Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Formulation, Pharmacokinetic Evaluation and Cytotoxicity of an Enhanced- penetration Paclitaxel Nanosuspension

Author(s): Yanping Cao, Zhihao Wei, Mengmeng Li, Haiyan Wang, Li Yin, Dongxiao Chen, Yanfei Wang, Yongchao Chen, Qi Yuan, Xiaohui Pu*, Lanlan Zong* and Shaofeng Duan*

Volume 19, Issue 4, 2019

Page: [338 - 347] Pages: 10

DOI: 10.2174/1568009618666180629150927

Price: $65

Abstract

Background: Improving poorly soluble drugs into druggability was a major problem faced by pharmaceutists. Nanosuspension can improve the druggability of insoluble drugs by improving the solubility, chemical stability and reducing the use of additives, which provided a new approach for the development and application of the insoluble drugs formulation. Paclitaxel (PTX) is a well-known BCS class IV drug with poor solubility and permeability. Also, many studies have proved that paclitaxel is a substrate of the membrane-bound drug efflux pump P-glycoprotein (P-gp), therefore it often shows limited efficacy against the resistant tumors and oral absorption or uptake.

Objective: To manufacture an enhanced-penetration PTX nanosuspension (PTX-Nanos), and evaluate the physicochemical property, pharmacokinetics and tissue distribution in vivo and cytotoxic effect in vitro.

Methods: PTX-Nanos were prepared by microprecipitation-high pressure homogenization, with a good biocompatibility amphiphilic block copolymer poly(L-phenylalanine)-b-poly(L-aspartic acid) (PPA-PAA) as stabilizer.

Results: The PTX-Nanos had a sustained-dissolution manner and could effectively reduce plasma peak concentration and extend plasma circulating time as compared to PTX injection, markedly passively targeting the MPS-related organs, such as liver and spleen. This unique property might enhance treatment of cancer in these tissues and reduce the side effects in other normal tissues. Moreover, the hybrid stabilizers could enhance penetration of PTX in PTX-Nanos to multidrug resistance cells.

Conclusion: To sum up, our results showed that the optimal formula could improve the solubility of PTX and the stability of the product. The PTX-Nanos developed in this research would be a promising delivery platform in cancer treatment.

Keywords: Paclitaxel, nanosuspension, pharmacokinetic, cytotoxicity, enhanced- penetration, drug efflux pump P-glycoprotein (P-gp).

« Previous
Graphical Abstract

[1]
Yang, R.; Chen, J.B.; Xiao, C.F.; Liu, Z.C.; Gao, Z.Y.; Yan, S.J.; Zhang, J.H.; Zhang, H.B.; Lin, J. Inclusion complex of GA-13316 with β-cyclodextrin: preparation, characterization, molecular modeling, and in vitro evaluation. Carbohydr. Polym., 2014, 111, 655.
[2]
Efiana, N.A.; Phan, T.N.Q.; Wicaksono, A.J.; Bernkop-Schnurch, A. Mucus permeating self-emulsifying drug delivery systems (SEDDS): About the impact of mucolytic enzymes. Colloids Surf. B Biointerfaces, 2017, 161, 228-235.
[3]
Chaudhury, A.; Das, S. Folate receptor targeted liposomes encapsulating anti-cancer drugs. Curr. Pharm. Biotechnol., 2015, 16(4), 333-343.
[4]
Deng, H.; Liu, J.; Zhao, X.; Zhang, Y.; Liu, J.; Xu, S.; Deng, L.; Dong, A.; Zhang, J. PEG-b-PCL copolymer micelles with the ability of pH-controlled negative-to-positive charge reversal for intracellular delivery of doxorubicin. Biomacromolecules, 2014, 15(11), 4281-4292.
[5]
Zhang, T.; Luo, J.; Fu, Y.; Li, H.; Ding, R.; Gong, T.; Zhang, Z. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer. Colloids Surf. B Biointerfaces, 2016, 150, 89-97.
[6]
Dousa, M.; Meca, L.; Gibala, P.; Jirman, J.; Tkadlecova, M.; Srbek, J.; Salandova, J.; Kovalcikova, E.; Brichac, J. Esterification of ibuprofen in soft gelatin capsules formulations-identification, synthesis and liquid chromatography separation of the degradation products. J. Chromatogr. Sci., 2017, 55(8), 790-797.
[7]
Stephenson, G.A.; Aburub, A.; Woods, T.A. Physical stability of salts of weak bases in the solid-state. J. Pharm. Sci., 2011, 100(5), 1607-1617.
[8]
Schultheiss, N.; Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des., 2009, 9(6), 2950-2967.
[9]
Serajuddin, A.T.M. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev., 2007, 59(7), 603-616.
[10]
Zhao, B.; Gu, S.; Du, Y.; Shen, M.; Liu, X.; Shen, Y. Solid lipid nanoparticles as carriers for oral delivery of hydroxysafflor yellow A. Int. J. Pharm., 2017, 535(1-2), 164-171.
[11]
Edwards, F.; Tsakmaka, C.; Mohr, S.; Fielden, P.R.; Goddard, N.J.; Booth, J.; Tam, K.Y. Using droplet-based microfluidic technology to study the precipitation of a poorly water-soluble weakly basic drug upon a pH-shift. The Analyst , 2013, 138(1), 339-345.
[12]
Pu, X.H.; Sun, J.; Li, M.; He, Z.G. Formulation of nanosuspensions as a new approach for the delivery of poorly soluble drugs. Curr. Nanosci., 2009, 5(4), 417-427.
[13]
Bergstrom, C.A.; Wassvik, C.M.; Johansson, K.; Hubatsch, I. Poorly soluble marketed drugs display solvation limited solubility. J. Med. Chem., 2007, 50(23), 5858-5862.
[14]
Shah, S.M.; Ullah, F.; Khan, S.; Shah, S.M.; de Matas, M.; Hussain, Z.; Minhas, M.U. AbdEl-Salam, N.M.; Assi, K.H.; Isreb, M. Smart nanocrystals of artemether: fabrication, characterization, and comparative in vitro and in vivo antimalarial evaluation. Drug Des. Devel. Ther., 2016, 10, 3837-3850.
[15]
Liu, C.Z.; Chang, J.H.; Zhang, L.; Xue, H.F.; Liu, X.G.; Liu, P.; Fu, Q. Preparation and evaluation of diosgenin nanocrystals to improve oral bioavailability. AAPS PharmSciTech, 2016, 1-10.
[16]
Kassem, M.A.; ElMeshad, A.N.; Fares, A.R. Enhanced solubility and dissolution rate of lacidipine nanosuspension: formulation via antisolvent sonoprecipitation technique and optimization using box-behnken design. AAPS PharmSciTech, 2016, 1-14.
[17]
Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov., 2004, 3(9), 785-796.
[18]
Pu, X.; Sun, J.; Wang, Y.; Wang, Y.; Liu, X.; Zhang, P.; Tang, X.; Pan, W.; Han, J.; He, Z. Development of a chemically stable 10-hydroxycamptothecin nanosuspensions. Int. J. Pharm., 2009, 379(1), 167-173.
[19]
Moschwitzer, J.; Achleitner, G.; Pomper, H.; Muller, R.H. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur. J. Pharm. Biopharm., 2004, 58(3), 615-619.
[20]
Gao, L.; Liu, G.; Wang, X.; Liu, F.; Xu, Y.; Ma, J. Preparation of a chemically stable quercetin formulation using nanosuspension technology. Int. J. Pharm., 2011, 404(1-2), 231-237.
[21]
Bi, C.; Miao, X.Q.; Chow, S.F.; Wu, W.J.; Yan, R.; Liao, Y.H.; Chow, A.H.; Zheng, Y. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanotechnol. Biol. Med., 2017, 13(3), 943-953.
[22]
Müller, R.H.; Peters, K.; Becker, R.; Kruss, B. Nanosuspensions, A novel formulation for the i.v. administration of poorly soluble drugs.In; APGI, 1995, pp. 491-492.
[23]
Kumar, M.P.; Rao, Y.M.; Apte, S. Formulation of nanosuspensions of albendazole for oral administration. Curr. Nanosci., 2008, 4(1), 53-58.
[24]
Peters, K.; Leitzke, S.; Diederichs, J.E.; Borner, K.; Hahn, H.; Muller, R.H.; Ehlers, S. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J. Antimicrob. Chemother., 2000, 45(1), 77-83.
[25]
Pu, X.H.; Sun, J.; Qin, Y.M.; Zhang, X.; Zhang, P.; Yan, Z.T.; He, Z.G. The passive targeting and the cytotoxicity of intravenous 10-HCPT nanosuspension. Curr. Nanosci., 2012, 8(5), 762-766.
[26]
Boistelle, R.; Astier, J.P. Crystallization mechanisms in solution. J. Cryst. Growth, 1988, 90(1-3), 14-30.
[27]
Florence, A.T.; Attwood, D. Physicochemical principles of pharmacy. Am. J. Pharm. Educ., 1998, 70(5), 122.
[28]
Liu, P.; Rong, X.; Laru, J.; van Veen, B.; Kiesvaara, J.; Hirvonen, J.; Laaksonen, T.; Peltonen, L. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int. J. Pharm., 2011, 411(1-2), 215-222.
[29]
Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev., 2011, 63(6), 427-440.
[30]
Zhao, D.; Zhang, H.; Yang, S.; He, W.; Luan, Y. Redox-sensitive mPEG-SS-PTX/TPGS mixed micelles: An efficient drug delivery system for overcoming multidrug resistance. Int. J. Pharm., 2016, 515(1-2), 281-292.
[31]
Gao, L.; Liu, G.; Kang, J.; Niu, M.; Wang, Z.; Wang, H.; Ma, J.; Wang, X. Paclitaxel nanosuspensions coated with P-gp inhibitory surfactants: I. Acute toxicity and pharmacokinetics studies. Colloids Surf. B Biointerfaces, 2013, 111, 277-281.
[32]
Malingre, M.M.; Terwogt, J.M.; Beijnen, J.H.; Rosing, H.; Koopman, F.J.; van Tellingen, O.; Duchin, K.; Huinink, W.W.; Swart, M.; Lieverst, J.; Schellens, J.H. Phase I and pharmacokinetic study of oral paclitaxel. J. Clin. Oncol., 2000, 18(12), 2468-2475.
[33]
Huizing, M.T.; Misser, V.H.S.; Pieters, R.C.; ten Bokkel Huinink, W.W.; Veenhof, C.H.N.; Vermorken, J.B.; Pinedo, H.M.; Beijnen, J.H. Taxanes: A new class of antitumor agents. Cancer Invest., 1995, 13(4), 381-404.
[34]
Lee, J.; Lee, S.J.; Choi, J.Y.; Yoo, J.Y.; Ahn, C.H. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur. J. Pharm. Sci., 2005, 24(5), 441-449.
[35]
Hong, J.; Li, Y.; Xiao, Y.; Li, Y.; Guo, Y.; Kuang, H.; Wang, X. Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids Surf. B Biointerfaces, 2016, 145, 319-327.
[36]
Wang, Y.; Zheng, Y.; Zhang, L.; Wang, Q.; Zhang, D. Stability of nanosuspensions in drug delivery. J. Control. Release, 2013, 172(3), 1126-1141.
[37]
Ghosh, I.; Bose, S.; Vippagunta, R.; Harmon, F. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int. J. Pharm., 2011, 409(1-2), 260-268.
[38]
Lauro, M.R.; Carbone, C.; Sansone, F.; Ruozi, B.; Chillemi, R.; Sciuto, S.; Aquino, R.P.; Puglisi, G. Innovative oral spray-dried Idebenone systems to improve patient compliance. Drug Development and Industrial Pharmacy,, 2016, 42(7), 1127-1136.
[39]
Kumar, G.; Sharma, S.; Shafiq, N.; Pandhi, P.; Khuller, G.K.; Malhotra, S. Pharmacokinetics and tissue distribution studies of orally administered nanoparticles encapsulated ethionamide used as potential drug delivery system in management of multi-drug resistant tuberculosis. Drug Deliv., 2011, 18(1), 65-73.
[40]
Ghosh, I.; Schenck, D.; Bose, S.; Ruegger, C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: Effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Eur. J. Pharm. Sci., 2012, 47(4), 718-728.
[41]
Mirshafiee, V.; Kim, R.; Park, S.; Mahmoudi, M.; Kraft, M.L. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials, 2016, 75, 295-304.
[42]
Kari, O.K.; Rojalin, T.; Salmaso, S.; Barattin, M.; Jarva, H.; Meri, S.; Yliperttula, M.; Viitala, T.; Urtti, A. Multi-parametric surface plasmon resonance platform for studying liposome-serum interactions and protein corona formation. Drug Deliv. Transl. Res., 2016, 7(2), 228-240.
[43]
Caracciolo, G.; Palchetti, S.; Colapicchioni, V.; Digiacomo, L.; Pozzi, D.; Capriotti, A.L.; La Barbera, G.; Lagana, A. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir, 2015, 31(39), 10764-10773.
[44]
Manjunath, K.; Venkateswarlu, V. Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Drug Target., 2006, 14(9), 632-645.
[45]
Wang, Y.; Li, X.; Wang, L.; Xu, Y.; Cheng, X.; Wei, P. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int. J. Nanomed, 2011, 6, 1497-1507.
[46]
Wei, L.; Ji, Y.; Gong, W.; Kang, Z.; Meng, M.; Zheng, A.; Zhang, X.; Sun, J. Preparation, physical characterization and pharmacokinetic study of paclitaxel nanocrystals. Drug Dev. Ind. Pharm., 2015, 41(8), 1343-1352.
[47]
Yin, T.; Cai, H.; Liu, J.; Cui, B.; Wang, L.; Yin, L.; Zhou, J.; Huo, M. Biological evaluation of PEG modified nanosuspensions based on human serum albumin for tumor targeted delivery of paclitaxel. Eur. J. Pharm. Sci., 2016, 83, 79-87.
[48]
Gao, W.; Chen, Y.; Thompson, D.H.; Park, K.; Li, T. Impact of surfactant treatment of paclitaxel nanocrystals on biodistribution and tumor accumulation in tumor-bearing mice. J. Control. Release, 2016, 237, 168-176.
[49]
Chen, Y.; Li, T. Cellular uptake mechanism of paclitaxel nanocrystals determined by confocal imaging and kinetic measurement. AAPS J., 2015, 17(5), 1126-1134.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy