[1]
Boscá, L.; Zeini, M.; Través, P.G.; Hortelano, S. Nitric oxide and cell viability in inflammatory cells: A role for NO in macrophage function and fate. Toxicology, 2005, 208, 249-258.
[2]
Ferrero-Miliani, L.; Nielsen, O.H.; Andersen, P.S.; Girardin, S.E. Chronic inflammation: importance of NOD2 and NALP3 in interleukin‐1β generation. Exp. Immuno., 2007, 147, 227-235.
[3]
Palladino, M.A.; Bahjat, F.R.; Theodorakis, E.A.; Moldawer, L.L. AntiTNF-α therapies: The next generation. Nat. Rev. Drug Discov., 2003, 2, 736-746.
[4]
Leval, X.d.; Ulémont, F.J.; Delarge, J.; Pirotte, B.; Dogné, J-M. New trends in dual 5-LOX/COX inhibition. Curr. Med. Chem., 2002, 9, 941.
[5]
Geronikaki, A.A.; Lagunin, A.A.; Hadjipavlou-Litina, D.I.; Eleftheriou, P.T.; Filimonov, D.A.; Poroikov, V.V.; Alam, I.; Saxena, A.K. Computer-aided discovery of antiinflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J. Med. Chem., 2008, 51, 1601.
[6]
Oldenburg, B.; Van, H. Kats-Renaud.; Koningsberger, J.C.; Van, B.H.G.P.; Van, A.B.S. Chemiluminescence in inflammatory bowel disease patients: a parameter of inflammatory activity. Clin. Chim. Acta, 2001, 310, 151-156.
[7]
Kunsch, C.; Medford, R.M. Oxidative stress as a regulator of gene expression in the vasculature. Circ. Res., 1999, 85, 753-766.
[8]
Gupta, A.K.; Chitme, H.; Dass, S.K.; Misra, N. Antioxidant activity of Chamomile recutita capitula methanolic extracts against CCl4-induced liver injury in rats. J. Pharm. Toxicol., 2006, 1, 101-107.
[9]
Dahlgren, C.; Briheim, G. Comparison between the luminol‐dependent chemiluminescence of polymorphonuclear leukocytes and of the myeloperoxidase‐hooh system: influence of ph, cations and protein. Photochem. Photobiol., 1985, 41, 605-610.
[10]
Connell, D. Volatile flavouring constituents of the pineapple. I. Some esters, alcohols, and carbonyl compounds. Aust. J. Chem., 1964, 17, 130-140.
[11]
Kalua, C.; Allen, M.; Bedgood, D.; Bishop, A.; Prenzler, P.; Robards, K. A Critical Review, Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem., 2007, 100, 273-286.
[12]
Devitt, L.C.; Sawbridge, T.; Holton, T.A.; Mitchelson, K.; Dietzgen, R.G. Discovery of genes associated with fruit ripening in Carica papaya using expressed sequence tags. Plant Sci., 2006, 170, 356-363.
[13]
Xi, P.; Xia, H.; Zhao, F.; Chen, B. Syntheses and luminescence properties of EU (III) complexes with benzoic acid carboxymethyl ester derivatives. Mater. Lett., 2015, 160, 463-467.
[14]
Zygmunt, M.; Chłoń-Rzepa, G.; Sapa, J.; Pawłowski, M. Analgesic activity of new 8-methoxy-1, 3-dimethyl-2,6-dioxo-purin-7-yl derivatives with carboxylic, ester or amide moieties. Pharmacol. Rep., 2015, 67, 9-16.
[15]
Xiao, H.; Li, P.; Hu, D.; Song, B.A. Synthesis and AntiTMV activity of novel β-amino acid ester derivatives containing quinazoline and benzothiazole moieties. Bioorg. Med. Chem. Lett., 2014, 24, 3452-3454.
[16]
Akinboye, E.S.; Bamji, Z.D.; Kwabi-Addo, B.; Ejeh, D.; Copeland, R.L.; Denmeade, S.R.; Bakare, O. Design, synthesis and cytotoxicity studies of dithiocarbamate ester derivatives of emetine in prostate cancer cell lines. Bioorg. Med. Chem., 2015, 23, 5839-5845.
[17]
Machado, K.C.; Oliveira, G.L.S.; Machado, K.C.; Islam, M.T.; Junior, A.L.G.; De Sousa, D.P.; Freitas, R.M. Anticonvulsant and behavioral effects observed in mice following treatment with an ester derivative of ferulic acid: Isopentyl ferulate. Chem. Biol. Interact., 2015, 242, 273-279.
[18]
Sivajothi, V.; Dakappa, S.S. in vitro and in silico antidiabetic activity of pyran ester derivative isolated from Tragia cannabina. Asian Pac. J. Trop. Biomed., 2014, 4, S455-S459.
[19]
El-Faham, A.; Al Marhoon, Z.; Abdel-Megeed, A.; Khattab, S.N.; Bekhit, A.A.; Albericio, F. α-Ketoamino acid ester derivatives as promising MAO inhibitors. Bioorg. Med. Chem. Lett., 2015, 25, 70-74.
[20]
Daniel, K.B.; Jourden, J.L.M.; Negoescu, K.E.; Cohen, S.M. Activation of sulfonate ester based matrix metalloproteinase proinhibitors by hydrogen peroxide. J. Biol. Inorg. Chem., 2011, 16, 313-323.
[21]
El-Gamal, M.I.; Oh, C.H. Synthesis, in vitro antiproliferative activity, and in silico studies of fused tricyclic coumarin sulfonate derivatives. Eur. J. Med. Chem., 2014, 84, 68-76.
[22]
Biswas, R.; Mukherjee, P.K.; Dalai, M.K.; Mandal, P.K.; Nag, M. Tyrosinase inhibitory potential of purpurin in Rubia cordifolia—A bioactivity guided approach. Ind. Crops Prod., 2015, 74, 319-326.
[23]
Zhang, S.; Lu, X.; Wang, N.; Buck, R.C. Biotransformation potential of 6: 2 fluorotelomer sulfonate (6: 2 FTSA) in aerobic and anaerobic sediment. Chemosphere, 2016, 154, 224-230.
[24]
Chang, Y.H.; Lee, Y.D.; Karlsson, O.J.; Sundberg, D.C. Surfactant characteristics of random block polyelectrolyte polyester emulsifier (SMTAPE) in aqueous solution and on polystyrene latex particles. Polymer , 2000, 41, 6741-6747.
[25]
Shen, Y.; Xi, J.; Qiu, X.; Zhu, W. A new proton conducting membrane based on copolymer of methyl methacrylate and 2-acrylamido-2-methyl-1-propanesulfonic acid for direct methanol fuel cells. Electrochim. Acta, 2007, 52, 6956-6961.
[26]
Rattanakawin, C.; Hogg, R. Viscosity behavior of polymeric flocculant solutions. Miner. Eng., 2007, 20, 1033-1038.
[27]
Sun, L.; Wu, J.; Luo, M.; Wang, X.; Pan, M.; Gou, Z.; Sun, D. Diversity oriented design of various benzophenone derivatives and their in vitro antifungal and antibacterial activities. Molecules, 2011, 16, 9739-9754.
[28]
Belluti, F.; De Simone, A.; Tarozzi, A.; Bartolini, M.; Djemil, A.; Bisi, A.; Bottegoni, G. Fluorinated benzophenone derivatives: balanced multipotent agents for Alzheimer’s disease. Eur. J. Med. Chem., 2014, 78, 157-166.
[29]
Abdel-Mageed, W.M.; Bayoumi, S.A.; Chen, C.; Vavricka, C.J.; Li, L.; Malik, A.; Gao, G.F. Benzophenone C-glucosides and gallotannins from mango tree stem bark with broad-spectrum antiviral activity. Bioorg. Med. Chem., 2014, 22, 2236-2243.
[30]
Maciel-Rezende, C.M. Almeida, L.de.; Costa, É.D.M.; Pires, F.R.; Alves, K.F.; Junior, C.V.; dos Santos, M.H. Synthesis and biological evaluation against Leishmania amazonensis of a series of alkyl-substituted benzophenones. Bioorg. Med. Chem., 2013, 21, 3114-3119.
[31]
Arshia, A.; Khan, A.; Khan, K.M.; Saad, S.M.; Siddiqui, N.I.; Javaid, S.; Choudhary, M.I. Synthesis and urease inhibitory activities of benzophenone semicarbazones/thiosemicarbazones. Med. Chem. Res., 2016, 25, 2666-2679.
[32]
Venu, T.D.; Shashikanth, S.; Khanum, S.A.; Naveen, S.; Firdouse, A.; Sridhar, M.A.; Prasad, J.S. Synthesis and crystallographic analysis of benzophenone derivatives—The potential antiinflammatory agents. Bioorg. Med. Chem., 2007, 15, 3505-3514.
[33]
Khanum, S.A.; Bushra, A.; Girish, B.V.; Khanum, N.F. 2-Benzoyl-4-chlorophenyl benzoate. Int. J. Biomed. Sci., 2010, 6, 60-65.
[34]
Bandgar, B.P.; Chavan, H.V.; Adsul, L.K.; Thakare, V.N.; Shringare, S.N.; Shaikh, R.; Gacche, R.N. Design, synthesis, characterization and biological evaluation of novel pyrazole integrated benzophenones. Bioorg. Med. Chem. Lett., 2013, 23, 912-916.
[35]
Palomer, A.; Pascual, J.; Cabre, M.; Borras, L.; Gonzalez, G.; Aparicim, M.; Mauleon, D. Structure-based design of cyclooxygenase-2 selectivity into ketoprofen. Bioorg. Med. Chem. Lett., 2002, 12, 533.
[36]
Buttgereit, F.; Burmester, G.R.; Simon, L.S. Gastrointestinal toxic side effects of nonsteroidal antiinflammatory drugs and cyclooxygenase-2–specific inhibitors. Am. J. Med., 2001, 110, 13-19.
[37]
Ekström, P.; Carling, L.; Wetterhus, S.; Wingren, P.E.; Anker-Hansen, O.; Lundegårdh, G.; Unge, P. Scan, prevention of peptic ulcer and dyspeptic symptoms with omeprazole in patients receiving continuous non-steroidal antiinflammatory drug therapy: a nordic multicentre study. J. Gastroenterol., 1996, 31, 753-758.
[38]
Khan, K.M.; Ambreen, N.; Mughal, U.R.; Jalil, S.; Perveen, S.; Choudhary, M.I. 3-Formylchromones: Potential antiinflammatory agents. Eur. J. Med. Chem., 2010, 45, 4058-4064.
[39]
Khan, K.M. Zia-Ullah, Lodhi, M.A.; Jalil, S.; Choudhary, M.I.; Atta-ur-Rahman. Synthesis and antiinflammatory activity of some selected aminothiophene analogs. J. Enzyme Inhib. Med. Chem., 2006, 21, 139-143.
[40]
Kaboudin, B. Methanesulfonic acid/phosphorus oxychloride (MAPO) as a new efficient reagent in the Fries rearrangement. Tetrahedron, 1999, 55, 12865-12872.
[41]
Murata, M.; Oda, T.; Sogabe, Y.; Tone, H.; Namikoshi, T.; Watanabe, S. Synthesis and antiinflammatory activity of some selected aminothiophene analogs. Chem. Lett., 2011, 40, 962-963.
[42]
Koivunen, J.T.; Nissinen, L.; Juhakoski, A.; Pihlavisto, M.; Marjamäki, A.; Huuskonen, J.; Pentikäinen, O.T. Blockage of collagen binding to integrin α2β1: structure–activity relationship of protein–protein interaction inhibitors. MedChemComm, 2011, 2, 764-770.
[43]
Mesaik, M.A.; Jabeen, A.; Halim, S.A.; Begum, A.; Khalid, A.S.; Asif, M.; Choudhary, M.I. In silico and in vitro immunomodulatory studies on compounds of Lindelofia stylosa. Chem. Biol. Drug Des., 2012, 79, 290-299.
[44]
El Ashry, E.S.H.; El Tamany, E.S.H.; Abd El Fattah, M.E.D.; Aly, M.R.; Boraei, A.T.; Mesaik, M.A.; Soomro, S. Immunomodulatory properties of S- and N-alkylated 5-(1H-indol-2-yl)-1,3,4-oxadiazole-2(3H)-thione. J. Enzyme Inhib. Med. Chem., 2013, 28, 105-112.
[45]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.