, J. The NLRP3 inflammasome: An important driver of neuroinflammation in hemorrhagic stroke. Cell. Mol. Neurobiol., 2018, 38(3), 595-603. [http://dx.doi.org/10.1007/s10571-017-0526-9]. [PMID:28752408].
[5]
Heneka, M.T.; McManus, R.M.; Latz, E. Inflammasome signalling in brain function and neurodegenerative disease. Nat. Rev. Neurosci., 2018. [http://dx.doi.org/10.1038/s41583-018-0055-7]. [PMID:30206330].
[6]
Zeng, J.; Chen, Y.; Ding, R.; Feng, L.; Fu, Z.; Yang, S.; Deng, X.; Xie, Z.; Zheng, S. Isoliquiritigenin alleviates early brain injury after experimental intracerebral hemorrhage via suppressing ROS- and/or NF-kappaB-mediated NLRP3 inflammasome activation by promoting Nrf2 antioxidant pathway. J. Neuroinflam., 2017, 14(1), 119. [http://dx.doi.org/10.1186/s12974-017-0895-5]. [PMID:28610608].
[7]
Cheng, Y.; Wei, Y.; Yang, W.; Song, Y.; Shang, H.; Cai, Y.; Wu, Z.; Zhao, W. Cordycepin confers neuroprotection in mice models of intracerebral hemorrhage via suppressing NLRP3 inflammasome activation. Metab. Brain Dis., 2017, 32(4), 1133-1145. [http://dx.doi.org/10.1007/s11011-017-0003-7]. [PMID:28401330].
[8]
Shao, B.; Cao, Z. Q., Liu, C. Targeting NLRP3 Inflammasome in the treatment of CNS diseases. Front. Mol. Neurosci., 2018, 11, 320. [http://dx.doi.org/10.3389/fnmol.2018.00320]. [PMID:30233319].
[9]
Becker, K.J. Strain-related differences in the immune response: Relevance to human stroke. Transl. Stroke Res., 2016, 7(4), 303-312. [http://dx.doi.org/10.1007/s12975-016-0455-9]. [PMID:26860504].
[10]
Shi, H.; Zheng, K.; Su, Z. Su, H. Zhong., M., He, X., Zhou, C., Chen, H., Xiong, Q. Zhang, Y. Sinomenine enhances microglia M2 polarization and attenuates inflammatory injury in intracerebral hemorrhage. J. Neuroimmunol., 2016, 299, 28-34. [http://dx.doi.org/10.1016/j.jneuroim.2016.08.010]. [PMID:27725118].
[11]
Schneider, U.; Davids, C.; Brandenburg, A.M.; Muller, S.; Elke, A.; Magrini, A.; Atangana, S.; Turkowski, E.K.; Finger, T.; Gutenberg, A.; Gehlhaar, C.; Bruck, W.; Heppner, F.L.; Vajkoczy, P. Microglia inflict delayed brain injury after subarachnoid hemorrhage. Acta Neuropathol., 2015, 130(2), 215-231. [http://dx.doi.org/10.1007/s00401-015-1440-1]. [PMID:25956409].
[12]
Li, R.; Liu, W.; Yin, J.; Chen, Y.; Guo, S.; Fan, H. Li. X., Zhang, X, He, X., Duan, C. TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway. J. Neuroinflam., 2018, 15(1), 231. [http://dx.doi.org/10.1186/s12974-018-1279-1]. [PMID:30126439].
[13]
Pang, J.; Peng, J.; Matei, N.; Yang, P. Kuai, L., Wu, Y., Chen, L., Vitek., M.P., Li, F., Sun, X., Zhang, J.H., Jiang, Y. Apolipoprotein E exerts a whole-brain protective property by promoting M1? microglia quiescence after experimental subarachnoid hemorrhage in mice. Transl. Stroke Res., 2018. [http://dx.doi.org/10.1007/s12975-018-0665-4]. [PMID:30225551].
[14]
Zhao, H.; Garton, T.; Keep, R.F.; Hua, Y.; Xi, G. Microglia/macrophage polarization after experimental intracerebral hemorrhage. Transl. Stroke Res., 2015, 6(6), 407-409. [http://dx.doi.org/10.1007/s12975-015-0428-4]. [PMID:26446073].
[15]
Thomas, A.G.; O’Driscoll, C.M.; Bressler, J.; Kaufmann, W.; Rojas, C.J.; Slusher, B.S. Small molecule glutaminase inhibitors block glutamate release from stimulated microglia. Biochem. Biophys. Res. Commun., 2014, 443(1), 32-36. [http://dx.doi.org/10.1016/j.bbrc.2013.11.043]. [PMID:24269238].
[16]
Lim, T.C.; Spector, M. Biomaterials for enhancing CNS repair. Transl. Stroke Res., 2017, 8(1), 57-64. [http://dx.doi.org/10.1007/s12975-016-0470-x]. [PMID:27251413].
[17]
Denes, A.; Pinteaux, E. Rothwell., N.J., Allan, S.M. Interleukin-1 and stroke: biomarker, harbinger of damage, and therapeutic target. Cerebrovasc. Dis., 2011, 32(6), 517-527. [http://dx.doi.org/10.1159/000332205]. [PMID:22104408].
[18]
Zhang, Z.; Liu, Y.; Huang, Q.; Su, Y.; Zhang, Y. Wang, G. Li, F. NF-kappaB activation and cell death after intracerebral hemorrhage in patients. Neurol. Sci., 2014, 35(7), 1097-1102. [http://dx.doi.org/10.1007/s10072-014-1657-0]. [PMID:24510152].
[19]
Yang, G.; Shao, G.F. Elevated serum IL-11, TNF alpha, and VEGF expressions contribute to the pathophysiology of hypertensive intracerebral hemorrhage (HICH). Neurol. Sci., 2016, 37(8), 1253-1259. [http://dx.doi.org/10.1007/s10072-016-2576-z]. [PMID:27115896].
[20]
Young, A.M.; Karri, S.K.; You, W.; Ogilvy, C.S. Specific TNF-alpha inhibition in cerebral aneurysm formation and subarachnoid hemorrhage. Curr. Drug Saf., 2012, 7 (3), 190-6. 22950379].
[21]
Behrouz, R. Re-exploring tumor necrosis factor alpha as a target for therapy in intracerebral hemorrhage. Transl. Stroke Res., 2016, 7(2), 93-96. [http://dx.doi.org/10.1007/s12975-016-0446-x]. [PMID:26762364].
[22]
Wu, W.; Guan, Y.; Zhao, G.; Fu, X.J.; Guo, T.Z.; Liu, Y.T.; Ren, X.L.; Wang, W.; Liu, H.R.; Li, Y.Q. Elevated IL-6 and TNF-alpha levels in cerebrospinal fluid of subarachnoid hemorrhage patients. Mol. Neurobiol., 2016, 53(5), 3277-3285. [http://dx.doi.org/10.1007/s12035-015-9268-1]. [PMID:26063595].
[23]
Starke, R.M.; Raper, D.M.; Ding, D.; Chalouhi, N.; Owens, G.K.; Hasan, D.M.; Medel, R.; Dumont, A.S. Tumor necrosis factor-alpha modulates cerebral aneurysm formation and rupture. Transl. Stroke Res., 2014, 5(2), 269-277. [http://dx.doi.org/10.1007/s12975-013-0287-9]. [PMID:24323710].
[24]
Dziedzic, T.; Bartus, S.; Klimkowicz, A.; Motyl, M.; Slowik, A.; Szczudlik, A. Intracerebral hemorrhage triggers interleukin-6 and interleukin-10 release in blood. Stroke, 2002, 33(9), 2334-2335. [12215608].
[25]
Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol., 2014, 6(10)a016295 [http://dx.doi.org/10.1101/cshperspect.a016295]. [PMID:25190079].
[26]
Armstead, W.M.; Hekierski, H. Pasto, P. Yarovoi, S., Higazi, A. A., Cines. D.B. Release of IL-6 after stroke contributes to impaired cerebral autoregulation and hippocampal neuronal necrosis through NMDA receptor activation and upregulation of ET-1 and JNK. Transl. Stroke Res., 2018. [http://dx.doi.org/10.1007/s12975-018-0617-z]. [PMID:29476447].
[27]
Owens, T.; Khorooshi, R.; Wlodarczyk, A.; Asgari, N. Interferons in the central nervous system: a few instruments play many tunes. Glia, 2014, 62 (3),339-55. 24588027].
[28]
Mohsenzadegan, M.; Fayazi, M.R.; Abdolmaleki, M.; Bakhshayesh, M.; Seif, F.; Mousavizadeh, K. Direct immunomodulatory influence of IFN-beta on human astrocytoma cells. Immunopharmacol. Immunotoxicol., 2015, 37(2), 214-219. [http://dx.doi.org/10.3109/08923973.2015.1014559]. [PMID:25689952].
[29]
Juliana, C.; Fernandes-Alnemri, T.; Kang, S.; Farias, A.; Qin, F.; Alnemri, E.S. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J. Biol. Chem., 2012, 287(43), 36617-36622. [http://dx.doi.org/10.1074/jbc.M112.407130]. [PMID:22948162].
[30]
Braga, T.T.; Forni, M.F.; Correa-Costa, M. Ramos., R.N., Barbuto, J.A., Branco, P., Castoldi., A. Hiyane., M.I., Davanso., M.R., Latz, E., Franklin, B.S., Kowaltowski, A.J., Camara, N.O. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci. Rep., 2017, 7, 39884. [http://dx.doi.org/10.1038/srep39884]. [PMID:28084303].
[31]
Hornung, V.; Bauernfeind, F.; Halle, A.; Samstad, E.O.; Kono, H.; Rock, K.L.; Fitzgerald, K.A.; Latz, E. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol., 2008, 9(8), 847-856. [http://dx.doi.org/10.1038/ni.1631]. [PMID:18604214].
[32]
Dutra, F.F.; Alves, L.S.; Rodrigues, D.; Fernandez, P.L.; de Oliveira, R.B.; Golenbock, D.T.; Zamboni, D.S.; Bozza, M.T. Hemolysis-induced lethality involves inflammasome activation by heme. Proc. Natl. Acad. Sci. USA, 2014, 111(39), E4110-E4118. [http://dx.doi.org/10.1073/pnas.1405023111]. [PMID:25225402].
[33]
Gurung, P.; Paras, K.; Anand, P.K.; Malireddi, S. R.K., Vande, W.L., Van Opdenbosch, N., Christopher, P. D., Weinlich, R., Douglas, R. G., Lamkanfi., M., Kanneganti, T.D. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol., 2014, 192(4), 1835-1846. [http://dx.doi.org/10.4049/jimmunol.1302839]. [PMID:24453255].
[34]
Lamkanfi, M.; Dixit, V.M. Mechanisms and functions of inflammasomes. Cell, 2014, 157(5), 1013-1022. [http://dx.doi.org/10.1016/j.cell.2014.04.007]. [PMID:24855941].
[35]
Munoz-Planillo, R.; Kuffa, P.; Martinez-Colon, G.; Smith, B.L.; Rajendiran, T.M.; Nunez, G.K. (+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity, 2013, 38(6), 1142-1153. [http://dx.doi.org/10.1016/j.immuni.2013.05.016]. [PMID:23809161].
[36]
Zhou, R. Yazdi., A.S., Menu, P. Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature, 2011, 469(7329), 221-225. [http://dx.doi.org/10.1038/nature09663]. [PMID:21124315].
[37]
Iyer, S.S.; He, Q.; Janczy, J.R.; Elliott, E.I.; Zhong, Z.; Olivier, A.K.; Sadler, J.J.; Knepper-Adrian, V.; Han, R.; Qiao, L.; Eisenbarth, S.C.; Nauseef, W.M.; Cassel, S.L.; Sutterwala, F.S. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity, 2013, 39(2), 311-323. [http://dx.doi.org/10.1016/j.immuni.2013.08.001]. [PMID:23954133].
[38]
Gross, C.J. Mishra., R., Schneider., K.S., Medard, G., Wettmarshausen, J., Dittlein., D.C., Shi, H., Gorka, O., Koenig., P.A., Fromm, S., Magnani, G., Cikovic, T., Hartjes, L., Smollich, J., Robertson A.A.B., Cooper, M.A., Schmidt-Supprian, M., Schuster, M. Schroder, K., Broz, P., Traidl-Hoffmann, C., Beutler, B. Kuster., B. Ruland, J, Schneider, S. Perocchi, F., Gross, O. K(+) efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity, 2016, 45(4), 761-773. [http://dx.doi.org/10.1016/j.immuni.2016.08.010]. [PMID:27692612].
[39]
Casson, C.N. Copenhaver., A.M., Zwack, E.E., Nguyen, H.T., Strowig, T., Javdan, B., Bradley, W.P. Fung, T.C., Flavell, R.A., Brodsky, I.E., Shin, S. Caspase-11 activation in response to bacterial secretion systems that access the host cytosol. PLoS Pathog., 2013, 9(6)e1003400 [http://dx.doi.org/10.1371/journal.ppat.1003400]. [PMID:23762026].
[40]
He, W.T. Wan. H., Hu, L., Chen, P., Wang, X., Huang, Z., Zhang—Hua, Y., Zhong, C.Q., Han, J. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res., 2015, 25(12), 1285-1298. [http://dx.doi.org/10.1038/cr.2015.139]. [PMID:26611636].
[41]
Rathinam, V.A.; Vanaja, S.K.; Waggoner, L. Sokolovska, A., Becker, C., Stuart,L.M., Leong, J.M., Fitzgerald, K.A. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell, 2012, 150(3), 606-619. [http://dx.doi.org/10.1016/j.cell.2012.07.007]. [PMID:22819539].
[42]
Cunha, L.D.; Silva, A.L.N. Ribeiro., J.M., Mascarenhas, D.P.A., Quirino, G.F.S., Santos, L.L., Flavel, R.A., Zamboni, D.S. AIM2 engages active but unprocessed caspase-1 to induce noncanonical activation of the NLRP3 inflammasome. Cell Rep., 2017, 20(4), 794-805. [http://dx.doi.org/10.1016/j.celrep.2017.06.086]. [PMID:28746866].
[43]
Netea, M.G.; Nold-Petry, C.A.; Nold, M.F.; Joosten, L.A.; Opitz, B.; van der Meer, J.H.; van de Veerdonk, F.L.; Ferwerda, G.; Heinhuis, B.; Devesa, I.; Funk, C.J.; Mason, R.J.; Kullberg, B.J.; Rubartelli, A.; van der Meer, J.W.; Dinarello, C.A. Differential requirement for the activation of the inflammasome for processing and release of IL-1beta in monocytes and macrophages. Blood, 2009, 113(10), 2324-2335. [http://dx.doi.org/10.1182/blood-2008-03-146720]. [PMID:19104081].
[44]
Gaidt, M.M.; Ebert, T.S.; Chauhan, D.; Schmidt, T.; Schmid-Burgk, J.L.; Rapino, F.; Robertson, A.A.; Cooper, M.A.; Graf, T.; Hornung, V. Human monocytes engage an alternative inflammasome pathway. Immunity, 2016, 44(4), 833-846. [http://dx.doi.org/10.1016/j.immuni.2016.01.012]. [PMID:27037191].
[45]
Gaidt, M.M.; Hornung, V. Alternative inflammasome activation enables IL-1beta release from living cells. Curr. Opin. Immunol., 2017, 44, 7-13. [http://dx.doi.org/10.1016/j.coi.2016.10.007]. [PMID:27842238].
[46]
Ye, X.; Zuo, D.; Yu, L.; Zhang, L.; Tang, J.; Cui, C.; Bao, L.; Zan, K.; Zhang, Z.; Yang, X.; Chen, H.; Tang, H.; Zu, J.; Shi, H.; Cui, G. ROS/TXNIP pathway contributes to thrombin induced NLRP3 inflammasome activation and cell apoptosis in microglia. Biochem. Biophys. Res. Commun., 2017, 485(2), 499-505. [http://dx.doi.org/10.1016/j.bbrc.2017.02.019]. [PMID:28202418].
[47]
Allam, R.; Lawlor, K.E.; Yu, E.C.; Mildenhall, A.L.; Moujalled, D.M. Lewis., R.S., Ke, F., Mason, K.D., White, M.J., Stacey, K.J., Strasser, A., O’Reilly, L.A., Alexander, W., Kile., B.T., Vaux, D.L., Vince, J.E. Mitochondrial apoptosis is dispensable for NLRP3 inflammasome activation but non-apoptotic caspase-8 is required for inflammasome priming. EMBO Rep., 2014, 15(9), 982-990. [http://dx.doi.org/10.15252/embr.201438463]. [PMID:24990442].
[48]
Zhang, N.; Fu, L.; Bu, Y.; Yao, Y.; Wang, Y. Downregulated expression of miR-223 promotes Toll-like receptor-activated inflammatory responses in macrophages by targeting RhoB. Mol. Immunol., 2017, 91, 42-48. [http://dx.doi.org/10.1016/j.molimm.2017.08.026]. [PMID:28881218].
[49]
Franchi, L.; Eigenbrod, T.; Munoz-Planillo, R.; Ozkurede, U.; Kim, Y.G. Arindam, C., Gale, M. Jr., Silverman, R.H., Colonna, M., Akira, S., Nunez, G. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J. Immunol., 2014, 193(8), 4214-4222. [http://dx.doi.org/10.4049/jimmunol.1400582]. [PMID:25225670].
[50]
Asgari, E.; Le Friec, G.; Yamamoto, H.; Perucha, E.; Sacks, S.S.; Kohl, J.; Cook, H.T.; Kemper, C. C3a modulates IL-1beta secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood, 2013, 122(20), 3473-3481. [http://dx.doi.org/10.1182/blood-2013-05-502229]. [PMID:23878142].
[51]
Haggadone, M.D.; Grailer, J.J.; Fattahi, F.; Zetoune, F.S.; Ward, P.A. Bidirectional crosstalk between C5a receptors and the NLRP3 inflammasome in macrophages and monocytes. Mediators Inflamm., 2016, 20161340156 [http://dx.doi.org/10.1155/2016/1340156]. [PMID:27382187].
[52]
Arbore, G.; Kemper, C. A novel “complement-metabolism-inflammasome axis” as a key regulator of immune cell effector function. Eur. J. Immunol., 2016, 46(7), 1563-1573. [http://dx.doi.org/10.1002/eji.201546131]. [PMID:27184294].
[53]
Oury, C. CD36: linking lipids to the NLRP3 inflammasome, atherogenesis and atherothrombosis. Cell. Mol. Immunol., 2014, 11(1), 8-10. [http://dx.doi.org/10.1038/cmi.2013.48]. [PMID:24097033].
[54]
Shi, H.; Wang, Y.; Li, X.; Zhan, X.; Tang, M.; Fina, M.; Su, L. Pratt, D., Bu, C.H., Hildebrand, S. Lyon., S., Scott, L., Quan, J., Sun, Q., Russell, J., Arnett, S., Jurek, P., Chen, D., Kravchenko, V.V., Mathison, J.C., Moresco, E.M., Monson, N.L., Ulevitch, R.J., Beutler, B. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat. Immunol., 2016, 17(3), 250-258. [http://dx.doi.org/10.1038/ni.3333]. [PMID:26642356].
[55]
He, Y.; Zeng, M.Y.; Yang, D.; Motro, B.; Nunez, G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature, 2016, 530(7590), 354-357. [http://dx.doi.org/10.1038/nature16959]. [PMID:26814970].
[56]
He, Y.; Franchi, L.; Nunez, G. The protein kinase PKR is critical for LPS-induced iNOS production but dispensable for inflammasome activation in macrophages. Eur. J. Immunol., 2013, 43(5), 1147-1152. [http://dx.doi.org/10.1002/eji.201243187]. [PMID:23401008].
[57]
Yoshida, K.; Okamura, H.; Hiroshima, Y.; Abe, K.; Kido, J.I.; Shinohara, Y.; Ozaki, K. PKR induces the expression of NLRP3 by regulating the NF-kappaB pathway in porphyromonas gingivalis-infected osteoblasts. Exp. Cell Res., 2017, 354(1), 57-64. [http://dx.doi.org/10.1016/j.yexcr.2017.03.028]. [PMID:28341446].
[58]
Shenoy, A.R.; Wellington, D.A.; Kumar, P.; Kassa, H.; Booth, C.J.; Cresswell, P.; MacMicking, J.D. GBP5 promotes NLRP3 inflammasome assembly and immunity in mammals. Science, 2012, 336(6080), 481-485. [http://dx.doi.org/10.1126/science.1217141]. [PMID:22461501].
[59]
Meunier, E.; Dick, M.S.; Dreier, R.F.; Schurmann, N.; Kenzelmann, B.D.; Warming, S.; Roose-Girma, M.; Bumann, D.; Kayagaki, N.; Takeda, M.; Yamamoto, K.; Broz, P. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature, 2014, 509(7500), 366-370. [http://dx.doi.org/10.1038/nature13157]. [PMID:24739961].
[60]
Xiong, X.Y.; Yang, Q.W. Rethinking the roles of inflammation in the intracerebral hemorrhage. Transl. Stroke Res., 2015, 6(5), 339-341. [http://dx.doi.org/10.1007/s12975-015-0402-1]. [PMID:25940771].
[61]
Schlunk, F.; Greenberg, S.M. The Pathophysiology of intracerebral hemorrhage formation and expansion. Transl. Stroke Res., 2015, 6(4), 257-263. [http://dx.doi.org/10.1007/s12975-015-0410-1]. [PMID:26073700].
[62]
Baxter, P.; Chen, Y.; Xu, Y.; Swanson, R.A. Mitochondrial dysfunction induced by nuclear poly(ADP-ribose) polymerase-1: a treatable cause of cell death in stroke. Transl. Stroke Res., 2014, 5(1), 136-144. [http://dx.doi.org/10.1007/s12975-013-0283-0]. [PMID:24323707].
[63]
Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N. Chen. S., Ramanujan, V.K., Wolf., A.J., Vergnes, L., Ojcius, D.M., Rentsendorj, A., Vargas, M., Guerrero, C., Wang, Y., Fitzgerald K.A., Underhill, D.M., Town, T., Arditi, M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3), 401-414. [http://dx.doi.org/10.1016/j.immuni.2012.01.009]. [PMID:22342844].
[64]
Feng, L.; Chen, Y.; Ding, R.; Fu, Z.; Yang, S.; Deng, X.; Zeng, J. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J. Neuroinflam., 2015, 12, 190. [http://dx.doi.org/10.1186/s12974-015-0409-2]. [PMID:26475134].
[65]
Zhao, H.; Pan, P.; Yang, Y.; Ge, H.; Chen, W.; Qu, J.; Shi, J.; Cui, G.; Liu, X.; Feng, H.; Chen, Y. Endogenous hydrogen sulphide attenuates NLRP3 inflammasome-mediated neuroinflammation by suppressing the P2X7 receptor after intracerebral haemorrhage in rats. J. Neuroinflammation, 2017, 14(1), 163. [http://dx.doi.org/10.1186/s12974-017-0940-4]. [PMID:28821266].
[66]
Weng, X.; Tan, Y.; Chu, X. Wu., X.F., Liu, R., Tian., Y., Li, L.,
Guo, F., Ouyang, Q., Li, L. N-methyl-D-aspartic acid receptor 1
(NMDAR1) aggravates secondary inflammatory damage induced
by hemin-NLRP3 pathway after intracerebral hemorrhage. Chin. J.
Traumatol, 2015, 18 (5), 254-8. 26777707].
[67]
Yuan, R.; Fan, H.; Cheng, S.; Gao, W.; Xu, X.; Lv, S.; Ye, M.; Wu, M.; Zhu, X.; Zhang, Y. Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage. Biomed. Pharmacother., 2017, 93, 308-315. [http://dx.doi.org/10.1016/j.biopha.2017.06.018]. [PMID:28651232].
[68]
Yao, S.T.; Cao, F.; Chen, J.L.; Chen, W.; Fan, R.M.; Li, G.; Zeng, Y.C.; Jiao, S.; Xia, X.P.; Han, C.; Ran, Q.S. NLRP3 is required for complement-mediated caspase-1 and IL-1beta activation in ICH. J. Mol. Neurosci., 2017, 61(3), 385-395. [http://dx.doi.org/10.1007/s12031-016-0874-9]. [PMID:27933491].
[69]
Yang, Z.; Zhong, L.; Xian, R.; Yuan, B. MicroRNA-223 regulates inflammation and brain injury via feedback to NLRP3 inflammasome after intracerebral hemorrhage. Mol. Immunol., 2015, 65(2), 267-276. [http://dx.doi.org/10.1016/j.molimm.2014.12.018]. [PMID:25710917].
[70]
Suzuki, H.; Shiba, M.; Nakatsuka, Y.; Nakano, F.; Nishikawa, H. Higher cerebrospinal fluid pH may contribute to the development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Transl. Stroke Res., 2017, 8(2), 165-173. [http://dx.doi.org/10.1007/s12975-016-0500-8]. [PMID:27623837].
[71]
Tso, M.K.; Macdonald, R.L. Subarachnoid hemorrhage: a review of experimental studies on the microcirculation and the neurovascular unit. Transl. Stroke Res., 2014, 5(2), 174-189. [http://dx.doi.org/10.1007/s12975-014-0323-4]. [PMID:24510780].
[72]
Mathur, A.; Hayward, J.A.; Man, S.M. molecular mechanisms of inflammasome signaling. J. Leukoc. Biol., 2018, 103(2), 233-257. [http://dx.doi.org/10.1189/jlb.3MR0617-250R]. [PMID:28855232].
[73]
Pang, J.Y.; Chen, L.; Kuai, P.; Yang, J.; Peng, Y.; Wu, Y.; Chen, M.; Vitek, P.; Chen, L.; Sun, X.; Jiang, Y. Inhibition of blood-brain barrier disruption by an apolipoprotein e-Mimetic peptide ameliorates early brain injury in experimental subarachnoid hemorrhage. Transl. Stroke Res., 2017, 8(3), 257-272. [http://dx.doi.org/10.1007/s12975-016-0507-1]. [PMID:27796945].
[74]
Hosaka, K.; Hoh, B.L. Inflammation and cerebral aneurysms. Transl. Stroke Res., 2014, 5(2), 190-198. [http://dx.doi.org/10.1007/s12975-013-0313-y]. [PMID:24323732].
[75]
Dong, Y.C.; Fan, W.; Hu, S.; Jiang, Z.; Ma, X.; Yan, C.; Deng, S.; Di, Z.; Xin, G.; Wu, Y.; Yang, R.; Reiter, J.; Liang, G. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J. Pineal Res., 2016, 60(3), 253-262. [http://dx.doi.org/10.1111/jpi.12300]. [PMID:26639408].
[76]
Cao, S.; Shrestha, S.; Li, J.; Yu, X.; Chen, J.; Yan, F.; Ying, G.; Gu, C.; Wang, L.; Chen, G. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci. Rep., 2017, 7(1), 2417. [http://dx.doi.org/10.1038/s41598-017-02679-z]. [PMID:28546552].
[77]
Chen, S.; Ma, Q.; Krafft, P.R.; Hu, Q.; Rolland, 2nd , W.; Sherchan, P.; Zhang, J.; Tang, J.; Zhang, J.H. P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol. Dis., 2013, 58, 296-307. [http://dx.doi.org/10.1016/j.nbd.2013.06.011]. [PMID:23816751].
[78]
Zhou, K.; Shi, L.; Wang, Z.; Zhou, J. Manaenko, A., Reis, C., Chen. S., Zhang, J. RIP1-RIP3-DRP1 pathway regulates NLRP3 inflammasome activation following subarachnoid hemorrhage. Exp. Neurol., 2017, 295, 116-124. [http://dx.doi.org/10.1016/j.expneurol.2017.06.003]. [PMID:28579326].