Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Early Diagnosis of Multiple Sclerosis Based on Optical and Electrochemical Biosensors: Comprehensive Perspective

Author(s): Maryam Kharati, Sanam Foroutanparsa, Mohammad Rabiee*, Reza Salarian, Navid Rabiee and Ghazal Rabiee

Volume 16, Issue 5, 2020

Page: [557 - 569] Pages: 13

DOI: 10.2174/1573411014666180829111004

Price: $65

Abstract

Background: Multiple Sclerosis (MS) involves an immune-mediated response in which body’s immune system destructs the protective sheath (myelin). Part of the known MS biomarkers are discovered in cerebrospinal fluid like oligoclonal lgG (OCGB), and also in blood like myelin Oligodendrocyte Glycoprotein (MOG). The conventional MS diagnostic methods often fail to detect the disease in early stages such as Clinically Isolated Syndrome (CIS), which considered as a concerning issue since CIS highlighted as a prognostic factor of MS development in most cases.

Methods: MS diagnostic techniques include Magnetic Resonance Imaging (MRI) of the brain and spinal cord, lumbar puncture (or spinal tap) that evaluate cerebrospinal fluid, evoked potential testing revealing abnormalities in the brain and spinal cord. These conventional diagnostic methods have some negative points such as extensive processing time as well as restriction in the quantity of samples that can be analyzed concurrently. Scientists have focused on developing the detection methods especially early detection which belongs to ultra-sensitive, non-invasive and needed for the Point of Care (POC) diagnosis because the situation was complicated by false positive or negative results.

Results: As a result, biosensors are utilized and investigated since they could be ultra-sensitive to specific compounds, cost effective devices, body-friendly and easy to implement. In addition, it has been proved that the biosensors on physiological fluids (blood, serum, urine, saliva, milk etc.) have quick response in a non-invasive rout. In general form, a biosensor system for diagnosis and early detection process usually involves; biomarker (target molecule), bio receptor (recognition element) and compatible bio transducer.

Conclusion: Studies underlined that early treatment of patients with high possibility of MS can be advantageous by postponing further abnormalities on MRI and subsequent attacks.

This Review highlights variable disease diagnosis approaches such as Surface Plasmon Resonance (SPR), electrochemical biosensors, Microarrays and microbeads based Microarrays, which are considered as promising methods for detection and early detection of MS.

Keywords: Early diagnosis, electrochemical biosensors, microarray, microbeads technology, multiple sclerosis, surface plasmon resonance.

Graphical Abstract

[1]
Izadi, S.; Nikseresht, A.; Sharifian, M.; Sahraian, M.A.; Hamidian Jahromi, A.; Aghighi, M.; Heidary, A. Significant increase in the prevalence of multiple sclerosis in iran in 2011. Iran. J. Med. Sci., 2014, 39(2), 152-153.
[PMID: 24644387]
[2]
Patsopoulos, N.A. Genetics of multiple sclerosis: an overview and new directions. Cold Spring Harb. Perspect. Med., 2018, 8(7)a028951
[http://dx.doi.org/10.1101/cshperspect.a028951] [PMID: 29440325]
[3]
Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology, 1983, 33(11), 1444-1452.
[http://dx.doi.org/10.1212/WNL.33.11.1444] [PMID: 6685237]
[4]
Lublin, F.D.; Reingold, S.C. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Defining the clinical course of multiple sclerosis: results of an international survey. Neurology, 1996, 46(4), 907-911.
[http://dx.doi.org/10.1212/WNL.46.4.907] [PMID: 8780061]
[5]
Sanai, S.A.; Saini, V.; Benedict, R.H.; Zivadinov, R.; Teter, B.E.; Ramanathan, M.; Weinstock-Guttman, B. Aging and multiple sclerosis. Mult. Scler., 2016, 22(6), 717-725.
[http://dx.doi.org/10.1177/1352458516634871] [PMID: 26895718]
[6]
Harbo, H.F.; Gold, R.; Tintoré, M. Sex and gender issues in multiple sclerosis. Ther. Adv. Neurol. Disorder., 2013, 6(4), 237-248.
[http://dx.doi.org/10.1177/1756285613488434] [PMID: 23858327]
[7]
Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z.; Freeman, C.; Hunt, S.E.; Edkins, S.; Gray, E.; Booth, D.R.; Potter, S.C.; Goris, A.; Band, G.; Oturai, A.B.; Strange, A.; Saarela, J.; Bellenguez, C.; Fontaine, B.; Gillman, M.; Hemmer, B.; Gwilliam, R.; Zipp, F.; Jayakumar, A.; Martin, R.; Leslie, S.; Hawkins, S.; Giannoulatou, E.; D’alfonso, S.; Blackburn, H.; Martinelli Boneschi, F.; Liddle, J.; Harbo, H.F.; Perez, M.L.; Spurkland, A.; Waller, M.J.; Mycko, M.P.; Ricketts, M.; Comabella, M.; Hammond, N.; Kockum, I.; McCann, O.T.; Ban, M.; Whittaker, P.; Kemppinen, A.; Weston, P.; Hawkins, C.; Widaa, S.; Zajicek, J.; Dronov, S.; Robertson, N.; Bumpstead, S.J.; Barcellos, L.F.; Ravindrarajah, R.; Abraham, R.; Alfredsson, L.; Ardlie, K.; Aubin, C.; Baker, A.; Baker, K.; Baranzini, S.E.; Bergamaschi, L.; Bergamaschi, R.; Bernstein, A.; Berthele, A.; Boggild, M.; Bradfield, J.P.; Brassat, D.; Broadley, S.A.; Buck, D.; Butzkueven, H.; Capra, R.; Carroll, W.M.; Cavalla, P.; Celius, E.G.; Cepok, S.; Chiavacci, R.; Clerget-Darpoux, F.; Clysters, K.; Comi, G.; Cossburn, M.; Cournu-Rebeix, I.; Cox, M.B.; Cozen, W.; Cree, B.A.; Cross, A.H.; Cusi, D.; Daly, M.J.; Davis, E.; de Bakker, P.I.; Debouverie, M.; D’hooghe, M.B.; Dixon, K.; Dobosi, R.; Dubois, B.; Ellinghaus, D.; Elovaara, I.; Esposito, F.; Fontenille, C.; Foote, S.; Franke, A.; Galimberti, D.; Ghezzi, A.; Glessner, J.; Gomez, R.; Gout, O.; Graham, C.; Grant, S.F.; Guerini, F.R.; Hakonarson, H.; Hall, P.; Hamsten, A.; Hartung, H.P.; Heard, R.N.; Heath, S.; Hobart, J.; Hoshi, M.; Infante-Duarte, C.; Ingram, G.; Ingram, W.; Islam, T.; Jagodic, M.; Kabesch, M.; Kermode, A.G.; Kilpatrick, T.J.; Kim, C.; Klopp, N.; Koivisto, K.; Larsson, M.; Lathrop, M.; Lechner-Scott, J.S.; Leone, M.A.; Leppä, V.; Liljedahl, U.; Bomfim, I.L.; Lincoln, R.R.; Link, J.; Liu, J.; Lorentzen, A.R.; Lupoli, S.; Macciardi, F.; Mack, T.; Marriott, M.; Martinelli, V.; Mason, D.; McCauley, J.L.; Mentch, F.; Mero, I.L.; Mihalova, T.; Montalban, X.; Mottershead, J.; Myhr, K.M.; Naldi, P.; Ollier, W.; Page, A.; Palotie, A.; Pelletier, J.; Piccio, L.; Pickersgill, T.; Piehl, F.; Pobywajlo, S.; Quach, H.L.; Ramsay, P.P.; Reunanen, M.; Reynolds, R.; Rioux, J.D.; Rodegher, M.; Roesner, S.; Rubio, J.P.; Rückert, I.M.; Salvetti, M.; Salvi, E.; Santaniello, A.; Schaefer, C.A.; Schreiber, S.; Schulze, C.; Scott, R.J.; Sellebjerg, F.; Selmaj, K.W.; Sexton, D.; Shen, L.; Simms-Acuna, B.; Skidmore, S.; Sleiman, P.M.; Smestad, C.; Sørensen, P.S.; Søndergaard, H.B.; Stankovich, J.; Strange, R.C.; Sulonen, A.M.; Sundqvist, E.; Syvänen, A.C.; Taddeo, F.; Taylor, B.; Blackwell, J.M.; Tienari, P.; Bramon, E.; Tourbah, A.; Brown, M.A.; Tronczynska, E.; Casas, J.P.; Tubridy, N.; Corvin, A.; Vickery, J.; Jankowski, J.; Villoslada, P.; Markus, H.S.; Wang, K.; Mathew, C.G.; Wason, J.; Palmer, C.N.; Wichmann, H.E.; Plomin, R.; Willoughby, E.; Rautanen, A.; Winkelmann, J.; Wittig, M.; Trembath, R.C.; Yaouanq, J.; Viswanathan, A.C.; Zhang, H.; Wood, N.W.; Zuvich, R.; Deloukas, P.; Langford, C.; Duncanson, A.; Oksenberg, J.R.; Pericak-Vance, M.A.; Haines, J.L.; Olsson, T.; Hillert, J.; Ivinson, A.J.; De Jager, P.L.; Peltonen, L.; Stewart, G.J.; Hafler, D.A.; Hauser, S.L.; McVean, G.; Donnelly, P.; Compston, A. International Multiple Sclerosis Genetics ConsortiumWellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476(7359), 214-219.
[http://dx.doi.org/10.1038/nature10251] [PMID: 21833088]
[8]
Beecham, A.H.; Patsopoulos, N.A.; Xifara, D.K.; Davis, M.F.; Kemppinen, A.; Cotsapas, C.; Shah, T.S.; Spencer, C.; Booth, D.; Goris, A.; Oturai, A.; Saarela, J.; Fontaine, B.; Hemmer, B.; Martin, C.; Zipp, F.; D’Alfonso, S.; Martinelli-Boneschi, F.; Taylor, B.; Harbo, H.F.; Kockum, I.; Hillert, J.; Olsson, T.; Ban, M.; Oksenberg, J.R.; Hintzen, R.; Barcellos, L.F.; Agliardi, C.; Alfredsson, L.; Alizadeh, M.; Anderson, C.; Andrews, R.; Søndergaard, H.B.; Baker, A.; Band, G.; Baranzini, S.E.; Barizzone, N.; Barrett, J.; Bellenguez, C.; Bergamaschi, L.; Bernardinelli, L.; Berthele, A.; Biberacher, V.; Binder, T.M.; Blackburn, H.; Bomfim, I.L.; Brambilla, P.; Broadley, S.; Brochet, B.; Brundin, L.; Buck, D.; Butzkueven, H.; Caillier, S.J.; Camu, W.; Carpentier, W.; Cavalla, P.; Celius, E.G.; Coman, I.; Comi, G.; Corrado, L.; Cosemans, L.; Cournu-Rebeix, I.; Cree, B.A.; Cusi, D.; Damotte, V.; Defer, G.; Delgado, S.R.; Deloukas, P.; di Sapio, A.; Dilthey, A.T.; Donnelly, P.; Dubois, B.; Duddy, M.; Edkins, S.; Elovaara, I.; Esposito, F.; Evangelou, N.; Fiddes, B.; Field, J.; Franke, A.; Freeman, C.; Frohlich, I.Y.; Galimberti, D.; Gieger, C.; Gourraud, P.A.; Graetz, C.; Graham, A.; Grummel, V.; Guaschino, C.; Hadjixenofontos, A.; Hakonarson, H.; Halfpenny, C.; Hall, G.; Hall, P.; Hamsten, A.; Harley, J.; Harrower, T.; Hawkins, C.; Hellenthal, G.; Hillier, C.; Hobart, J.; Hoshi, M.; Hunt, S.E.; Jagodic, M.; Jelčić, I.; Jochim, A.; Kendall, B.; Kermode, A.; Kilpatrick, T.; Koivisto, K.; Konidari, I.; Korn, T.; Kronsbein, H.; Langford, C.; Larsson, M.; Lathrop, M.; Lebrun-Frenay, C.; Lechner-Scott, J.; Lee, M.H.; Leone, M.A.; Leppä, V.; Liberatore, G.; Lie, B.A.; Lill, C.M.; Lindén, M.; Link, J.; Luessi, F.; Lycke, J.; Macciardi, F.; Männistö, S.; Manrique, C.P.; Martin, R.; Martinelli, V.; Mason, D.; Mazibrada, G.; McCabe, C.; Mero, I.L.; Mescheriakova, J.; Moutsianas, L.; Myhr, K.M.; Nagels, G.; Nicholas, R.; Nilsson, P.; Piehl, F.; Pirinen, M.; Price, S.E.; Quach, H.; Reunanen, M.; Robberecht, W.; Robertson, N.P.; Rodegher, M.; Rog, D.; Salvetti, M.; Schnetz-Boutaud, N.C.; Sellebjerg, F.; Selter, R.C.; Schaefer, C.; Shaunak, S.; Shen, L.; Shields, S.; Siffrin, V.; Slee, M.; Sorensen, P.S.; Sorosina, M.; Sospedra, M.; Spurkland, A.; Strange, A.; Sundqvist, E.; Thijs, V.; Thorpe, J.; Ticca, A.; Tienari, P.; van Duijn, C.; Visser, E.M.; Vucic, S.; Westerlind, H.; Wiley, J.S.; Wilkins, A.; Wilson, J.F.; Winkelmann, J.; Zajicek, J.; Zindler, E.; Haines, J.L.; Pericak-Vance, M.A.; Ivinson, A.J.; Stewart, G.; Hafler, D.; Hauser, S.L.; Compston, A.; McVean, G.; De Jager, P.; Sawcer, S.J.; McCauley, J.L. International Multiple Sclerosis Genetics Consortium (IMSGC); Wellcome Trust Case Control Consortium 2 (WTCCC2); International IBD Genetics Consortium (IIBDGC). Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet., 2013, 45(11), 1353-1360.
[http://dx.doi.org/10.1038/ng.2770] [PMID: 24076602]
[9]
Luczynski, P.; Laule, C.; Hsiung, G.R.; Moore, G.R.W.; Tremlett, H. Coexistence of Multiple Sclerosis and Alzheimer’s disease: A review. Mult. Scler. Relat. Disord., 2019, 27, 232-238.
[http://dx.doi.org/10.1016/j.msard.2018.10.109] [PMID: 30415025]
[10]
Ebers, G.C.; Sadovnick, A.D.; Risch, N.J. Canadian Collaborative Study Group. A genetic basis for familial aggregation in multiple sclerosis. Nature, 1995, 377(6545), 150-151.
[http://dx.doi.org/10.1038/377150a0] [PMID: 7675080]
[11]
Sadovnick, A.D.; Ebers, G.C.; Dyment, D.A.; Risch, N.J.; Group, C.C.S. The Canadian Collaborative Study Group. Evidence for genetic basis of multiple sclerosis. Lancet, 1996, 347(9017), 1728-1730.
[http://dx.doi.org/10.1016/S0140-6736(96)90807-7] [PMID: 8656905]
[12]
Housley, W.J.; Pitt, D.; Hafler, D.A. Biomarkers in multiple sclerosis. Clin. Immunol., 2015, 161(1), 51-58.
[http://dx.doi.org/10.1016/j.clim.2015.06.015] [PMID: 26143623]
[13]
Lublin, F.D. New multiple sclerosis phenotypic classification. Eur. Neurol., 2014, 72(Suppl. 1), 1-5.
[http://dx.doi.org/10.1159/000367614] [PMID: 25278115]
[14]
Kavaliunas, A.; Manouchehrinia, A.; Danylaite Karrenbauer, V.; Gyllensten, H.; Glaser, A.; Alexanderson, K.; Hillert, J. Income in multiple sclerosis patients with different disease phenotypes. PLoS One, 2017, 12(1)e0169460
[http://dx.doi.org/10.1371/journal.pone.0169460] [PMID: 28081163]
[15]
Rovaris, M.; Confavreux, C.; Furlan, R.; Kappos, L.; Comi, G.; Filippi, M. Secondary progressive multiple sclerosis: current knowledge and future challenges. Lancet Neurol., 2006, 5(4), 343-354.
[http://dx.doi.org/10.1016/S1474-4422(06)70410-0] [PMID: 16545751]
[16]
Webb, E.J.; Meads, D.; Eskyte, I.; King, N.; Dracup, N.; Chataway, J.; Ford, H.L.; Marti, J.; Pavitt, S.H.; Schmierer, K. A Systematic Review of Discrete-Choice Experiments and Conjoint Analysis Studies in People with Multiple Sclerosis; The Patient-Patient-Centered Outcomes Research, 2018, pp. 1-12.
[17]
Lassmann, H.; van Horssen, J.; Mahad, D. Progressive multiple sclerosis: pathology and pathogenesis. Nat. Rev. Neurol., 2012, 8(11), 647-656.
[http://dx.doi.org/10.1038/nrneurol.2012.168] [PMID: 23007702]
[18]
Ebers, G. C. Natural history of primary progressive multiple sclerosis. Mult. Scler. J., 2004, 10(3_suppl), S8-S15.
[19]
Stork, L.; Ellenberger, D.; Beißbarth, T.; Friede, T.; Lucchinetti, C.F.; Brück, W.; Metz, I. Differences in the reponses to apheresis therapy of patients with 3 histopathologically classified immunopathological patterns of multiple sclerosis. JAMA Neurol., 2018, 75(4), 428-435.
[http://dx.doi.org/10.1001/jamaneurol.2017.4842] [PMID: 29404583]
[20]
Verhey, L.H. MRI in the Prediction and Diagnosis of Pediatric- Onset Multiple Sclerosis: Insights from Children with Incident CNS De-myelination.. PhD Thesis, University of Toronto: Toronto. 2012.
[21]
Nandoskar, A.; Raffel, J.; Scalfari, A.S.; Friede, T.; Nicholas, R.S. Pharmacological approaches to the management of secondary progressive multiple sclerosis. Drugs, 2017, 77(8), 885-910.
[http://dx.doi.org/10.1007/s40265-017-0726-0] [PMID: 28429241]
[22]
Miller, D.; Barkhof, F.; Montalban, X.; Thompson, A.; Filippi, M. Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol., 2005, 4(5), 281-288.
[http://dx.doi.org/10.1016/S1474-4422(05)70071-5] [PMID: 15847841]
[23]
Gunnarsson, M.; Malmeström, C.; Axelsson, M.; Sundström, P.; Dahle, C.; Vrethem, M.; Olsson, T.; Piehl, F.; Norgren, N.; Rosengren, L.; Svenningsson, A.; Lycke, J. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann. Neurol., 2011, 69(1), 83-89.
[http://dx.doi.org/10.1002/ana.22247] [PMID: 21280078]
[24]
Jones, J.L.; Anderson, J.M.; Phuah, C-L.; Fox, E.J.; Selmaj, K.; Margolin, D.; Lake, S.L.; Palmer, J.; Thompson, S.J.; Wilkins, A.; Webber, D.J.; Compston, D.A.; Coles, A.J. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain, 2010, 133(Pt 8), 2232-2247.
[http://dx.doi.org/10.1093/brain/awq176] [PMID: 20659956]
[25]
Petzold, A. Biomarkers of disease progression.Progressive Multiple Sclerosis; Springer, 2018, pp. 123-154.
[http://dx.doi.org/10.1007/978-3-319-65921-3_6]
[26]
Igra, M.S.; Paling, D.; Wattjes, M.P.; Connolly, D.J.A.; Hoggard, N. Multiple sclerosis update: use of MRI for early diagnosis, disease monitoring and assessment of treatment related complications. Br. J. Radiol., 2017, 90(1074)20160721
[http://dx.doi.org/10.1259/bjr.20160721] [PMID: 28362522]
[27]
Brownlee, W.J.; Swanton, J.K.; Altmann, D.R.; Ciccarelli, O.; Miller, D.H. Earlier and more frequent diagnosis of multiple sclerosis using the McDonald criteria. J. Neurol. Neurosurg. Psychiatry, 2015, 86(5), 584-585.
[http://dx.doi.org/10.1136/jnnp-2014-308675] [PMID: 25412872]
[28]
Dixon, C.; Robertson, D. To diagnose or not to diagnose? Timing is the question: balancing early diagnosis of multiple sclerosis with misdiagnosis; Taylor & Francis, 2018.
[29]
Traboulsee, A.; Simon, J.; Stone, L.; Fisher, E.; Jones, D.; Malhotra, A.; Newsome, S.; Oh, J.; Reich, D.; Richert, N. Revised recommendations of the consortium of MS centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am. J. Neuroradiol., 2016, 37(3), 394-401.
[PMID: 26564433]
[30]
Puthenparampil, M.; Federle, L.; Poggiali, D.; Miante, S.; Signori, A.; Pilotto, E.; Rinaldi, F.; Perini, P.; Sormani, M.P.; Midena, E.; Gallo, P. Trans-synaptic degeneration in the optic pathway. A study in clinically isolated syndrome and early relapsing-remitting multiple sclerosis with or without optic neuritis. PLoS One, 2017, 12(8)e0183957
[http://dx.doi.org/10.1371/journal.pone.0183957] [PMID: 28850630]
[31]
Derkus, B.; Acar Bozkurt, P.; Tulu, M.; Emregul, K.C.; Yucesan, C.; Emregul, E. Simultaneous quantification of Myelin Basic Protein and Tau proteins in cerebrospinal fluid and serum of Multiple Sclerosis patients using nanoimmunosensor. Biosens. Bioelectron., 2017, 89(Pt 2), 781-788.
[http://dx.doi.org/10.1016/j.bios.2016.10.019] [PMID: 27816592]
[32]
Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie, 2018, 147, 13-24.
[http://dx.doi.org/10.1016/j.biochi.2017.12.015] [PMID: 29307704]
[33]
Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol., 2018, 17(2), 162-173.
[PMID: 29275977]
[34]
Milo, R.; Miller, A. Revised diagnostic criteria of multiple sclerosis. Autoimmun. Rev., 2014, 13(4-5), 518-524.
[http://dx.doi.org/10.1016/j.autrev.2014.01.012] [PMID: 24424194]
[35]
Rovira, À.; Wattjes, M.P.; Tintoré, M.; Tur, C.; Yousry, T.A.; Sormani, M.P.; De Stefano, N.; Filippi, M.; Auger, C.; Rocca, M.A.; Barkhof, F.; Fazekas, F.; Kappos, L.; Polman, C.; Miller, D.; Montalban, X. MAGNIMS study group. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat. Rev. Neurol., 2015, 11(8), 471-482.
[http://dx.doi.org/10.1038/nrneurol.2015.106] [PMID: 26149978]
[36]
Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; Glaser, C.A.; Honnorat, J.; Höftberger, R.; Iizuka, T.; Irani, S.R.; Lancaster, E.; Leypoldt, F.; Prüss, H.; Rae-Grant, A.; Reindl, M.; Rosenfeld, M.R.; Rostásy, K.; Saiz, A.; Venkatesan, A.; Vincent, A.; Wandinger, K.P.; Waters, P.; Dalmau, J. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol., 2016, 15(4), 391-404.
[http://dx.doi.org/10.1016/S1474-4422(15)00401-9] [PMID: 26906964]
[37]
Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol., 2015, 28(3), 193-205.
[http://dx.doi.org/10.1097/WCO.0000000000000206] [PMID: 25887774]
[38]
Hinsinger, G.; Galéotti, N.; Nabholz, N.; Urbach, S.; Rigau, V.; Demattei, C.; Lehmann, S.; Camu, W.; Labauge, P.; Castelnovo, G.; Brassat, D.; Loussouarn, D.; Salou, M.; Laplaud, D.; Casez, O.; Bockaert, J.; Marin, P.; Thouvenot, E. Chitinase 3-like proteins as diagnostic and prognostic biomarkers of multiple sclerosis. Mult. Scler., 2015, 21(10), 1251-1261.
[http://dx.doi.org/10.1177/1352458514561906] [PMID: 25698171]
[39]
Katz Sand, I.; Krieger, S.; Farrell, C.; Miller, A.E. Diagnostic uncertainty during the transition to secondary progressive multiple sclerosis. Mult. Scler., 2014, 20(12), 1654-1657.
[http://dx.doi.org/10.1177/1352458514521517] [PMID: 24493475]
[40]
Marrie, R.A.; Patten, S.B.; Tremlett, H.; Wolfson, C.; Warren, S.; Svenson, L.W.; Jette, N.; Fisk, J. CIHR Team in the Epidemiology and Impact of Comorbidity on Multiple Sclerosis. Sex differences in comorbidity at diagnosis of multiple sclerosis: A populationbased study. Neurology, 2016, 86(14), 1279-1286.
[http://dx.doi.org/10.1212/WNL.0000000000002481] [PMID: 26962066]
[41]
Mittal, S.; Kaur, H.; Gautam, N.; Mantha, A.K. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies. Biosens. Bioelectron., 2017, 88, 217-231.
[http://dx.doi.org/10.1016/j.bios.2016.08.028] [PMID: 27567264]
[42]
Parsa, S.F.; Vafajoo, A.; Rostami, A.; Salarian, R.; Rabiee, M.; Rabiee, N.; Rabiee, G.; Tahriri, M.; Yadegari, A.; Vashaee, D.; Tayebi, L.; Hamblin, M.R. Early diagnosis of disease using microbead array technology: A review. Anal. Chim. Acta, 2018, 1032, 1-17.
[http://dx.doi.org/10.1016/j.aca.2018.05.011] [PMID: 30143206]
[43]
Nasseri, B.; Soleimani, N.; Rabiee, N.; Kalbasi, A.; Karimi, M.; Hamblin, M.R. Point-of-care microfluidic devices for pathogen detection. Biosens. Bioelectron., 2018, 117, 112-128.
[http://dx.doi.org/10.1016/j.bios.2018.05.050] [PMID: 29890393]
[44]
Ghasemi, A.; Rabiee, N.; Ahmadi, S.; Hashemzadeh, S.; Lolasi, F.; Bozorgomid, M.; Kalbasi, A.; Nasseri, B.; Shiralizadeh Dezfuli, A.; Aref, A.R.; Karimi, M.; Hamblin, M.R. Optical assays based on colloidal inorganic nanoparticles. Analyst (Lond.), 2018, 143(14), 3249-3283.
[http://dx.doi.org/10.1039/C8AN00731D] [PMID: 29924108]
[45]
Rabiee, N.; Safarkhani, M.; Rabiee, M. Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic Acid)/Graphite Oxide/Pristine Graphene/Glassy Carbon Electrode. Asian Journal of Nanosciences and Materials, 2018, 1, 61-70.
[46]
Ahmadi, S.; Rabiee, N.; Rabiee, M. Application of Aptamer-based hybrid molecules in Early Diagnosis and Treatment of Diabetes Mellitus: From the Concepts toward the Future. Curr. Diabetes Rev., 2018.
[PMID: 29875005]
[47]
Magliozzi, R.; Howell, O.W.; Nicholas, R.; Cruciani, C.; Castellaro, M.; Romualdi, C.; Rossi, S.; Pitteri, M.; Benedetti, M.D.; Gajofatto, A.; Pizzini, F.B.; Montemezzi, S.; Rasia, S.; Capra, R.; Bertoldo, A.; Facchiano, F.; Monaco, S.; Reynolds, R.; Calabrese, M. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann. Neurol., 2018, 83(4), 739-755.
[http://dx.doi.org/10.1002/ana.25197] [PMID: 29518260]
[48]
Thompson, S.B.N.; Coleman, A.; Williams, N. Yawning and cortisol levels in multiple sclerosis: Potential new diagnostic tool. Mult. Scler. Relat. Disord., 2018, 23, 51-55.
[http://dx.doi.org/10.1016/j.msard.2018.04.019] [PMID: 29772467]
[49]
Wallin, M.T.; Culpepper, W.J.; Maloni, H.; Kurtzke, J.F. The Gulf War era multiple sclerosis cohort: 3. Early clinical features. Acta Neurol. Scand., 2018, 137(1), 76-84.
[http://dx.doi.org/10.1111/ane.12810] [PMID: 28832890]
[50]
Cerqueira, J. J.; Compston, D. A. S.; Geraldes, R.; Rosa, M. M.; Schmierer, K.; Thompson, A.; Tinelli, M.; Palace, J. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? J Neurol Neurosurg Psychiatry, 2018. jnnp-2017-317509
[http://dx.doi.org/10.1136/jnnp-2017-317509]
[51]
Cervantes-Gracia, K.; Husi, H. Integrative analysis of Multiple Sclerosis using a systems biology approach. Sci. Rep., 2018, 8(1), 5633.
[http://dx.doi.org/10.1038/s41598-018-24032-8] [PMID: 29618802]
[52]
Oakley, R.H.; Cidlowski, J.A. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J. Allergy Clin. Immunol., 2013, 132(5), 1033-1044.
[http://dx.doi.org/10.1016/j.jaci.2013.09.007] [PMID: 24084075]
[53]
Zhou, P.; Pang, D.; Li, W. Transducer for embedded bio-sensor using body energy as a power source; Google Patents, 2007.
[54]
Chin, F.S.; Zai, P.G.; Lee, C.K.; Ten, T.L.; Kian, S.T. A squeegee coating apparatus for producing a liquid crystal based bio-transducer. Appl. Mech. Mater., 2014, 465, 759-763.
[55]
Jayanthi, V.S.A.; Das, A.B.; Saxena, U. Recent advances in biosensor development for the detection of cancer biomarkers. Biosens. Bioelectron., 2016.
[PMID: 27984706]
[56]
Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[57]
Downing, G. Biomarkers Definitions Working Group.. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther., 2001, 69(3), 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[58]
Arrambide, G.; Tintore, M.; Espejo, C.; Auger, C.; Castillo, M.; Río, J.; Castilló, J.; Vidal-Jordana, A.; Galán, I.; Nos, C.; Mitjana, R.; Mulero, P.; de Barros, A.; Rodríguez-Acevedo, B.; Midaglia, L.; Sastre-Garriga, J.; Rovira, A.; Comabella, M.; Montalban, X. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain, 2018, 141(4), 1075-1084.
[http://dx.doi.org/10.1093/brain/awy006] [PMID: 29462277]
[59]
Puz, P.; Steposz, A.; Lasek-Bal, A.; Bartoszek, K.; Radecka, P.; Karuga-Pierścieńska, A. Diagnostic methods used in searching for markers of atrophy in patients with multiple sclerosis. Neurol. Res., 2018, 40(2), 110-116.
[http://dx.doi.org/10.1080/01616412.2017.1403729] [PMID: 29168666]
[60]
Harris, V.K.; Sadiq, S.A. Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol. Diagn. Ther., 2009, 13(4), 225-244.
[http://dx.doi.org/10.1007/BF03256329] [PMID: 19712003]
[61]
Jain, K.K. Biomarkers of disorders of the nervous system.The Handbook of Biomarkers; Springer, 2017, pp. 463-610.
[http://dx.doi.org/10.1007/978-1-4939-7431-3_14]
[62]
Comabella, M.; Montalban, X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol., 2014, 13(1), 113-126.
[http://dx.doi.org/10.1016/S1474-4422(13)70233-3] [PMID: 24331797]
[63]
Zetterberg, H.; Teunissen, C. Fluid biomarkers for disease activity in multiple sclerosis; SAGE Publications Sage UK: London, England, 2017.
[http://dx.doi.org/10.1177/1352458517736151]
[64]
Barkhof, F.; Simon, J.H.; Fazekas, F.; Rovaris, M.; Kappos, L.; de Stefano, N.; Polman, C.H.; Petkau, J.; Radue, E.W.; Sormani, M.P.; Li, D.K.; O’Connor, P.; Montalban, X.; Miller, D.H.; Filippi, M. MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat. Rev. Neurol., 2011, 8(1), 13-21.
[http://dx.doi.org/10.1038/nrneurol.2011.190] [PMID: 22143362]
[65]
Comi, G.; Radaelli, M.; Soelberg Sørensen, P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet, 2017, 389(10076), 1347-1356.
[http://dx.doi.org/10.1016/S0140-6736(16)32388-1] [PMID: 27889192]
[66]
Pérez, D.; Gilburd, B.; Cabrera-Marante, Ó.; Martínez-Flores, J.A.; Serrano, M.; Naranjo, L.; Pleguezuelo, D.; Morillas, L.; Shovman, O.; Paz-Artal, E. Predictive autoimmunity using autoantibodies: screening for anti-nuclear antibodies. Clinical Chemistry and Laboratory Medicine; CCLM, 2017.
[67]
Linington, C.; Lassmann, H. Antibody responses in chronic relapsing experimental allergic encephalomyelitis: correlation of serum demyelinating activity with antibody titre to the myelin/oligodendrocyte glycoprotein (MOG). J. Neuroimmunol., 1987, 17(1), 61-69.
[http://dx.doi.org/10.1016/0165-5728(87)90031-2] [PMID: 2445777]
[68]
Peschl, P.; Bradl, M.; Höftberger, R.; Berger, T.; Reindl, M. Myelin oligodendrocyte glycoprotein: deciphering a target in inflammatory demyelinating diseases. Front. Immunol., 2017, 8, 529.
[http://dx.doi.org/10.3389/fimmu.2017.00529] [PMID: 28533781]
[69]
DeMarshall, C.; Goldwaser, E.L.; Sarkar, A.; Godsey, G.A.; Acharya, N.K.; Thayasivam, U.; Belinka, B.A.; Nagele, R.G. Autoantibodies as diagnostic biomarkers for the detection and subtyping of multiple sclerosis. J. Neuroimmunol., 2017, 309, 51-57.
[http://dx.doi.org/10.1016/j.jneuroim.2017.05.010] [PMID: 28601288]
[70]
Reindl, M.; Khalil, M.; Berger, T. Antibodies as biological markers for pathophysiological processes in MS. J. Neuroimmunol., 2006, 180(1-2), 50-62.
[http://dx.doi.org/10.1016/j.jneuroim.2006.06.028] [PMID: 16934337]
[71]
Dhib-Jalbut, S. Methods of treating a subject afflicted with an autoimmune disease using predictive biomarkers of clinical response to glatiramer acetate therapy in multiple sclerosis; Google Patents, 2017.
[72]
de Seze, J. MOG-antibody neuromyelitis optica spectrum disorder: is it a separate disease? Brain, 2017, 140(12), 3072-3075.
[http://dx.doi.org/10.1093/brain/awx292] [PMID: 29194504]
[73]
Brettschneider, J.; Jaskowski, T.D.; Tumani, H.; Abdul, S.; Husebye, D.; Seraj, H.; Hill, H.R.; Fire, E.; Spector, L.; Yarden, J.; Dotan, N.; Rose, J.W. Serum anti-GAGA4 IgM antibodies differentiate relapsing remitting and secondary progressive multiple sclerosis from primary progressive multiple sclerosis and other neurological diseases. J. Neuroimmunol., 2009, 217(1-2), 95-101.
[http://dx.doi.org/10.1016/j.jneuroim.2009.07.017] [PMID: 19879655]
[74]
Filippi, M.; Brück, W.; Chard, D.; Fazekas, F.; Geurts, J.J.G.; Enzinger, C.; Hametner, S.; Kuhlmann, T.; Preziosa, P.; Rovira, À.; Schmierer, K.; Stadelmann, C.; Rocca, M.A. Attendees of the Correlation between Pathological and MRI findings in MS workshop. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol., 2019, 18(2), 198-210.
[http://dx.doi.org/10.1016/S1474-4422(18)30451-4] [PMID: 30663609]
[75]
Myronovkij, S.; Negrych, N.; Nehrych, T.; Redowicz, M.J.; Souchelnytskyi, S.; Stoika, R.; Kit, Y. Identification of a 48 kDa form of unconventional myosin 1c in blood serum of patients with autoimmune diseases. Biochem. Biophys. Rep., 2015, 5, 175-179.
[http://dx.doi.org/10.1016/j.bbrep.2015.12.001] [PMID: 28955821]
[76]
Winger, R.C.; Zamvil, S.S. Antibodies in multiple sclerosis oligoclonal bands target debris. Proceedings of the National Academy of Sciences, 2016, p. 201609246.
[http://dx.doi.org/10.1073/pnas.1609246113]
[77]
D’Ambrosio, A.; Pontecorvo, S.; Colasanti, T.; Zamboni, S.; Francia, A.; Margutti, P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun. Rev., 2015, 14(12), 1097-1110.
[http://dx.doi.org/10.1016/j.autrev.2015.07.014] [PMID: 26226413]
[78]
Gandhi, R.; Healy, B.; Gholipour, T.; Egorova, S.; Musallam, A.; Hussain, M.S.; Nejad, P.; Patel, B.; Hei, H.; Khoury, S.; Quintana, F.; Kivisakk, P.; Chitnis, T.; Weiner, H.L. Circulating microRNAs as biomarkers for disease staging in multiple sclerosis. Ann. Neurol., 2013, 73(6), 729-740.
[http://dx.doi.org/10.1002/ana.23880] [PMID: 23494648]
[79]
Kimura, K.; Hohjoh, H.; Fukuoka, M.; Sato, W.; Oki, S.; Tomi, C.; Yamaguchi, H.; Kondo, T.; Takahashi, R.; Yamamura, T. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat. Commun., 2018, 9(1), 17.
[http://dx.doi.org/10.1038/s41467-017-02406-2] [PMID: 29295981]
[80]
Fenoglio, C.; Ridolfi, E.; Galimberti, D.; Scarpini, E. MicroRNAs as active players in the pathogenesis of multiple sclerosis. Int. J. Mol. Sci., 2012, 13(10), 13227-13239.
[http://dx.doi.org/10.3390/ijms131013227] [PMID: 23202949]
[81]
Schöler, N.; Langer, C.; Döhner, H.; Buske, C.; Kuchenbauer, F. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp. Hematol., 2010, 38(12), 1126-1130.
[http://dx.doi.org/10.1016/j.exphem.2010.10.004] [PMID: 20977925]
[82]
Sanders, K.A. MicroRNA profiling of multiple sclerosis: from brain to blood., PhD Thesis, Bond University: Gold Coast, April. 2017.
[83]
Real-Fernández, F.; Passalacqua, I.; Peroni, E.; Chelli, M.; Lolli, F.; Papini, A.M.; Rovero, P. Glycopeptide-based antibody detection in multiple sclerosis by surface plasmon resonance. Sensors (Basel), 2012, 12(5), 5596-5607.
[http://dx.doi.org/10.3390/s120505596] [PMID: 22778603]
[84]
Olaru, A.; Bala, C.; Jaffrezic-Renault, N.; Aboul-Enein, H.Y. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem., 2015, 45(2), 97-105.
[http://dx.doi.org/10.1080/10408347.2014.881250] [PMID: 25558771]
[85]
Gómara, M.J.; Ercilla, G.; Alsina, M.A.; Haro, I. Assessment of synthetic peptides for hepatitis A diagnosis using biosensor technology. J. Immunol. Methods, 2000, 246(1-2), 13-24.
[http://dx.doi.org/10.1016/S0022-1759(00)00295-7] [PMID: 11121543]
[86]
Mayer, K.M.; Hao, F.; Lee, S.; Nordlander, P.; Hafner, J.H. A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology, 2010, 21(25)255503
[http://dx.doi.org/10.1088/0957-4484/21/25/255503] [PMID: 20516579]
[87]
Bocková, M. Study of biomolecular interactions by the method of surface plasmon resonance., 2017.
[88]
Zhang, X.; Zambrano, A.; Lin, Z-T.; Xing, Y.; Rippy, J.; Wu, T. Immunosensors for biomarker detection in autoimmune diseases. Arch. Immunol. Ther. Exp. (Warsz.), 2017, 65(2), 111-121.
[http://dx.doi.org/10.1007/s00005-016-0419-5] [PMID: 27592176]
[89]
Liu, X.; Jiang, H. Construction and potential applications of biosensors for proteins in clinical laboratory diagnosis. Sensors (Basel), 2017, 17(12), 2805.
[http://dx.doi.org/10.3390/s17122805]
[90]
Defaus, S.; Gupta, P.; Andreu, D.; Gutiérrez-Gallego, R. Mammalian protein glycosylation--structure versus function. Analyst (Lond.), 2014, 139(12), 2944-2967.
[http://dx.doi.org/10.1039/C3AN02245E] [PMID: 24779027]
[91]
Real-Fernández, F.; Rossi, G.; Lolli, F.; Papini, A.M.; Rovero, P. Label-free method for anti-glucopeptide antibody detection in Multiple Sclerosis. MethodsX, 2015, 2, 141-144.
[http://dx.doi.org/10.1016/j.mex.2015.03.004] [PMID: 26150982]
[92]
Mansourian, N.; Rahaie, M.; Hosseini, M. A nanobiosensor based on fluorescent DNA-hosted silver nanocluster and HCR amplification for detection of microRNA involved in progression of multiple sclerosis. J. Fluoresc., 2017, 27(5), 1679-1685.
[http://dx.doi.org/10.1007/s10895-017-2105-3] [PMID: 28478551]
[93]
Li, Y.; Reichert, W.M. Adapting cDNA microarray format to cytokine detection protein arrays. Langmuir, 2003, 19(5), 1557-1566.
[http://dx.doi.org/10.1021/la026322t]
[94]
Peluso, P.; Wilson, D.S.; Do, D.; Tran, H.; Venkatasubbaiah, M.; Quincy, D.; Heidecker, B.; Poindexter, K.; Tolani, N.; Phelan, M.; Witte, K.; Jung, L.S.; Wagner, P.; Nock, S. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem., 2003, 312(2), 113-124.
[http://dx.doi.org/10.1016/S0003-2697(02)00442-6] [PMID: 12531195]
[95]
Qiu, J.; Madoz-Gurpide, J.; Misek, D.E.; Kuick, R.; Brenner, D.E.; Michailidis, G.; Haab, B.B.; Omenn, G.S.; Hanash, S. Development of natural protein microarrays for diagnosing cancer based on an antibody response to tumor antigens. J. Proteome Res., 2004, 3(2), 261-267.
[http://dx.doi.org/10.1021/pr049971u] [PMID: 15113102]
[96]
Levit-Binnun, N.; Lindner, A.B.; Zik, O.; Eshhar, Z.; Moses, E. Quantitative detection of protein arrays. Anal. Chem., 2003, 75(6), 1436-1441.
[http://dx.doi.org/10.1021/ac0261350] [PMID: 12659207]
[97]
Rey, I.; Garcia, D.A.; Wheatley, B.A.; Song, W.; Upadhyaya, A. biophysical techniques to study b cell activation: Single-molecule imaging and force measurements. BCell Receptor Signaling; Springer, 2018, pp. 51-68.
[http://dx.doi.org/10.1007/978-1-4939-7474-0_4]
[98]
Kingsmore, S.F. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat. Rev. Drug Discov., 2006, 5(4), 310-320.
[http://dx.doi.org/10.1038/nrd2006] [PMID: 16582876]
[99]
Han, Z.; Wang, Y.; Duan, X. Biofunctional polyelectrolytes assembling on biosensors - A versatile surface coating method for protein detections. Anal. Chim. Acta, 2017, 964, 170-177.
[http://dx.doi.org/10.1016/j.aca.2017.01.051] [PMID: 28351633]
[100]
Gul, O.; Calay, E.; Sezerman, U.; Basaga, H.; Gurbuz, Y. Sandwich-type, antibody microarrays for the detection and quantification of cardiovascular risk markers. Sens. Actuators B Chem., 2007, 125(2), 581-588.
[http://dx.doi.org/10.1016/j.snb.2007.03.005]
[101]
Mirnics, K.; Pevsner, J. Progress in the use of microarray technology to study the neurobiology of disease. Nat. Neurosci., 2004, 7(5), 434-439.
[http://dx.doi.org/10.1038/nn1230] [PMID: 15114354]
[102]
Eggleton, P.; Smerdon, G.R.; Holley, J.E.; Gutowski, N.J. Manipulation of Oxygen and Endoplasmic Reticulum Stress Factors as Possible Interventions for Treatment of Multiple Sclerosis: Evidence for and Against.Multiple Sclerosis: Bench to Bedside; Springer, 2017, pp. 11-27.
[http://dx.doi.org/10.1007/978-3-319-47861-6_2]
[103]
Hendrickx, D.A.E.; van Scheppingen, J.; van der Poel, M.; Bossers, K.; Schuurman, K.G.; van Eden, C.G.; Hol, E.M.; Hamann, J.; Huitinga, I. gene expression Profiling of Multiple sclerosis Pathology identifies early Patterns of Demyelination surrounding chronic active lesions. Front. Immunol., 2017, 8, 1810.
[http://dx.doi.org/10.3389/fimmu.2017.01810] [PMID: 29312322]
[104]
Lock, C.B.; Heller, R.A. Gene microarray analysis of multiple sclerosis lesions. Trends Mol. Med., 2003, 9(12), 535-541.
[http://dx.doi.org/10.1016/j.molmed.2003.10.008] [PMID: 14659468]
[105]
Quintana, F.J.; Farez, M.F.; Viglietta, V.; Iglesias, A.H.; Merbl, Y.; Izquierdo, G.; Lucas, M.; Basso, A.S.; Khoury, S.J.; Lucchinetti, C.F.; Cohen, I.R.; Weiner, H.L. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc. Natl. Acad. Sci. USA, 2008, 105(48), 18889-18894.
[http://dx.doi.org/10.1073/pnas.0806310105] [PMID: 19028871]
[106]
Mathur, D.; Riffo-Campos, A.L.; Castillo, J.; Haines, J.D.; Vidaurre, O.G.; Zhang, F.; Coret-Ferrer, F.; Casaccia, P.; Casanova, B.; Lopez-Rodas, G. Bioenergetic Failure in Rat Oligodendrocyte Progenitor Cells Treated with Cerebrospinal Fluid Derived from Multiple Sclerosis Patients. Front. Cell. Neurosci., 2017, 11, 209.
[http://dx.doi.org/10.3389/fncel.2017.00209] [PMID: 28775680]
[107]
Peterlin, B.; Maver, A.; Lovro, V.; Lovrečić, L. Genetics and Epigenetics of Multiple Sclerosis.Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases; Springer, 2017, pp. 169-192.
[http://dx.doi.org/10.1007/978-1-4939-6743-8_11]
[108]
Whitney, L.W.; Becker, K.G.; Tresser, N.J.; Caballero-Ramos, C.I.; Munson, P.J.; Prabhu, V.V.; Trent, J.M.; McFarland, H.F.; Biddison, W.E. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol., 1999, 46(3), 425-428.
[http://dx.doi.org/10.1002/1531-8249(199909)46:3<425:AID-ANA22>3.0.CO;2-O] [PMID: 10482277]
[109]
Whitney, L.W.; Ludwin, S.K.; McFarland, H.F.; Biddison, W.E. Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J. Neuroimmunol., 2001, 121(1-2), 40-48.
[http://dx.doi.org/10.1016/S0165-5728(01)00438-6] [PMID: 11730938]
[110]
Fumagalli, M.; Lecca, D.; Coppolino, G.T.; Parravicini, C.; Abbracchio, M.P. Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine. Adv. Exp. Med. Biol., 2017, 1051, 169-192.
[http://dx.doi.org/10.1007/5584_2017_92] [PMID: 28828731]
[111]
Liu, G.; Hu, Y.; Jin, S.; Jiang, Q. Genetic variant rs763361 regulates multiple sclerosis CD226 gene expression. Proceedings of the National Academy of Sciences, 2017, p. 201618520.
[http://dx.doi.org/10.1073/pnas.1618520114]
[112]
Dutta, R.; Trapp, B.D. Gene expression profiling in multiple sclerosis brain. Neurobiol. Dis., 2012, 45(1), 108-114.
[http://dx.doi.org/10.1016/j.nbd.2010.12.003] [PMID: 21147224]
[113]
Elshal, M.F.; McCoy, J.P. Multiplex bead array assays: performance evaluation and comparison of sensitivity to ELISA. Methods, 2006, 38(4), 317-323.
[http://dx.doi.org/10.1016/j.ymeth.2005.11.010] [PMID: 16481199]
[114]
Nolan, J.P.; Sklar, L.A. Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol., 2002, 20(1), 9-12.
[http://dx.doi.org/10.1016/S0167-7799(01)01844-3] [PMID: 11742671]
[115]
Mucksová, J.; Chalupský, K.; Plachý, J.; Kalina, J.; Rachacová, P.; Staněk, O.; Trefil, P. Simultaneous detection of chicken cytokines in plasma samples using the Bio-Plex assay. Poult. Sci., 2018, 97(4), 1127-1133.
[http://dx.doi.org/10.3382/ps/pex411] [PMID: 29340698]
[116]
Cretich, M.; Sola, L.; Gagni, P.; Chiari, M. Novel fluorescent microarray platforms: a case study in neurodegenerative disorders. Expert Rev. Mol. Diagn., 2013, 13(8), 863-873.
[http://dx.doi.org/10.1586/14737159.2013.849574] [PMID: 24151850]
[117]
Luo, D.; Fu, J. Identifying characteristic miRNAs-genes and risk pathways of multiple sclerosis based on bioinformatics analysis. Oncotarget, 2018, 9(4), 5287-5300.
[http://dx.doi.org/10.18632/oncotarget.23866] [PMID: 29435179]
[118]
Rödiger, S.; Liebsch, C.; Schmidt, C.; Lehmann, W.; Resch-Genger, U.; Schedler, U.; Schierack, P. Nucleic acid detection based on the use of microbeads: a review. Mikrochim. Acta, 2014, 181(11-12), 1151-1168.
[http://dx.doi.org/10.1007/s00604-014-1243-4]
[119]
Zhou, H.; Liu, J.; Xu, J-J.; Zhang, S-S.; Chen, H-Y. Optical nano-biosensing interface via nucleic acid amplification strategy: construction and application. Chem. Soc. Rev., 2018, 47(6), 1996-2019.
[http://dx.doi.org/10.1039/C7CS00573C] [PMID: 29446429]
[120]
Braeckmans, K.; De Smedt, S.C.; Leblans, M.; Pauwels, R.; Demeester, J. Encoding microcarriers: present and future technologies. Nat. Rev. Drug Discov., 2002, 1(6), 447-456.
[http://dx.doi.org/10.1038/nrd817] [PMID: 12119746]
[121]
Rödiger, S.; Schierack, P.; Böhm, A.; Nitschke, J.; Berger, I.; Frömmel, U.; Schmidt, C.; Ruhland, M.; Schimke, I.; Roggenbuck, D. A highly versatile microscope imaging technology platform for the multiplex real-time detection of biomolecules and autoimmune antibodies.Molecular diagnostics; Springer, 2012, pp. 35-74.
[http://dx.doi.org/10.1007/10_2011_132]
[122]
Telford, W.G. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes. Cytometry A, 2004, 61(1), 9-17.
[http://dx.doi.org/10.1002/cyto.a.20032] [PMID: 15351984]
[123]
Jun, B-H.; Rho, C.; Byun, J-W.; Kim, J-H.; Chung, W-J.; Kang, H.; Park, J.; Cho, S.H.; Kim, B.G.; Lee, Y-S. Multilayer fluorescence optically encoded beads for protein detection. Anal. Biochem., 2010, 396(2), 313-315.
[http://dx.doi.org/10.1016/j.ab.2009.05.052] [PMID: 19766091]
[124]
Telford, W.G. Overview of Lasers for Flow Cytometry.Flow Cytometry Protocols; Springer, 2018, pp. 447-479.
[http://dx.doi.org/10.1007/978-1-4939-7346-0_19]
[125]
Yingyongnarongkul, B.E.; How, S-E.; Díaz-Mochón, J.J.; Muzerelle, M.; Bradley, M. Parallel and multiplexed bead-based assays and encoding strategies. Comb. Chem. High Throughput Screen., 2003, 6(7), 577-587.
[http://dx.doi.org/10.2174/138620703771981179] [PMID: 14683488]
[126]
Jun, B-H.; Kim, J-H.; Park, H.; Kim, J-S.; Yu, K-N.; Lee, S-M.; Choi, H.; Kwak, S-Y.; Kim, Y-K.; Jeong, D.H.; Cho, M.H.; Lee, Y.S. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J. Comb. Chem., 2007, 9(2), 237-244.
[http://dx.doi.org/10.1021/cc0600831] [PMID: 17298100]
[127]
Pei, X.; Yin, H.; Lai, T.; Zhang, J.; Liu, F.; Xu, X.; Li, N. Multiplexed Detection of Attomoles of Nucleic Acids Using Fluorescent Nanoparticle Counting Platform. Anal. Chem., 2018, 90(2), 1376-1383.
[http://dx.doi.org/10.1021/acs.analchem.7b04551] [PMID: 29226673]
[128]
Jun, B-H.; Kang, H.; Lee, Y-S.; Jeong, D.H. Fluorescence-based multiplex protein detection using optically encoded microbeads. Molecules, 2012, 17(3), 2474-2490.
[http://dx.doi.org/10.3390/molecules17032474] [PMID: 22382526]
[129]
Horák, D.; Hlídková, H.; Kit, Y.; Antonyuk, V.; Myronovsky, S.; Stoika, R. Magnetic poly(2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients. Biosci. Rep., 2017, 37(2)BSR20160526
[http://dx.doi.org/10.1042/BSR20160526] [PMID: 28351895]
[130]
Byström, S.; Ayoglu, B.; Häggmark, A.; Mitsios, N.; Hong, M-G.; Drobin, K.; Forsström, B.; Fredolini, C.; Khademi, M.; Amor, S.; Uhlén, M.; Olsson, T.; Mulder, J.; Nilsson, P.; Schwenk, J.M. Affinity proteomic profiling of plasma, cerebrospinal fluid, and brain tissue within multiple sclerosis. J. Proteome Res., 2014, 13(11), 4607-4619.
[http://dx.doi.org/10.1021/pr500609e] [PMID: 25231264]
[131]
Dunbar, S.A. Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin. Chim. Acta, 2006, 363(1-2), 71-82.
[http://dx.doi.org/10.1016/j.cccn.2005.06.023] [PMID: 16102740]
[132]
Häggmark, A.; Byström, S.; Ayoglu, B.; Qundos, U.; Uhlén, M.; Khademi, M.; Olsson, T.; Schwenk, J.M.; Nilsson, P. Antibody-based profiling of cerebrospinal fluid within multiple sclerosis. Proteomics, 2013, 13(15), 2256-2267.
[http://dx.doi.org/10.1002/pmic.201200580] [PMID: 23696371]
[133]
Luo, X.; Davis, J.J. Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev., 2013, 42(13), 5944-5962.
[http://dx.doi.org/10.1039/c3cs60077g] [PMID: 23615920]
[134]
La Belle, J.T.; Gerlach, J.Q.; Svarovsky, S.; Joshi, L. Label-free impedimetric detection of glycan-lectin interactions. Anal. Chem., 2007, 79(18), 6959-6964.
[http://dx.doi.org/10.1021/ac070651e] [PMID: 17658764]
[135]
Bhavsar, K.; Fairchild, A.; Alonas, E.; Bishop, D.K.; La Belle, J.T.; Sweeney, J.; Alford, T.L.; Joshi, L. A cytokine immunosensor for Multiple Sclerosis detection based upon label-free electrochemical impedance spectroscopy using electroplated printed circuit board electrodes. Biosens. Bioelectron., 2009, 25(2), 506-509.
[http://dx.doi.org/10.1016/j.bios.2009.07.017] [PMID: 19683426]
[136]
Derkus, B.; Emregul, E.; Yucesan, C.; Cebesoy Emregul, K. Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens. Bioelectron., 2013, 46, 53-60.
[http://dx.doi.org/10.1016/j.bios.2013.01.060] [PMID: 23500477]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy