Abstract
Background: Hydrochlorothiazide (HCTZ) is potent diuretic that is used alone or in combination with other drugs such as labetalol (Lab) (mixtures Ι) or nebivolol (Neb) (mixtures ΙΙ) to control moderate to sever hypertension.
Introduction: This paper demonstrates the establishment of different validated spectrophotometric and chemometric methods for simultaneous estimation of these mixtures in pure form and pharmaceutical formulations in the presence of HCTZ related impurities in quality control laboratories. Methods: (A) Derivative method (D3) of Lab and HCTZ and its related impurities at 245.3nm and 278.5nm respectively, (D1) of Neb and HCTZ at 294.2nm and 282.2nm, respectively. (B) First derivative of ratio spectra method (DD 1) of Lab at 244.3nm, HCTZ at 261.2nm and 275.4nm, while at 294nm for Neb and 269.4nm for HCTZ. (C) Ratio difference method which depends on measuring the distinction between the amplitudes of ratio spectra at 240nm and 288.3nm for Lab and at 270.1nm and 277.4nm for HCTZ for mixture Ι while at 290.4nm and 299.2nm for Neb and at 232.2nm and 254nm for HCTZ for mixture ΙΙ. (D) Mean centering of ratio spectra (MC) and (E) partial least squares regression (PLS) and principal component regression (PCR). Results: These methods were applied over concentration ranges of 10-100 µg/ml, 10-75 µg/ml and 2.5- 25 µg/ml of Lab, Neb and HCTZ, respectively. Methods were validated according to ICH guidelines and statistical comparison of results of reported and proposed methods revealed no difference. Conclusion: The methods were successfully used for the frequent analysis of selected mixtures in quality control laboratories.Keywords: Labetalol, nebivolol, hydrochlorothiazide, impurities, spectrophotometry, chemometry.
Graphical Abstract
[1]
Sambrook, A.M.; Small, R.C. The treatment of hypertension in pregnancy. Anaesth. Intensive Care Med., 2008, 9, 128-131.
[http://dx.doi.org/10.1016/j.mpaic.2008.01.008]
[http://dx.doi.org/10.1016/j.mpaic.2008.01.008]
[2]
Joel, A.; Shantaram, N.; Naresh, C. Formulation and evaluation of controlled release tablets of labetalol hydrochloride using hydrophobic polymers. Int. J. Res. Pharm. Biomed. Sci., 2013, 4, 380-384.
[http://dx.doi.org/10.13179/canchemtrans.2013.01.01.0014]
[http://dx.doi.org/10.13179/canchemtrans.2013.01.01.0014]
[3]
Lukkari, P.; Nyman, T.; Riekkola, M.L. Determination of nine β-blockers in serum by micellar electrokinetic capillary chromatography. J. Chromatogr. A, 1994, 674, 241-246.
[http://dx.doi.org/10.1016/0021-9673(94)85229-4]
[http://dx.doi.org/10.1016/0021-9673(94)85229-4]
[4]
Siddiqui, M.R.; AlOthman, Z.A.; Rahman, N. Analytical techniques in pharmaceutical analysis: a review. Arab. J. Chem., 2017, 10, S1409-S1421.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[http://dx.doi.org/10.1016/j.arabjc.2013.04.016]
[5]
AlOthman, Z.A.; Rahman, N.; Siddiqui, M.R. Review on pharmaceutical impurities, stability studies and degradation products. Rev. Adv. Sci. Eng., 2013, 2, 155-166.
[6]
Rahman, N.; Azmi, S.N.H.; Wu, H.F. The importance of impurity analysis in pharmaceutical products: an integrated approach. Accredit. Qual. Assur., 2006, 11, 69-74.
[7]
Rahman, N.; Haque, S.M.; Hossain, S.M.Z. Rapid and simple spectrophotometric analysis of labetalol hydrochloride in pharmaceutical, urine and blood samples. Can. Chem. Trans., 2013, 1, 66-77.
[8]
Rahman, N.; Anwar, N.; Kashif, M.; Hoda, M.N.; Rahman, H. Determination of labetalol hydrochloride by kinetic spectrophotometry using potassium permanganate as oxidant. J. Mex. Chem. Soc., 2011, 55, 105-112.
[9]
Rahman, N.; Haque, S.K. Spectrofluorimetric determination of labetalol hydrochloride in pharmaceutical preparations and urine samples. Int. J. Biomed. Anal, 2008, 4, 140-146.
[10]
EL-Wasseef. D.R.; EL-Ashry, S.M.; Abu-El-Enein, M. A.; Moustafa M.A.A. Spectrofluorimetric determination of labetalol in pharmaceutical preparations and biological fluids. J. Food Drug Anal., 2006, 14, 133-140.
[http://dx.doi.org/10.6227/jfda]
[http://dx.doi.org/10.6227/jfda]
[11]
Belal, F.; Al-Shaboury, S.; Al-Tamrah, A.S. Spectrofluorometric determination of labetalol in pharmaceutical preparations and spiked human urine through the formation of coumarin derivative. J. Pharm. Biomed. Anal., 2002, 30, 1191-1196.
[http://dx.doi.org/10.1016/S0731-7085(02)00471-5]
[http://dx.doi.org/10.1016/S0731-7085(02)00471-5]
[12]
Witek, A.; Hopkala, H.; Matysik, G. TLC-densitometric determination of bisoprolol, labetalol and propafenone, as dabsyl derivatives, in pharmaceutical preparations. Chromatographia, 1999, 50, 41-44.
[http://dx.doi.org/10.1007/BF02493615]
[http://dx.doi.org/10.1007/BF02493615]
[13]
Zhao, H.; Li, H.; Qiu, Z. Separation of enantiomeric labetalol by reverse-phase high performance liquid chromatography. Chin. J. Chromatogr., 1999, 17, 369-371.
[14]
Ceniceros, C.; Maguregui, M.I.; Jimenez, R.M.; Alonso, R.M. Quantative determination of the β-blocker labetalol in pharmaceuticals and human urine by high-performance liquid chromatography with amperometric detection. J. Chromatogr. B Biomed. Sci. Appl., 1998, 705, 97-103.
[http://dx.doi.org/10.1016/S0378-4347(97)00492-1]
[http://dx.doi.org/10.1016/S0378-4347(97)00492-1]
[15]
Delamoye, M.; Duvernewil, C.; Paraire, F.; de Mazancourt, P.; Alvarez, J.C. Simaltaneous determination of thirteen β blockers and one metabolite by gradient high performance liquid chromatography with photodiode-array detection. Forensic Sci. Int., 2004, 141, 23-31.
[http://dx.doi.org/10.1016/j.forsciint.2003.12.008]
[http://dx.doi.org/10.1016/j.forsciint.2003.12.008]
[16]
Changchit, A.; Gal, J.; Zirrolli, J.A. Stereospecific gas chromatographic/mass spectrometric assay of the chiral labetalol metabolite 3-amino-1-phenylbutane. Biol. Mass Spectrom., 1991, 20, 751-758.
[http://dx.doi.org/10.1002/bms.1200201202]
[http://dx.doi.org/10.1002/bms.1200201202]
[17]
Carda-Broch, S.; Rapado-Martinez, R.; Esteve-Romero, I.; Garcia-Alverez-Coque, M.C. Analysis of urine samples containing cardiovascular drugs by micellar liquid chromatography with fluorimetric detection. J. Chromatogr. Sci., 1999, 37, 93-102.
[http://dx.doi.org/10.1093/chromsci/37.4.93]
[http://dx.doi.org/10.1093/chromsci/37.4.93]
[18]
Karlsson, C.; Wikstrom, H.; Armstrong, D.D.; Owens, P.K. Enantioselective reversed-phase and non-aqueous capillary electrochromatography using a teicoplanin chiral stationary phase. J. Chromatogr. A, 2000, 897, 349-363.
[http://dx.doi.org/10.1016/S0021-9673(00)00805-0]
[http://dx.doi.org/10.1016/S0021-9673(00)00805-0]
[19]
Goel, T.V.; Nikelly, J.G.; Simpson, R.C.; Matuszewski, B.K. Chiral separation of labetalol stereoisomers in human plasma by capillary electrophoresis. J. Chromatogr. A, 2004, 1027, 213-221.
[http://dx.doi.org/10.1016/j.chroma.2003.08.082]
[http://dx.doi.org/10.1016/j.chroma.2003.08.082]
[20]
Tamisier-Karolak, S.L.; Stenger, M.A.; Bommart, A. Enantioseparation of β-blockers with two chiral centers by capillary electrophoresis using sulfated β-cyclodextrins. Electrophoresis, 1999, 20, 2656-2663. DOI: 10.1002/(SICI)1522-2683(19990901)20: 13<2656::AID-ELPS2656>3.0.CO;2-6
[21]
Jana, S.; Jozef, P. Determination of some cardiovascular drugs in serum and urine by capillary isotachophoresis. J. Chromatogr. A, 1996, 735, 403-408.
[http://dx.doi.org/10.1016/0021-9673(95)00722-9]
[http://dx.doi.org/10.1016/0021-9673(95)00722-9]
[22]
Iorio, M.A.; Mazzeo-Farina, A.; Doldo, A. Quantitative analysis of β-adrenergic blocking agents by NMR spectroscopy. J. Pharm. Biomed. Anal., 1987, 5, 1-10.
[http://dx.doi.org/10.1016/0731-7085(87)80002-X]
[http://dx.doi.org/10.1016/0731-7085(87)80002-X]
[23]
Gorodkiewicz, E.; Falkowski, P.; Sankiewicz, A.; Figaszewski, Z. Analytical applications of electrode sensitive to labetalol in pharmaceuticals. Cent. Eur. J. Chem., 2003, 1, 242-259.
[http://dx.doi.org/10.2478/BF02476227]
[http://dx.doi.org/10.2478/BF02476227]
[24]
Radi, A.; El-Sherif, Z.; Wassel, A. Voltametric determination of labetalol in pharmaceuticals and spiked human urine. Chem. Pap., 2004, 58, 242-246.
[25]
Gilman, A.G.; Rall, T.W.; Nies, A.S.; Taylor, P., Eds.; The Pharmacological Basis of Therapeutics; 8th Ed., Pergamon Press, Oxford, 1990, p. 286, 847.
[26]
Gupta, Y. shrivastava, A.; Duggal, D.; Patel, A.; Agrawal, S. A new RP-HPLC method for simultaneous estimation of nebivolol hydrochloride and hydrochlorthiazide in dosage forms. J. Young Pharmacists, 2009, 1(3), 264-269.
[http://dx.doi.org/10.4103/0975-1483.57078]
[http://dx.doi.org/10.4103/0975-1483.57078]
[27]
Manzoor, A.; Manohara, Y.N.; Ravi, M.C. Development and validation of RP-HPLC method for simultaneous estimation of nebivolol hydrochloride and hydrochlorothiazide in combined tablet dosage form. Int. J. Chemtech Res., 2012, 4(1), 328-336.
[28]
Patel, S.A.; Patel, H.M. Development and Validation of HPTLC Method for Simultaneous Estimation of Nebivolol and Hydrochlorothiazide in Tablet. IJPFR, 2012, 2(1), 28-38.
[29]
Tarte, P.S.; Wate, S.P.; Khedikar, P.B.; Sapture, B.T.; Pawnikar, G. Simultaneous estimation of nebivolol and hydrochlorothiazide in combined tablet dosage form by multicomponent mode of analysis. Asian J. Res. Chem, 2008, 1(2), 77-79.
[30]
Shah, K.; Desai, T.R.; Behera, A.; Pal, R.S.; Girhepunje, K.M. Development of spectrophotometric methods for estimation of nebivolol hydrochloride and hydrochlorothiazide simultaneously in bulk and tablet dosage form. Res. J. Pharm. Biol. Chem. Sci., 2010, 1(2), 451-457.
[31]
Shah, K.V.; Tirgar, P.R.; Sheth, D.B.; Desai, T.R. Simultaneous estimation of nebivolol hydrochloride and hydrochlorothiazide in bulk and in a tablet dosage form by multicomponent and simultaneous estimation method. Int. J. Pharm., 2011, 2(1), 27-35.
[32]
Patel, R.K.; Patel, J.B. Simultaneous equation spectrophotometric method for the estimation of nebivolol HCl and hydrochlorothiazide in their combined dosage form. IRJPAS, 2011, 2(1), 6-10.
[33]
Patel, R.K.; Patel, J.B. Absorbance ratio spectrophotometric method for the estimation of nebivolol HCL and hydrochlorothiazide in their combined dosage form. IJAPBC, 2012, 1(4), 496-502.
[34]
Sweetman, S.C.; Pharm, B.; Pharms, F.R. Martindale, “the Complete Drug Reference”; 36th ed, the pharmaceutical press, London, UK, 2009, p. 1307-1311.
[35]
Kumbhar, S.T.; Chougule, G.K.; Tegeli, V.S.; Gajeli, G.B.; Thorat, Y.S.; Shivsharan, U.S. A validated HPTLC method for simultaneous quantification of nebivolol and hydrochlorothiazide in bulk and tablet formulation. IJPSDR, 2011, 3(1), 62-66.
[36]
Tarte, P.S.; Wate, S.P.; Bondre, A.V.; Paunikar, G.V. Simultaneous determination of nebivolol and hydrochlorothiazide in tablet dosage form by RP-HPLC. Int. J. of Pharm. Tech. Res., 2009, 1(3), 720-724.
[37]
Ivanović, D.; Medenica, M.; Jančić, B.; Knežević, N.; Malenović, A.; and Milić, J. Validation of an analytical procedure for simultaneous determination of hydrochlorothiazide, lisinopril and their impurities. Acta Chromatogr., 2007, 18, 143-156.
[38]
Foda, N.H.; Naeem, O. Abd ELbary, A. and Abd ELbary, G. Simultaneous HPLC determination of Enalapril and Hydrochlorothiazide in Human Plasma and its pharmacokinetic application. Int. J. Pharm. Sci. Res., 2010, 2(11), 786-794.
[39]
Hegazy, M.A.; Metwaly, F.H.; Abdelkawy, M.; and Abdelwahab, N.S. Validated chromatographic methods for determination of hydrochlorothiazide and spironolactone in pharmaceutical formulation in presence of impurities and degradants. J. Chromatogr. Sci., 2011, 49(2), 129-135.
[http://dx.doi.org/10.1093/chrsci/49.2.129]
[http://dx.doi.org/10.1093/chrsci/49.2.129]
[40]
Obando, M.A.; Estela, J.M.; Cerdà, V. Simultaneous determination of hydrochlorothiazide and losartan potassium in tablets by high-performance low-pressure chromatography using a multi-syringe burette coupled to a monolithic column. Anal. Bioanal. Chem., 2008, 391(6), 2349-2356.
[41]
Tian, D.; Tian, X.; Tian, T.; Wang, Z.; and Mo, F. Simultaneous determination of valsartan and hydrochlorothiazide in tablets by RP-HPLC. Indian J. Pharm. Sci., 2008, 70(3), 372-374.
[http://dx.doi.org/10.4103/0250-474X.43006]
[http://dx.doi.org/10.4103/0250-474X.43006]
[42]
U.S. Pharmacopoeia, 39th ed., U.S. Pharmacopeial Convention, Inc., Rockville, MD, 2016, pp. 4624-4628.
[43]
Hemke, A.T.; Bhure, M.V.; Chouhan, K.S. Gupta; K.R. and Wadodkar, S.G. UV Spectrophotometric Determination of Hydrochlorothiazide and Olmesartan Medoxomil in Pharmaceutical Formulation. E-J. Chem., 2010, 7(4), 1156-1161.
[44]
Vetuschi, C.; Giannandrea, A.; Carlucci, G.; Mazzeo, P. Determination of hydrochlorothiazide and irbesartan in pharmaceuticals by fourth-order UV derivative spectrophotometry. IL Farmaco, 2005, 60, 665-670.
[http://dx.doi.org/10.1016/j.farmac.2005.04.013]
[http://dx.doi.org/10.1016/j.farmac.2005.04.013]
[45]
Martin, M.E.; Hernandez, O.M.; Jimenez, A.I.; Arias, J.J.; Jimenez, F. Partial least-squares method in analysis by differential pulse polarography. Simultaneous determination of amiloride and hydrochlorothiazide in pharmaceutical preparations. Analytica Chimica Acta, 1999, 381(2-3), 247-256.
[http://dx.doi.org/10.1016/S0003-2670(98)00732-6]
[http://dx.doi.org/10.1016/S0003-2670(98)00732-6]
[48]
Lotfy, H.M.; Hegazy, M.A. Comparative study of novel spectrophotometric methods manipulating ratio spectra: An application on pharmaceutical ternary mixture of omeprazole, tinidazole and clarithromycin. Spectrochimica Acta part A: Molecular and Biomolecular Spectroscopy, 2012, 96, 259-270.
[http://dx.doi.org/10.1016/j.saa.2012.04.095]
[http://dx.doi.org/10.1016/j.saa.2012.04.095]
[49]
Mohesen, A.M.; Lotfy, H.M.; Badawey, A.M.; Salem, H.; Elkhateeb, S.Z. Application of three novel spectrophotometric methods manipulating ratio spectra for resolving a pharmaceutical mixture of chlorphenoxamine hydrochloride and caffeine. Int. J. Pharm. Pharm. Sci., 2013, 5(1), 487-487.
[50]
Afkhami, A.; Bahram, M. Mean centering of ratio kinetic profiles as a novel spectrophotometric method for the simultaneous kinetic analysis of binary mixtures. Analytica Chimica Acta., 2004, 526, 211-218.
[http://dx.doi.org/10.1016/j.aca.2004.09.064]
[http://dx.doi.org/10.1016/j.aca.2004.09.064]
[51]
Afkhami, A.; Bahram, M. Mean centering of ratio spectra as a new spectrophotometric method for the analysis of binary and ternary mixtures. Talanta, 2005, 66, 712-720.
[52]
Kramer, R. Chemometric Techniques for Quantitative Analysis; Marcel Dekker Inc: New York, NY, 1998.
[53]
Kalivas, J.H. Optimization using variations of simulated annealing. Chemom. Intell. Lab. Syst., 1992, 15, 1-12.
[http://dx.doi.org/10.1016/0169-7439(92)80022-V]
[http://dx.doi.org/10.1016/0169-7439(92)80022-V]