Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

TLC Bioautography on Screening of Bioactive Natural Products: An Update Review

Author(s): Yichao Zang, Zhihong Cheng* and Tao Wu*

Volume 16, Issue 5, 2020

Page: [545 - 556] Pages: 12

DOI: 10.2174/1573411015666181224145346

Price: $65

Abstract

Background: TLC bioautography is a hyphenated technique combining planar chromatographic separation and in situ biological activity detection. This coupled method has been receiving much attention in screening bio-active natural products because of its properties of being simple, rapid, inexpensive, and effective.

Methods: The recent progress in the development of method of TLC bioautography for detecting antimicrobial and enzyme inhibitory activities dating between 2012 and early 2018 has been reviewed. The applications of this method in biological screening of natural products were also presented.

Results: Some anaerobic and microaerophilic bacteria and a causative bacterium of tuberculosis have been adopted to TLC direct bioautography. Seven types of enzymes including acetylcholinesterase, glucosidase, lipase, xanthine oxidase, tyrosinase, monoamine oxidase, and dipeptidyl peptidase IV have so far been adopted on TLC bioautography. Its new application in screening antiurolithiatic agents was included.

Conclusion: The standard experimental procedures are required for TLC antioxidant and antimicrobial assays. Some new enzymes should be attempted and adopted on TLC bioautography. The existing TLC methods for enzyme inhibition need more application studies to assess their screening capacity in the discovery of active compounds. The GC-MS or LC-MS approaches have gradually been coupled to TLC bioautography for fast structural characterization of active compounds.

Keywords: Antimicrobial agents, antioxidants, bioautography, enzyme inhibition, natural products, TLC.

Graphical Abstract

[1]
Cheng, Z.; Wu, T. TLC bioautography: high throughput technique for screening of bioactive natural products. Comb. Chem. High Throughput Screen., 2013, 16(7), 531-549.
[http://dx.doi.org/10.2174/1386207311316070004] [PMID: 23597249]
[2]
Choma, I.M.; Jesionek, W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography (Basel), 2015, 2, 225-238.
[http://dx.doi.org/10.3390/chromatography2020225]
[3]
Grzelak, E.M.; Jesionek, W.; Majer-Dziedzic, B.; Choma, I.M. Applications of novel direct bioautography tests for analysis of antimicrobials: a review. J. AOAC Int., 2013, 96(6), 1167-1174.
[http://dx.doi.org/10.5740/jaoacint.SGEGrzelak] [PMID: 24645491]
[4]
Favre-Godal, Q.; Queiroz, E.F.; Wolfender, J.L. Latest developments in assessing antifungal activity using TLC-bioautography: a review. J. AOAC Int., 2013, 96(6), 1175-1188.
[http://dx.doi.org/10.5740/jaoacint.SGEFavre-Godal] [PMID: 24645492]
[5]
Dewanjee, S.; Gangopadhyay, M.; Bhattacharya, N.; Khanra, R.; Dua, T.K. Bioautography and its scope in the field of natural product chemistry. J. Pharm. Anal., 2015, 5(2), 75-84.
[http://dx.doi.org/10.1016/j.jpha.2014.06.002] [PMID: 29403918]
[6]
Grzelak, E.M.; Hwang, C.; Cai, G.; Nam, J.W.; Choules, M.P.; Gao, W.; Lankin, D.C.; McAlpine, J.B.; Mulugeta, S.G.; Napolitano, J.G.; Suh, J.W.; Yang, S.H.; Cheng, J.; Lee, H.; Kim, J.Y.; Cho, S.H.; Pauli, G.F.; Franzblau, S.G.; Jaki, B.U. Bioautography with TLC-MS/NMR for rapid discovery of anti-tuberculosis lead compounds from natural sources. ACS Infect. Dis., 2016, 2(4), 294-301.
[http://dx.doi.org/10.1021/acsinfecdis.5b00150] [PMID: 27478868]
[7]
Khurram, M.; Hameed, A.; Amin, M.U.; Manzoor, W.; Ullah, N.; Chishti, K.A.; Khayyam, S.H.; Hassan, M.; Qayum, A. Evaluation of anticandidal potential of Quercus baloot Griff. using contact bioautography technique. Afr. J. Pharm. Pharmacol., 2011, 5(12), 1538-1542.
[http://dx.doi.org/10.5897/AJPP11.386]
[8]
Valle, D.L., Jr; Puzon, J.J.M.; Cabrera, E.C.; Rivera, W.L. Thin layer chromatography-bioautography and gas chroma-tography-mass spectrometry of antimicrobial leaf extracts from Philippine Piper betle L. against multidrug-resistant bac-teria. Evid.-Based Complement. Alterat. Med., 2016, 2016, 4976791
[9]
Noriega, P.; Mosquera, T.; Paredes, E.; Parra, M.; Zappia, M.; Herrera, M.; Villegas, A.; Osorio, E. Antimicrobial and antioxidant bioautography activity of bark essential oil from Ocotea quixos (Lam.) Kosterm. J. Planar Chromatogr. Mod. TLC, 2018, 31(2), 163-168.
[http://dx.doi.org/10.1556/1006.2018.31.2.11]
[10]
Tan, S.P.; O’Sullivah, L.; Prieto, M.L.; Gardiner, G.E.; Lawlor, P.G.; Leonard, F.; Duggan, P.; McLonghlin, P.; Hughes, H. Extraction and bioautogtaphic-guided separation of antibacterial compounds from Ulva lactuca. J. Appl. Phycol., 2012, 24, 513-523.
[http://dx.doi.org/10.1007/s10811-011-9747-3]
[11]
Patra, J.K.; Gouda, S.; Sahoo, S.K.; Thatoi, H.N. Chromatography separation, 1H NMR analysis and bioautography screening of methanol extract of Excoecaria agallocha L. from Bhitarkanika, Orissa, India. Asian Pac. J. Trop. Biomed., 2012, S50-S56.
[http://dx.doi.org/10.1016/S2221-1691(12)60129-4]
[12]
Fabri, R.L.; Nogueira, M.S.; Moreira, Jdos.R.; Bouzada, M.L.M.; Scio, E. Identification of antioxidant and antimicrobial compounds of Lippia species by bioautography. J. Med. Food, 2011, 14(7-8), 840-846.
[http://dx.doi.org/10.1089/jmf.2010.0141] [PMID: 21476886]
[13]
Bashir, S.; Khan, B.M.; Babar, M.; Andleeb, S.; Hafeez, M.; Ali, S.; Khan, M.F. Assessment of bioautography and spot screening of TLC of green tea (Camellia) plant extracts as antibacterial and antioxidant agents. Indian J. Pharm. Sci., 2014, 76(4), 364-370.
[PMID: 25284935]
[14]
Mehrabani, M.; Kazemi, A.; Mousavi, S.A.A.; Rezaifar, M.; Alikhah, H.; Nosky, A. Evaluation of antifungal activities of Myrtus communis L. by bioautography method. Jundishapur J. Microbiol., 2013, 6(8)e8316
[http://dx.doi.org/10.5812/jjm.8316]
[15]
Cunico, M.M.; Auer, C.G.; de Lima, C.P.; Cocco, L.C.; Yamamoto, C.I.; Migael, M.D.; Miguel, O.G.; Sanquetta, C.R. Bioautography to assess antibacterial activity of Ottonica martina Miq. (Piperaceae) on the human oral microbiota. Rev. Cienc. Farm. Apl., 2012, 33(4), 515-519.
[16]
Guerrini, A.; Sacchetti, G.; Grandini, A.; Spagnoletti, A.; Asanza, M.; Scalvenzi, L. Cytotoxic effect and TLC bioautography-guided approach to detect health properties of Amazonian Hedyosmum sprucei es-sential oil. Evid.-Based Complement. Alternat. Med., 2016, 2016, 1638342
[17]
Rakshith, D.; Santosh, P.; Tarman, K.; Gurudatt, D.M.; Satish, S. Dereplication strategy for antimicrobial metabolite using thin-layer chromatography-bioautography and LC-PDA-MS analysis. J. Phanar Chromatogr., 2013, 26(6), 470-474.
[http://dx.doi.org/10.1556/JPC.26.2013.6.2]
[18]
Chintaluri, A.K.; Komarraju, A.L.; Chintaluri, V.K.; Vemulapalli, B. Comparative study of antimicrobial activity of essential oils of selected plants of Rutaceae and TLC bioautographic studies for detection of bioactive compounds. J. Essent. Oil Res., 2015, 27(1), 9-16.
[http://dx.doi.org/10.1080/10412905.2014.974837]
[19]
Kruzselyi, D.; Vetter, J.; Ott, P.G.; Moricz, A.M. Investigation of antibacterial components of button mushroom (Agaricus bisporus) by direct bioautography and HPLC-DAD-MS. J. Liq. Chromatogr. Relat. Technol., 2016, 39(5-6), 298-302.
[http://dx.doi.org/10.1080/10826076.2016.1163469]
[20]
Móricz, A.M.; Szeremeta, D.; Knaś, M.; Długosz, E.; Ott, P.G.; Kowalska, T.; Sajewicz, M. Antibacterial potential of the Cistus incanus L. phenolics as studied with use of thin-layer chromatography combined with direct bioautography and in situ hydrolysis. J. Chromatogr. A, 2018, 1534, 170-178.
[http://dx.doi.org/10.1016/j.chroma.2017.12.056] [PMID: 29290397]
[21]
Gupta, S.; Bhagat, M.; Sudan, R.; Rajput, S.; Rajput, K. Analysis of chemical composition of Cupressus torulosa (D.Don) essential oil and bioautography guided evaluation of its antimicrobial fraction. Indian J. Exp. Biol., 2018, 56, 252-257.
[22]
Sun, Z.L.; Liu, T.; Wang, S.Y.; Ji, X.Y.; Mu, Q. TLC-bioautography directed isolation of antibacterial compounds from active fractionation of Ferula ferulioides. Nat. Prod. Res., 2018, 33(12), 1761-1764.
[http://dx.doi.org/10.1080/14786419.2018.1431640] [PMID: 29378434]
[23]
Jesionek, W.; Majer-Dziedzic, B.; Choma, I.M. TLC-direct bioautography as a method for evaluation of antibacterial properties of Thymus vulgaris L. and Salvia officinalis L. essential oils of different origin. J. Liq. Chromatogr. Relat. Technol., 2017, 40(5-6), 292-296.
[http://dx.doi.org/10.1080/10826076.2017.1298031]
[24]
Jesionek, W.; Majer-Dziedzic, B.; Horvath, G.; Moricz, A.M.; Choma, I.M. Screening of antibacterial compounds in Thymus vulgaris L. tincture using thin-layer chromatography-direct bioautography and liquid chromatography-tandem mass spectrometry techniques. J. Planar Chromatogr. Mod. TLC, 2017, 30(2), 131-135.
[http://dx.doi.org/10.1556/1006.2017.30.2.7]
[25]
Jesionek, W.; Majer-Dziedzic, B.; Horvath, G.; Moricz, A.M.; Choma, I.M. Screening of antibacterial compounds in Salvia officinalis L. tincture using thin-layer chromatography-direct bioautography and liquid chromatography-tandem mass spectrometry techniques. J. Planar Chromatogr. Mod. TLC, 2017, 30(5), 357-362.
[http://dx.doi.org/10.1556/1006.2017.30.5.4]
[26]
Jozwiak, G.; Majer-Dziedzic, B.; Kwiecinska, J.; Waksmundzka-Hajnos, M. Comparison of the microbiological activities of different varieties of Hop (Humulus lupulus) extracts by thin-layer chromatography-direct bioautography. J. Planar Chromatogr. Mod. TLC, 2017, 30(2), 126-130.
[http://dx.doi.org/10.1556/1006.2017.30.2.6]
[27]
Ristivojević, P.; Dimkić, I.; Trifković, J.; Berić, T.; Vovk, I.; Milojković-Opsenica, D.; Stanković, S. Antimicrobial activity of Serbian propolis evaluated by means of MIC, HPTLC, bioautography and chemometrics. PLoS One, 2016, 11(6)e0157097
[http://dx.doi.org/10.1371/journal.pone.0157097] [PMID: 27272728]
[28]
Kovács, J.K.; Horváth, G.; Kerényi, M.; Kocsis, B.; Emődy, L.; Schneider, G. A modified bioautographic method for antibacterial component screening against anaerobic and microaerophilic bacteria. J. Microbiol. Methods, 2016, 123, 13-17.
[http://dx.doi.org/10.1016/j.mimet.2016.02.006] [PMID: 26853123]
[29]
Jamshidi-Aidji, M.; Morlock, G.E. From bioprofiling and characterization to bioquantification of natural antibiotics by direct bioautography linked to high-resolution mass spectrometry: exemplarily shown for Salvia miltiorrhiza root. Anal. Chem., 2016, 88(22), 10979-10986.
[http://dx.doi.org/10.1021/acs.analchem.6b02648] [PMID: 27766834]
[30]
Jozwiak, G.W.; Majer-Dziedzic, B.; Jesionek, W.; Zielinski, W.; Waksmundzka-Hajnos, M. Thin-layer chromatography: direct bioautography as a method of examination of antimicrobial activity of selected Potentilla species. J. Liq. Chromatogr. Relat. Technol., 2016, 39(5–6), 281-285.
[http://dx.doi.org/10.1080/10826076.2016.1163466]
[31]
Móricz, Á.M.; Häbe, T.T.; Böszörményi, A.; Ott, P.G.; Morlock, G.E. Tracking and identification of antibacterial components in the essential oil of Tanacetum vulgare L. by the combination of high-performance thin-layer chromatography with direct bioautography and mass spectrometry. J. Chromatogr. A, 2015, 1422, 310-317.
[http://dx.doi.org/10.1016/j.chroma.2015.10.010] [PMID: 26499972]
[32]
Jesionek, W.; Móricz, A.M.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-direct bioautography and LC/MS as complementary methods in identification of antibacterial agents in plant tinctures from the Asteraceae family. J. AOAC Int., 2015, 98(4), 857-861.
[http://dx.doi.org/10.5740/jaoacint.SGE2-Choma] [PMID: 26268962]
[33]
Jamshidi-Aidji, M.; Morlock, G.E. Bioprofiling of unknown antibiotics in herbal extracts: Development of a streamlined direct bioautography using Bacillus subtilis linked to mass spectrometry. J. Chromatogr. A, 2015, 1420, 110-118.
[http://dx.doi.org/10.1016/j.chroma.2015.09.061] [PMID: 26472471]
[34]
Orłowska, M.; Kowalska, T.; Sajewicz, M.; Jesionek, W.; Choma, I.M.; Majer-Dziedzic, B.; Szymczak, G.; Waksmundzka-Hajnos, M. A comparison of antibacterial activity of selected thyme (Thymus) species by means of the dot blot test with direct bioautographic detection. J. AOAC Int., 2015, 98(4), 871-875.
[http://dx.doi.org/10.5740/jaoacint.SGE5-Orlowska] [PMID: 26268965]
[35]
Jesionek, W.; Móricz, A.M.; Alberti, Á.; Ott, P.G.; Kocsis, B.; Horváth, G.; Choma, I.M. TLC-direct bioautography as a bioassay guided method for investigation of antibacterial compounds in Hypericum perforatum L. J. AOAC Int., 2015, 98(4), 1013-1020.
[http://dx.doi.org/10.5740/jaoacint.14-233] [PMID: 26268984]
[36]
Jesionek, W.; Choma, I.M.; Majer-Dziedzic, B.; Malinowska, I. Screening bacterial and radical scavenging properties of chosen plant extracts using thin-layer chromatography-direct bioautography. J. Liq. Chromatogr. Relat. Technol., 2014, 37, 2882-2891.
[http://dx.doi.org/10.1080/10826076.2014.907103]
[37]
Lomarat, P.; Phanthong, P.; Wongsariya, K.; Chomnawang, M.T.; Bunyapraphatsara, N. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria. Pak. J. Pharm. Sci., 2013, 26(3), 473-477.
[PMID: 23625419]
[38]
Jesionek, W.; Grzelak, E.M.; Majer-Dziedzic, B.; Choma, I.M. Thin-layer chromatography-direct bioautography for the screening of antimicrobial properties of plant extracts. J. Planar Chromatogr. Mod. TLC, 2013, 26(2), 109-113.
[http://dx.doi.org/10.1556/JPC.26.2013.2.1]
[39]
McGaw, L.J.; Bagla, V.P.; Steenkamp, P.A.; Fouche, G.; Olivier, J.; Eloff, J.N.; Myer, M.S. Antifungal and antibacterial activity and chemical composition of polar and non-polar extracts of Athrixia phylicoides determined using bioautography and HPLC. BMC Complement. Altern. Med., 2013, 13, 356.
[http://dx.doi.org/10.1186/1472-6882-13-356] [PMID: 24330447]
[40]
Moricz, A.M.; Ott, P.G.; Boszormenyi, A.; Lemberkovics, E.; Mincsovics, E.; Tyihak, E. Bioassay-guided isolation and identification of antimicrobial compounds from thyme essential oil by means of overpressured layer chromatography, bioautography and GC-MS. Chromatographia, 2012, 75, 991-999.
[http://dx.doi.org/10.1007/s10337-012-2233-5]
[41]
Móricz, A.M.; Szarka, S.; Ott, P.G.; Héthelyi, E.B.; Szoke, E.; Tyihák, E. Separation and identification of antibacterial chamomile components using OPLC, bioautography and GC-MS. Med. Chem., 2012, 8(1), 85-94.
[http://dx.doi.org/10.2174/157340612799278487] [PMID: 22420556]
[42]
Shen, T.; Morlock, G.; Zorn, H. Production of cyathane type secondary metabolites by submerged cultures of Hericium erinaceus and evaluation of their antibacterial activity by direct bioautography. Fungal Biol. Biotechnol., 2015, 2, 8.
[http://dx.doi.org/10.1186/s40694-015-0018-y] [PMID: 28955459]
[43]
Cretu, G.C.; Morlock, G.E. Analysis of anthocyanins in powdered berry extracts by planar chromatography linked with bioassay and mass spectrometry. Food Chem., 2014, 146, 104-112.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.038] [PMID: 24176320]
[44]
Móricz, A.M.; Ott, P.G.; Alberti, A.; Böszörményi, A.; Lemberkovics, E.; Szoke, E.; Kéry, A.; Mincsovics, E. Applicability of preparative overpressured layer chromatography and direct bioautography in search of antibacterial chamomile compounds. J. AOAC Int., 2013, 96(6), 1214-1221.
[http://dx.doi.org/10.5740/jaoacint.SGEMoricz] [PMID: 24645496]
[45]
Horvath, G.; Kocsis, B.; Lemberkovics, E.; Boszormenyi, A.; Ott, P.G.; Moricz, A.M. Detection of antibacterial activity of essential oil components by TLC-bioautography using luminescent bacteria. J. Planar Chromatogr. Mod. TLC, 2013, 26(2), 114-118.
[http://dx.doi.org/10.1556/JPC.26.2013.2.2]
[46]
Mincsovics, E.; Ott, P.G.; Alberti, A.; Boszormenyi, A.; Hethelyi, E.; Szoke, E.; Kery, A.; Lemberkovics, E.; Moricz, A.M. In-situ clean-up and OPLC fractionation of chamomile flower extract to search active components by bioautography. J. Planar Chromatogr. Mod. TLC, 2013, 26, 172-179.
[http://dx.doi.org/10.1556/JPC.26.2013.2.12]
[47]
Moricz, A.M.; Szarka, S.; Ott, P.G.; Kertesy, D.; Hethelyi, E.B.; Szoke, E.; Tyihak, E. Application of direct bioautography and SPME-GC-MS for the study of antibacterial chamomile ingredients. J. Planar Chromatogr. Mod. TLC, 2012, 25(3), 220-224.
[http://dx.doi.org/10.1556/JPC.25.2012.3.6]
[48]
Grzelak, E.M.; Majer-Dziedzic, B.; Choma, I.M.; Pilorz, K.M. Development of a novel direct bioautography-thin-layer chromatography test: optimization of growth conditions for gram-positive bacteria, Bacillus subtilis. J. AOAC Int., 2013, 96(2), 386-391.
[http://dx.doi.org/10.5740/jaoacint.11-466] [PMID: 23767364]
[49]
Xiao, G.; Li, G.; Chen, L.; Zhang, Z.; Yin, J.J.; Wu, T.; Cheng, Z.; Wei, X.; Wang, Z. Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. J. Chromatogr. A, 2010, 1217(34), 5470-5476.
[http://dx.doi.org/10.1016/j.chroma.2010.06.041] [PMID: 20663508]
[50]
Zhang, X.J.; Liu, L.J.; Song, T.T.; Wang, Y.Q.; Yang, X.H. An approach based on antioxidant fingerprint-efficacy relationship and TLC bioautography assay to quality evaluation of Rubia cordifolia from various sources. J. Nat. Med., 2014, 68(2), 448-454.
[http://dx.doi.org/10.1007/s11418-013-0812-x] [PMID: 24385232]
[51]
Han, S.L.; Li, X.X.; Mian, Q.H.; Lan, W.; Liu, Y. [Comparison of antioxidant activity between two species of chamomiles produced in Xinjiang by TLC-bioautography]. Zhongguo Zhongyao Zazhi, 2013, 38(2), 193-198.
[PMID: 23672040]
[52]
Hussain, S.; Babar, M.; Kousar, S.; Wazir, S.; Fareed, F.; Latif, F.; Andleed, S.; Ali, S. Analysis of TLC-bioautography and TLC-spot visualization of Atropa accuminata and Atropa belladonna extracts as antioxidant and antibacterial agents against human pathogenic bacteria. Curr. Pharm. Anal., 2017, 13, 462-472.
[http://dx.doi.org/10.2174/1573412913666170117162851]
[53]
Ciesla, L.; Kryszenn, J.; Stochmal, A.; Oleszek, W.; Waksmundzka-Hajnos, M. Low-temperature thin-layer chromatography preliminary bioautographic tests for detection of free radical scavengers and acetylcholinesterase inhibitors in volatile samples. J. Planar Chromatogr. Mod. TLC, 2012, 25(3), 225-231.
[http://dx.doi.org/10.1556/JPC.25.2012.3.7]
[54]
Krecisz, M.; Waksmundzka-Hajnos, M.; Oniszczuk, A. Radical scavenging activity of instant gruels enriched with cranberry fruits determined by thin-layer chromatography-DPPH test and by spectrophotometric method. J. Planar Chromatogr. Mod. TLC, 2017, 30(5), 418-422.
[http://dx.doi.org/10.1556/1006.2017.30.5.12]
[55]
Lam, S.C.; Luo, Z.; Wu, D.T.; Cheong, K.L.; Hu, D.J.; Xia, Z.M.; Zhao, J.; Li, S.P. Comparison and characterization of compounds with antioxidant activity in Lycium barbarum using high-performance thin layer chromatography coupled with DPPH bioautography and tandem mass spectrometry. J. Food Sci., 2016, 81(6), C1378-C1384.
[http://dx.doi.org/10.1111/1750-3841.13327] [PMID: 27155221]
[56]
Huang, Q.; Xu, L.; Qu, W.S.; Ye, Z.H.; Huang, W.Y.; Liu, L.Y.; Lin, J.F.; Li, S.; Ma, H.Y. TLC bioautography-guided isolation of antioxidant activity components of extracts from Sophora flavescens Ait. Eur. Food Res. Technol., 2017, 243, 1127-1136.
[http://dx.doi.org/10.1007/s00217-016-2820-z]
[57]
Annegowda, H.V.; Tan, P.Y.; Mordi, M.N.; Ramanathan, S.; Hamdan, M.R.; Sulaiman, M.H.; Mansor, S.M. TLC-bioautography-guided isolation, HPTLC and GC-MS-assisted analysis of bioactives of Piper betle leaf extract obtained from various extraction techniques: in vitro evaluation of phenolic content, antioxidant and antimicrobial activities. Food Anal. Methods, 2013, 6, 715-726.
[http://dx.doi.org/10.1007/s12161-012-9470-y]
[58]
Nickavar, B.; Adeli, A.; Nickavar, A. TLC-bioautography and GC-MS analyses for detection and identification of antioxidant constituents of Trachyspermum copticum essential oil. Iran. J. Pharm. Res., 2014, 13(1), 127-133.
[PMID: 24734063]
[59]
Gu, L.H.; Zheng, S.S.; Wu, T.; Chou, G.X.; Wang, Z.T. High-performance thin-layer chromatographic-bioautographic method for the simultaneous determination of magnolol and honokiol in Magnoliae officinal cortex. J. Planar Chromatogr. Mod. TLC, 2014, 27(1), 5-10.
[http://dx.doi.org/10.1556/JPC.27.2014.1.1]
[60]
Aisen, P.S.; Davis, K.L. The search for disease-modifying treatment for Alzheimer’s disease. Neurology, 1997, 48(5)(Suppl. 6), S35-S41.
[http://dx.doi.org/10.1212/WNL.48.5_Suppl_6.35S] [PMID: 9153159]
[61]
Hebert, L.E.; Scherr, P.A.; Beckett, L.A.; Albert, M.S.; Pilgrim, D.M.; Chown, M.J.; Funkenstein, H.H.; Evans, D.A. Age-specific incidence of Alzheimer’s disease in a community population. JAMA, 1995, 273(17), 1354-1359.
[http://dx.doi.org/10.1001/jama.1995.03520410048025] [PMID: 7715060]
[62]
Zhang, Y.B.; Dai, M.M.; Song, Q.; Guo, Y. Detection of acetylcholinesterase inhibitors from lobster sauce using TLC-bioautography assay. Food Ind., 2010, (6), 89-92.
[63]
Yang, Z.D.; Song, Z.W.; Ren, J.; Yang, M.J.; Li, S. Improved thin-layer chromatography bioautographic assay for the detection of actylcholinesterase inhibitors in plants. Phytochem. Anal., 2011, 22(6), 509-515.
[http://dx.doi.org/10.1002/pca.1310] [PMID: 21433160]
[64]
Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal., 2002, 13(1), 51-54.
[http://dx.doi.org/10.1002/pca.623] [PMID: 11899607]
[65]
Mroczek, T.; Mazurek, J. Pressurized liquid extraction and anticholinesterase activity-based thin-layer chromatography with bioautography of Amaryllidaceae alkaloids. Anal. Chim. Acta, 2009, 633(2), 188-196.
[http://dx.doi.org/10.1016/j.aca.2008.11.053] [PMID: 19166722]
[66]
Ramallo, I.A.; Salazar, M.O.; Furlan, R.L. Thin layer chromatography-autography-high resolution mass spectrometry analysis: accelerating the identification of acetylcholinesterase inhibitors. Phytochem. Anal., 2015, 26(6), 404-412.
[http://dx.doi.org/10.1002/pca.2574] [PMID: 26102595]
[67]
Adhami, H.R.; Scherer, U.; Kaehlig, H.; Hettich, T.; Schlotterbeck, G.; Reich, E.; Krenn, L. Combination of bioautography with HPTLC-MS/NMR: a fast identification of acetylcholinesterase inhibitors from galbanum(†). Phytochem. Anal., 2013, 24(4), 395-400.
[http://dx.doi.org/10.1002/pca.2422] [PMID: 23427054]
[68]
Wangthong, S.; Tonsiripakdee, I.; Monhaphol, T.; Nonthabenjawan, R.; Wanichwecharungruang, S.P. Post TLC developing technique for tyrosinase inhibitor detection. Biomed. Chromatogr., 2007, 21(1), 94-100.
[http://dx.doi.org/10.1002/bmc.727] [PMID: 17120304]
[69]
Taibon, J.; Ankli, A.; Schwaiger, S.; Magnenat, C.; Boka, V.I.; Simões-Pires, C.; Aligiannis, N.; Cuendet, M.; Skaltsounis, A.L.; Reich, E.; Stuppner, H. Prevention of false-positive results: development of an HPTLC autographic assay for the detection of natural tyrosinase inhibitors. Planta Med., 2015, 81(12-13), 1198-1204.
[http://dx.doi.org/10.1055/s-0035-1546250] [PMID: 26218339]
[70]
Zhou, J.; Tang, Q.; Wu, T.; Cheng, Z. Improved TLC bioautographic assay for qualitative and quantitative estimation of tyrosinase inhibitors in natural products. Phytochem. Anal., 2017, 28(2), 115-124.
[http://dx.doi.org/10.1002/pca.2666] [PMID: 28028844]
[71]
García, P.; Ramallo, I.A.; Furlan, R.L. Reverse phase compatible TLC-bioautography for detection of tyrosinase inhibitors. Phytochem. Anal., 2017, 28(2), 101-105.
[http://dx.doi.org/10.1002/pca.2655] [PMID: 27910199]
[72]
Lü, J.M.; Yao, Q.; Chen, C. 3,4-Dihydroxy-5-nitrobenzaldehyde (DHNB) is a potent inhibitor of xanthine oxidase: a potential therapeutic agent for treatment of hyperuricemia and gout. Biochem. Pharmacol., 2013, 86(9), 1328-1337.
[http://dx.doi.org/10.1016/j.bcp.2013.08.011] [PMID: 23994369]
[73]
Ramallo, I.A.; Zacchino, S.A.; Furlan, R.L.E. A rapid TLC autographic method for the detection of xanthine oxidase inhibitors and superoxide scavengers. Phytochem. Anal., 2006, 17(1), 15-19.
[http://dx.doi.org/10.1002/pca.874] [PMID: 16454471]
[74]
Kong, Y.; Li, X.; Zhang, N.; Miao, Y.; Feng, H.; Wu, T.; Cheng, Z. Improved bioautographic assay on TLC layers for qualitative and quantitative estimation of xanthine oxidase inhibitors and superoxide scavengers. J. Pharm. Biomed. Anal., 2018, 150, 87-94.
[http://dx.doi.org/10.1016/j.jpba.2017.11.077] [PMID: 29216590]
[75]
Shi, Y.; Burn, P. Lipid metabolic enzymes: emerging drug targets for the treatment of obesity. Nat. Rev. Drug Discov., 2004, 3(8), 695-710.
[http://dx.doi.org/10.1038/nrd1469] [PMID: 15286736]
[76]
Singh, A.; Sarkar, S.R.; Gaber, L.W.; Perazella, M.A. Acute oxalate nephropathy associated with orlistat, a gastrointestinal lipase inhibitor. Am. J. Kidney Dis., 2007, 49(1), 153-157.
[http://dx.doi.org/10.1053/j.ajkd.2006.10.004] [PMID: 17185156]
[77]
Hassan, A.M. TLC bioautographic method for detecting lipase inhibitors. Phytochem. Anal., 2012, 23(4), 405-407.
[http://dx.doi.org/10.1002/pca.1372] [PMID: 22095552]
[78]
Bayineni, V.K.; Suresh, S.; Singh, G.; Kadeppagari, R.K. Development of a bioautographic method for the detection of lipase inhibitors. Biochem. Biophys. Res. Commun., 2014, 453(4), 784-786.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.030] [PMID: 25445589]
[79]
Tang, J.; Zhou, J.; Tang, Q.; Wu, T.; Cheng, Z. A new TLC bioautographic assay for qualitative and quantitative estimation of lipase inhibitors. Phytochem. Anal., 2016, 27(1), 5-12.
[http://dx.doi.org/10.1002/pca.2581] [PMID: 26219532]
[80]
Zhang, L.; Shi, J.; Tang, J.; Cheng, Z.; Lu, X.; Kong, Y.; Wu, T. Direct coupling of thin-layer chromatography-bioautography with electrostatic field induced spray ionization-mass spectrometry for separation and identification of lipase inhibitors in lotus leaves. Anal. Chim. Acta, 2017, 967, 52-58.
[http://dx.doi.org/10.1016/j.aca.2017.03.008] [PMID: 28390485]
[81]
Standl, E.; Schnell, O. α-glucosidase inhibitors 2012 - cardiovascular considerations and trial evaluation. Diab. Vasc. Dis. Res., 2012, 9(3), 163-169.
[http://dx.doi.org/10.1177/1479164112441524] [PMID: 22508699]
[82]
Salazar, M.O.; Furlan, R.L.E. A rapid TLC autographic method for the detection of glucosidase inhibitors. Phytochem. Anal., 2007, 18(3), 209-212.
[http://dx.doi.org/10.1002/pca.971] [PMID: 17500363]
[83]
Simões-Pires, C.A.; Hmicha, B.; Marston, A.; Hostettmann, K. A TLC bioautographic method for the detection of α- and β-glucosidase inhibitors in plant extracts. Phytochem. Anal., 2009, 20(6), 511-515.
[http://dx.doi.org/10.1002/pca.1154] [PMID: 19774543]
[84]
Yang, Y.; Gu, L.; Xiao, Y.; Liu, Q.; Hu, H.; Wang, Z.; Chen, K. Rapid identification of α-glucosidase inhibitors from Phlomis tuberosa by Sepbox chromatography and thin-layer chromatography bioautography. PLoS One, 2015, 10(2)e0116922
[http://dx.doi.org/10.1371/journal.pone.0116922] [PMID: 25658100]
[85]
Theiler, B.A.; Istvanits, S.; Zehl, M.; Marcourt, L.; Urban, E.; Caisa, L.O.E.; Glasl, S. HPTLC bioautography guided isolation of α-glucosidase inhibiting compounds from Justicia secunda Vahl (Acanthaceae). Phytochem. Anal., 2017, 28(2), 87-92.
[http://dx.doi.org/10.1002/pca.2651] [PMID: 27910158]
[86]
Thomas, T. Monoamine oxidase-B inhibitors in the treatment of Alzheimer’s disease. Neurobiol. Aging, 2000, 21(2), 343-348.
[http://dx.doi.org/10.1016/S0197-4580(00)00100-7] [PMID: 10867219]
[87]
Curry, A.S.; Mercier, M. Detection and identification of monoamine oxidase inhibitors in biological samples. Nature, 1970, 228(5268), 281-282.
[http://dx.doi.org/10.1038/228281a0] [PMID: 5479525]
[88]
Liang, J.B.; Yang, Z.D.; Shu, Z.M.; Yu, C.C. A rapid thin-layer chromatography bioautographic method for detecting the monoamine oxidase inhibitors in plants. Nat. Prod. Res., 2014, 28(17), 1318-1321.
[http://dx.doi.org/10.1080/14786419.2014.901322] [PMID: 24673426]
[89]
Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7-36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem., 1993, 214(3), 829-835.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17986.x] [PMID: 8100523]
[90]
Idris, I.; Donnelly, R. Dipeptidyl peptidase-IV inhibitors: a major new class of oral antidiabetic drug. Diabetes Obes. Metab., 2007, 9(2), 153-165.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00705.x] [PMID: 17300591]
[91]
Tundis, R.; Loizzo, M.R.; Menichini, F. Natural products as alpha-amylase and alpha-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes: an update. Mini Rev. Med. Chem., 2010, 10(4), 315-331.
[http://dx.doi.org/10.2174/138955710791331007] [PMID: 20470247]
[92]
Gu, L.H.; Liao, L.P.; Hu, H.J.; Annie Bligh, S.W.; Wang, C.H.; Chou, G.X.; Wang, Z.T. A thin-layer chromatography-bioautographic method for detecting dipeptidyl peptidase IV inhibitors in plants. J. Chromatogr. A, 2015, 1411, 116-122.
[http://dx.doi.org/10.1016/j.chroma.2015.07.123] [PMID: 26283532]
[93]
Patil, A.S.; Paikrao, H.M.; Kale, A.S.; Manik, S.R. A TLC-direct bioautography method for detection of antiurolithiatic metabolites. J. Chromatogr. Sci., 2017, 55(5), 578-585.
[http://dx.doi.org/10.1093/chromsci/bmx002] [PMID: 28203809]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy