Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

SGLT-2 inhibitors in Diabetic Kidney Disease: What Lies Behind their Renoprotective Properties?

Author(s): Panagiotis I. Georgianos , Maria Divani , Theodoros Eleftheriadis, Peter R. Mertens and Vassilios Liakopoulos*

Volume 26, Issue 29, 2019

Page: [5564 - 5578] Pages: 15

DOI: 10.2174/0929867325666180524114033

Price: $65

Abstract

Background: Despite optimal management of diabetic kidney disease (DKD) with intensive glycemic control and administration of agents blocking the renin-angiotensinaldosterone- system, the residual risk for nephropathy progression to end-stage-renal-disease (ESRD) remains high. Sodium-glucose co-transporter type 2 (SGLT-2)-inhibitors represent a newly-introduced anti-diabetic drug class with pleiotropic actions extending above their glucose-lowering efficacy. Herein, we provide an overview of preclinical and clinical-trial evidence supporting a protective effect of SGLT-2 inhibitors on DKD.

Methods: A systematic literature search of bibliographic databases was conducted to identify preclinical studies and randomized trials evaluating the effects SGLT-2 inhibitors on DKD.

Results: Preclinical studies performed in animal models of DKD support the renoprotective action of SGLT-2 inhibitors showing that these agents exert albuminuria-lowering effects and reverse glomerulosclerosis. The renoprotective action of SGLT-2 inhibitors is strongly supported by human studies showing that these agents prevent the progression of albuminuria and retard nephropathy progression to ESRD. This beneficial effect of SGLT-2 inhibitors is not fully explained by their glucose-lowering properties. Attenuation of glomerular hyperfiltration and improvement in a number of surrogate risk factors, including associated reduction in systemic blood pressure, body weight, and serum uric acid levels may represent plausible mechanistic explanations for the cardio-renal protection offered by SGLT-2 inhibitors. Furthermore, the tubular cell metabolism seems to be altered towards a ketone-prone pathway with protective activities.

Conclusion: SGLT-2 inhibition emerges as a novel therapeutic approach of diabetic with anticipated benefits towards cardio-renal risk reduction. Additional research efforts are clearly warranted to elucidate this favorable effect in patients with overt DKD.

Keywords: Albuminuria, diabetic nephropathy, ESRD, SGLT-2 inhibitors, clinical-trial, DKD, blood pressure.

[1]
Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.H.; Lv, J.; Garg, A.X.; Knight, J.; Rodgers, A.; Gallagher, M.; Kotwal, S.; Cass, A.; Perkovic, V. Worldwide access to treatment for end-stage kidney disease: a systematic review. Lancet, 2015, 385(9981), 1975-1982.
[http://dx.doi.org/10.1016/S0140-6736(14)61601-9] [PMID: 25777665]
[2]
Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res. Clin. Pract., 2011, 94(3), 311-321.
[http://dx.doi.org/10.1016/j.diabres.2011.10.029] [PMID: 22079683]
[3]
Vazquez-Benitez, G.; Desai, J.R.; Xu, S.; Goodrich, G.K.; Schroeder, E.B.; Nichols, G.A.; Segal, J.; Butler, M.G.; Karter, A.J.; Steiner, J.F.; Newton, K.M.; Morales, L.S.; Pathak, R.D.; Thomas, A.; Reynolds, K.; Kirchner, H.L.; Waitzfelder, B.; Elston Lafata, J.; Adibhatla, R.; Xu, Z.; O’Connor, P.J. Preventable major cardiovascular events associated with uncontrolled glucose, blood pressure, and lipids and active smoking in adults with diabetes with and without cardiovascular disease: a contemporary analysis. Diabetes Care, 2015, 38(5), 905-912.
[http://dx.doi.org/10.2337/dc14-1877] [PMID: 25710922]
[4]
Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H.H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med., 2001, 345(12), 861-869.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[5]
Lewis, E.J.; Hunsicker, L.G.; Clarke, W.R.; Berl, T.; Pohl, M.A.; Lewis, J.B.; Ritz, E.; Atkins, R.C.; Rohde, R.; Raz, I. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med., 2001, 345(12), 851-860.
[http://dx.doi.org/10.1056/NEJMoa011303] [PMID: 11565517]
[6]
Mancia, G.; Fagard, R.; Narkiewicz, K.; Redón, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; Galderisi, M.; Grobbee, D.E.; Jaarsma, T.; Kirchhof, P.; Kjeldsen, S.E.; Laurent, S.; Manolis, A.J.; Nilsson, P.M.; Ruilope, L.M.; Schmieder, R.E.; Sirnes, P.A.; Sleight, P.; Viigimaa, M.; Waeber, B.; Zannad, F.; Redon, J.; Dominiczak, A.; Narkiewicz, K.; Nilsson, P.M.; Burnier, M.; Viigimaa, M.; Ambrosioni, E.; Caufield, M.; Coca, A.; Olsen, M.H.; Schmieder, R.E.; Tsioufis, C.; van de Borne, P.; Zamorano, J.L.; Achenbach, S.; Baumgartner, H.; Bax, J.J.; Bueno, H.; Dean, V.; Deaton, C.; Erol, C.; Fagard, R.; Ferrari, R.; Hasdai, D.; Hoes, A.W.; Kirchhof, P.; Knuuti, J.; Kolh, P.; Lancellotti, P.; Linhart, A.; Nihoyannopoulos, P.; Piepoli, M.F.; Ponikowski, P.; Sirnes, P.A.; Tamargo, J.L.; Tendera, M.; Torbicki, A.; Wijns, W.; Windecker, S.; Clement, D.L.; Coca, A.; Gillebert, T.C.; Tendera, M.; Rosei, E.A.; Ambrosioni, E.; Anker, S.D.; Bauersachs, J.; Hitij, J.B.; Caulfield, M.; De Buyzere, M.; De Geest, S.; Derumeaux, G.A.; Erdine, S.; Farsang, C.; Funck-Brentano, C.; Gerc, V.; Germano, G.; Gielen, S.; Haller, H.; Hoes, A.W.; Jordan, J.; Kahan, T.; Komajda, M.; Lovic, D.; Mahrholdt, H.; Olsen, M.H.; Ostergren, J.; Parati, G.; Perk, J.; Polonia, J.; Popescu, B.A.; Reiner, Z.; Rydén, L.; Sirenko, Y.; Stanton, A.; Struijker-Boudier, H.; Tsioufis, C.; van de Borne, P.; Vlachopoulos, C.; Volpe, M.; Wood, D.A. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J. Hypertens., 2013, 31(7), 1281-1357. [ESC]
[http://dx.doi.org/10.1097/01.hjh.0000431740.32696.cc] [PMID: 23817082]
[7]
Perkovic, V.; Agarwal, R.; Fioretto, P.; Hemmelgarn, B.R.; Levin, A.; Thomas, M.C.; Wanner, C.; Kasiske, B.L.; Wheeler, D.C.; Groop, P.H. Management of patients with diabetes and CKD: conclusions from a “Kidney Disease: Improving Global Outcomes” (KDIGO) Controversies Conference. Kidney Int., 2016, 90(6), 1175-1183.
[http://dx.doi.org/10.1016/j.kint.2016.09.010] [PMID: 27884312]
[8]
Strippoli, G.F.; Craig, M.; Deeks, J.J.; Schena, F.P.; Craig, J.C. Effects of angiotensin converting enzyme inhibitors and angiotensin II receptor antagonists on mortality and renal outcomes in diabetic nephropathy: systematic review. BMJ, 2004, 329(7470), 828-838.
[http://dx.doi.org/10.1136/bmj.38237.585000.7C] [PMID: 15459003]
[9]
Afkarian, M.; Sachs, M.C.; Kestenbaum, B.; Hirsch, I.B.; Tuttle, K.R.; Himmelfarb, J.; de Boer, I.H. Kidney disease and increased mortality risk in type 2 diabetes. J. Am. Soc. Nephrol., 2013, 24(2), 302-308.
[http://dx.doi.org/10.1681/ASN.2012070718] [PMID: 23362314]
[10]
Dounousi, E.; Duni, A.; Leivaditis, K.; Vaios, V.; Eleftheriadis, T.; Liakopoulos, V. Improvements in the Management of Diabetic Nephropathy. Rev. Diabet. Stud., 2015, 12(1-2), 119-133.
[http://dx.doi.org/10.1900/RDS.2015.12.119] [PMID: 26676665]
[11]
Fioretto, P.; Zambon, A.; Rossato, M.; Busetto, L.; Vettor, R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care, 2016, 39(Suppl. 2), S165-S171.
[http://dx.doi.org/10.2337/dcS15-3006] [PMID: 27440829]
[12]
Kawanami, D.; Matoba, K.; Takeda, Y.; Nagai, Y.; Akamine, T.; Yokota, T.; Sango, K.; Utsunomiya, K. SGLT2 inhibitors as a therapeutic option for diabetic nephropathy. Int. J. Mol. Sci., 2017, 18(5)E1083
[http://dx.doi.org/10.3390/ijms18051083] [PMID: 28524098]
[13]
van Bommel, E.J.; Muskiet, M.H.; Tonneijck, L.; Kramer, M.H.; Nieuwdorp, M.; van Raalte, D.H. SGLT2 inhibition in the diabetic kidney-from mechanisms to clinical outcome. Clin. J. Am. Soc. Nephrol., 2017, 12(4), 700-710.
[http://dx.doi.org/10.2215/CJN.06080616] [PMID: 28254770]
[14]
Kojima, N.; Williams, J.M.; Takahashi, T.; Miyata, N.; Roman, R.J. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J. Pharmacol. Exp. Ther., 2013, 345(3), 464-472.
[http://dx.doi.org/10.1124/jpet.113.203869] [PMID: 23492941]
[15]
Tang, L.; Wu, Y.; Tian, M.; Sjöström, C.D.; Johansson, U.; Peng, X.R.; Smith, D.M.; Huang, Y. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am. J. Physiol. Endocrinol. Metab., 2017, 313(5), E563-E576.
[http://dx.doi.org/10.1152/ajpendo.00086.2017] [PMID: 28811292]
[16]
Vallon, V.; Gerasimova, M.; Rose, M.A.; Masuda, T.; Satriano, J.; Mayoux, E.; Koepsell, H.; Thomson, S.C.; Rieg, T. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Renal Physiol., 2014, 306(2), F194-F204.
[http://dx.doi.org/10.1152/ajprenal.00520.2013] [PMID: 24226524]
[17]
Heerspink, H.J.; Desai, M.; Jardine, M.; Balis, D.; Meininger, G.; Perkovic, V. Canagliflozin slows progression of renal function decline independently of glycemic effects. J. Am. Soc. Nephrol., 2017, 28(1), 368-375.
[http://dx.doi.org/10.1681/ASN.2016030278] [PMID: 27539604]
[18]
Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med., 2017, 377(7), 644-657.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[19]
Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med., 2016, 375(4), 323-334.
[http://dx.doi.org/10.1056/NEJMoa1515920] [PMID: 27299675]
[20]
Wilding, J.P. The role of the kidneys in glucose homeostasis in type 2 diabetes: clinical implications and therapeutic significance through sodium glucose co-transporter 2 inhibitors. Metabolism, 2014, 63(10), 1228-1237.
[http://dx.doi.org/10.1016/j.metabol.2014.06.018] [PMID: 25104103]
[21]
Rieg, T.; Masuda, T.; Gerasimova, M.; Mayoux, E.; Platt, K.; Powell, D.R.; Thomson, S.C.; Koepsell, H.; Vallon, V. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am. J. Physiol. Renal Physiol., 2014, 306(2), F188-F193.
[http://dx.doi.org/10.1152/ajprenal.00518.2013] [PMID: 24226519]
[22]
Santer, R.; Calado, J. Familial renal glucosuria and SGLT2: from a mendelian trait to a therapeutic target. Clin. J. Am. Soc. Nephrol., 2010, 5(1), 133-141.
[http://dx.doi.org/10.2215/CJN.04010609] [PMID: 19965550]
[23]
Rahmoune, H.; Thompson, P.W.; Ward, J.M.; Smith, C.D.; Hong, G.; Brown, J. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes, 2005, 54(12), 3427-3434.
[http://dx.doi.org/10.2337/diabetes.54.12.3427] [PMID: 16306358]
[24]
DeFronzo, R.A.; Hompesch, M.; Kasichayanula, S.; Liu, X.; Hong, Y.; Pfister, M.; Morrow, L.A.; Leslie, B.R.; Boulton, D.W.; Ching, A.; LaCreta, F.P.; Griffen, S.C. Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes. Diabetes Care, 2013, 36(10), 3169-3176.
[http://dx.doi.org/10.2337/dc13-0387] [PMID: 23735727]
[25]
Cherney, D.Z.I.; Cooper, M.E.; Tikkanen, I.; Pfarr, E.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Lund, S.S. Pooled analysis of Phase III trials indicate contrasting influences of renal function on blood pressure, body weight, and HbA1c reductions with empagliflozin. Kidney Int., 2018, 93(1), 231-244.
[http://dx.doi.org/10.1016/j.kint.2017.06.017] [PMID: 28860019]
[26]
Petrykiv, S.; Sjöström, C.D.; Greasley, P.J.; Xu, J.; Persson, F.; Heerspink, H.J.L. Differential effects of dapagliflozin on cardiovascular risk factors at varying degrees of renal function. Clin. J. Am. Soc. Nephrol., 2017, 12(5), 751-759.
[http://dx.doi.org/10.2215/CJN.10180916] [PMID: 28302903]
[27]
A Study to Evaluate the Effect of Dapagliflozin on Renal Outcomes and Cardiovascular Mortality in Patients with Chronic Kidney Disease [Dapa-CKD]. Available at: ClinicalTrials.gov. https://www.clinicaltrials.gov/ct2/show/NCT03036150 [Accessed: May 10, 2018].
[28]
Jardine, M.J.; Mahaffey, K.W.; Neal, B.; Agarwal, R.; Bakris, G.L.; Brenner, B.M.; Bull, S.; Cannon, C.P.; Charytan, D.M.; de Zeeuw, D.; Edwards, R.; Greene, T.; Heerspink, H.J.L.; Levin, A.; Pollock, C.; Wheeler, D.C.; Xie, J.; Zhang, H.; Zinman, B.; Desai, M.; Perkovic, V. The Canagliflozin and Renal Endpoints in Diabetes with Established Nephropathy Clinical Evaluation (CREDENCE) Study Rationale, Design, and Baseline Characteristics. Am. J. Nephrol., 2017, 46(6), 462-472.
[http://dx.doi.org/10.1159/000484633] [PMID: 29253846]
[29]
Chang, Y.K.; Choi, H.; Jeong, J.Y.; Na, K.R.; Lee, K.W.; Lim, B.J.; Choi, D.E. Dapagliflozin, SGLT2 inhibitor, attenuates renal ischemia-reperfusion injury. PLoS One, 2016, 11(7)e0158810
[http://dx.doi.org/10.1371/journal.pone.0158810] [PMID: 27391020]
[30]
Gallo, L.A.; Ward, M.S.; Fotheringham, A.K.; Zhuang, A.; Borg, D.J.; Flemming, N.B.; Harvie, B.M.; Kinneally, T.L.; Yeh, S.M.; McCarthy, D.A.; Koepsell, H.; Vallon, V.; Pollock, C.; Panchapakesan, U.; Forbes, J.M. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci. Rep., 2016, 6e26428
[http://dx.doi.org/10.1038/srep26428]
[31]
Gembardt, F.; Bartaun, C.; Jarzebska, N.; Mayoux, E.; Todorov, V.T.; Hohenstein, B.; Hugo, C. The SGLT2 inhibitor empagliflozin ameliorates early features of diabetic nephropathy in BTBR ob/ob type 2 diabetic mice with and without hypertension. Am. J. Physiol. Renal Physiol., 2014, 307(3), F317-F325.
[http://dx.doi.org/10.1152/ajprenal.00145.2014] [PMID: 24944269]
[32]
Hatanaka, T.; Ogawa, D.; Tachibana, H.; Eguchi, J.; Inoue, T.; Yamada, H.; Takei, K.; Makino, H.; Wada, J. Inhibition of SGLT2 alleviates diabetic nephropathy by suppressing high glucose-induced oxidative stress in type 1 diabetic mice. Pharmacol. Res. Perspect., 2016, 4(4)e00239
[http://dx.doi.org/10.1002/prp2.239] [PMID: 28116093]
[33]
Ishibashi, Y.; Matsui, T.; Yamagishi, S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm. Metab. Res., 2016, 48(3), 191-195.
[PMID: 26158396]
[34]
Kojima, N.; Williams, J.M.; Slaughter, T.N.; Kato, S.; Takahashi, T.; Miyata, N.; Roman, R.J. Renoprotective effects of combined SGLT2 and ACE inhibitor therapy in diabetic Dahl S rats. Physiol. Rep., 2015, 3(7)e12436
[http://dx.doi.org/10.14814/phy2.12436] [PMID: 26169541]
[35]
Ojima, A.; Matsui, T.; Nishino, Y.; Nakamura, N.; Yamagishi, S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing ages-receptor axis. Horm. Metab. Res., 2015, 47(9), 686-692.
[http://dx.doi.org/10.1055/s-0034-1395609] [PMID: 25611208]
[36]
Panchapakesan, U.; Pegg, K.; Gross, S.; Komala, M.G.; Mudaliar, H.; Forbes, J.; Pollock, C.; Mather, A. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy? PLoS One, 2013, 8(2)e54442
[http://dx.doi.org/10.1371/journal.pone.0054442] [PMID: 23390498]
[37]
Shin, S.J.; Chung, S.; Kim, S.J.; Lee, E.M.; Yoo, Y.H.; Kim, J.W.; Ahn, Y.B.; Kim, E.S.; Moon, S.D.; Kim, M.J.; Ko, S.H. Effect of sodium-glucose co-transporter 2 inhibitor, dapagliflozin, on renal renin-angiotensin system in an animal model of type 2 diabetes. PLoS One, 2016, 11(11)e0165703
[http://dx.doi.org/10.1371/journal.pone.0165703] [PMID: 27802313]
[38]
Tahara, A.; Kurosaki, E.; Yokono, M.; Yamajuku, D.; Kihara, R.; Hayashizaki, Y.; Takasu, T.; Imamura, M.; Li, Q.; Tomiyama, H.; Kobayashi, Y.; Noda, A.; Sasamata, M.; Shibasaki, M. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur. J. Pharmacol., 2013, 715(1-3), 246-255.
[http://dx.doi.org/10.1016/j.ejphar.2013.05.014] [PMID: 23707905]
[39]
Terami, N.; Ogawa, D.; Tachibana, H.; Hatanaka, T.; Wada, J.; Nakatsuka, A.; Eguchi, J.; Horiguchi, C.S.; Nishii, N.; Yamada, H.; Takei, K.; Makino, H. Long-term treatment with the sodium glucose cotransporter 2 inhibitor, dapagliflozin, ameliorates glucose homeostasis and diabetic nephropathy in db/db mice. PLoS One, 2014, 9(6)e100777
[http://dx.doi.org/10.1371/journal.pone.0100777] [PMID: 24960177]
[40]
Jaikumkao, K.; Pongchaidecha, A.; Chueakula, N.; Thongnak, L.; Wanchai, K.; Chatsudthipong, V.; Chattipakorn, N.; Lungkaphin, A. Renal outcomes with sodium glucose cotransporter 2 (SGLT2) inhibitor, dapagliflozin, in obese insulin-resistant model. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(6 Pt A), 2021-2033.
[http://dx.doi.org/10.1016/j.bbadis.2018.03.017] [PMID: 29572114]
[41]
Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Inzucchi, S.E. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med., 2015, 373(22), 2117-2128.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[42]
Cherney, D.Z.I.; Zinman, B.; Inzucchi, S.E.; Koitka-Weber, A.; Mattheus, M.; von Eynatten, M.; Wanner, C. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol., 2017, 5(8), 610-621.
[http://dx.doi.org/10.1016/S2213-8587(17)30182-1] [PMID: 28666775]
[43]
Cushman, W.C.; Evans, G.W.; Byington, R.P.; Goff, D.C., Jr; Grimm, R.H., Jr; Cutler, J.A.; Simons-Morton, D.G.; Basile, J.N.; Corson, M.A.; Probstfield, J.L.; Katz, L.; Peterson, K.A.; Friedewald, W.T.; Buse, J.B.; Bigger, J.T.; Gerstein, H.C.; Ismail-Beigi, F. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N. Engl. J. Med., 2010, 362(17), 1575-1585.
[http://dx.doi.org/10.1056/NEJMoa1001286] [PMID: 20228401]
[44]
Modi, G.K.; Agarwal, R. What are optimal blood pressure targets for patients with hypertension and chronic kidney disease? Curr. Cardiol. Rep., 2015, 17(11), 101.
[http://dx.doi.org/10.1007/s11886-015-0650-4] [PMID: 26374454]
[45]
Imprialos, K.P.; Sarafidis, P.A.; Karagiannis, A.I. Sodium-glucose cotransporter-2 inhibitors and blood pressure decrease: a valuable effect of a novel antidiabetic class? J. Hypertens., 2015, 33(11), 2185-2197.
[http://dx.doi.org/10.1097/HJH.0000000000000719] [PMID: 26372321]
[46]
Vasilakou, D.; Karagiannis, T.; Athanasiadou, E.; Mainou, M.; Liakos, A.; Bekiari, E.; Sarigianni, M.; Matthews, D.R.; Tsapas, A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med., 2013, 159(4), 262-274.
[http://dx.doi.org/10.7326/0003-4819-159-4-201308200-00007] [PMID: 24026259]
[47]
Parati, G.; Stergiou, G.; O’Brien, E.; Asmar, R.; Beilin, L.; Bilo, G.; Clement, D.; de la Sierra, A.; de Leeuw, P.; Dolan, E.; Fagard, R.; Graves, J.; Head, G.A.; Imai, Y.; Kario, K.; Lurbe, E.; Mallion, J.M.; Mancia, G.; Mengden, T.; Myers, M.; Ogedegbe, G.; Ohkubo, T.; Omboni, S.; Palatini, P.; Redon, J.; Ruilope, L.M.; Shennan, A.; Staessen, J.A.; vanMontfrans, G.; Verdecchia, P.; Waeber, B.; Wang, J.; Zanchetti, A.; Zhang, Y. European Society of Hypertension practice guidelines for ambulatory blood pressure monitoring. J. Hypertens., 2014, 32(7), 1359-1366.
[http://dx.doi.org/10.1097/HJH.0000000000000221] [PMID: 24886823]
[48]
Tikkanen, I.; Narko, K.; Zeller, C.; Green, A.; Salsali, A.; Broedl, U.C.; Woerle, H.J. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care, 2015, 38(3), 420-428.
[http://dx.doi.org/10.2337/dc14-1096] [PMID: 25271206]
[49]
Pessoa, T.D.; Campos, L.C.; Carraro-Lacroix, L.; Girardi, A.C.; Malnic, G. Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J. Am. Soc. Nephrol., 2014, 25(9), 2028-2039.
[http://dx.doi.org/10.1681/ASN.2013060588] [PMID: 24652792]
[50]
Lambers Heerspink, H.J.; de Zeeuw, D.; Wie, L.; Leslie, B.; List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab., 2013, 15(9), 853-862.
[http://dx.doi.org/10.1111/dom.12127] [PMID: 23668478]
[51]
Cherney, D.Z.; Perkins, B.A.; Soleymanlou, N.; Har, R.; Fagan, N.; Johansen, O.E.; Woerle, H.J.; von Eynatten, M.; Broedl, U.C. The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc. Diabetol., 2014, 13, 28.
[http://dx.doi.org/10.1186/1475-2840-13-28] [PMID: 24475922]
[52]
Brenner, B.M.; Lawler, E.V.; Mackenzie, H.S. The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int., 1996, 49(6), 1774-1777.
[http://dx.doi.org/10.1038/ki.1996.265] [PMID: 8743495]
[53]
Tonneijck, L.; Muskiet, M.H.; Smits, M.M.; van Bommel, E.J.; Heerspink, H.J.; van Raalte, D.H.; Joles, J.A. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J. Am. Soc. Nephrol., 2017, 28(4), 1023-1039.
[http://dx.doi.org/10.1681/ASN.2016060666] [PMID: 28143897]
[54]
Škrtić, M.; Cherney, D.Z. Sodium-glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr. Opin. Nephrol. Hypertens., 2015, 24(1), 96-103.
[http://dx.doi.org/10.1097/MNH.0000000000000084] [PMID: 25470017]
[55]
Cherney, D.Z.; Perkins, B.A.; Soleymanlou, N.; Maione, M.; Lai, V.; Lee, A.; Fagan, N.M.; Woerle, H.J.; Johansen, O.E.; Broedl, U.C.; von Eynatten, M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation, 2014, 129(5), 587-597.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005081] [PMID: 24334175]
[56]
Skrtić, M.; Yang, G.K.; Perkins, B.A.; Soleymanlou, N.; Lytvyn, Y.; von Eynatten, M.; Woerle, H.J.; Johansen, O.E.; Broedl, U.C.; Hach, T.; Silverman, M.; Cherney, D.Z. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia, 2014, 57(12), 2599-2602.
[http://dx.doi.org/10.1007/s00125-014-3396-4] [PMID: 25280671]
[57]
Bolinder, J.; Ljunggren, Ö.; Johansson, L.; Wilding, J.; Langkilde, A.M.; Sjöström, C.D.; Sugg, J.; Parikh, S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes. Metab., 2014, 16(2), 159-169.
[http://dx.doi.org/10.1111/dom.12189] [PMID: 23906445]
[58]
Wang, Y.; Chen, X.; Song, Y.; Caballero, B.; Cheskin, L.J. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int., 2008, 73(1), 19-33.
[http://dx.doi.org/10.1038/sj.ki.5002586] [PMID: 17928825]
[59]
Kambham, N.; Markowitz, G.S.; Valeri, A.M.; Lin, J.; D’Agati, V.D. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int., 2001, 59(4), 1498-1509.
[http://dx.doi.org/10.1046/j.1523-1755.2001.0590041498.x] [PMID: 11260414]
[60]
Praga, M.; Hernández, E.; Morales, E.; Campos, A.P.; Valero, M.A.; Martínez, M.A.; León, M. Clinical features and long-term outcome of obesity-associated focal segmental glomerulosclerosis. Nephrol. Dial. Transplant., 2001, 16(9), 1790-1798.
[http://dx.doi.org/10.1093/ndt/16.9.1790] [PMID: 11522860]
[61]
Cherney, D.; Lund, S.S.; Perkins, B.A.; Groop, P.H.; Cooper, M.E.; Kaspers, S.; Pfarr, E.; Woerle, H.J.; von Eynatten, M. The effect of sodium glucose cotransporter 2 inhibition with empagliflozin on microalbuminuria and macroalbuminuria in patients with type 2 diabetes. Diabetologia, 2016, 59(9), 1860-1870.
[http://dx.doi.org/10.1007/s00125-016-4008-2] [PMID: 27316632]
[62]
Eleftheriadis, T.; Golphinopoulos, S.; Pissas, G.; Stefanidis, I. Asymptomatic hyperuricemia and chronic kidney disease: narrative review of a treatment controversial. J. Adv. Res., 2017, 8(5), 555-560.
[http://dx.doi.org/10.1016/j.jare.2017.05.001] [PMID: 28748122]
[63]
Bose, B.; Badve, S.V.; Hiremath, S.S.; Boudville, N.; Brown, F.G.; Cass, A.; de Zoysa, J.R.; Fassett, R.G.; Faull, R.; Harris, D.C.; Hawley, C.M.; Kanellis, J.; Palmer, S.C.; Perkovic, V.; Pascoe, E.M.; Rangan, G.K.; Walker, R.J.; Walters, G.; Johnson, D.W. Effects of uric acid-lowering therapy on renal outcomes: a systematic review and meta-analysis. Nephrol. Dial. Transplant., 2014, 29(2), 406-413.
[http://dx.doi.org/10.1093/ndt/gft378] [PMID: 24042021]
[64]
Zhao, Y.; Xu, L.; Tian, D.; Xia, P.; Zheng, H.; Wang, L.; Chen, L. Effects of sodium-glucose co-transporter 2 [SGLT2] inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes. Metab., 2017, 20(2), 458-462.
[http://dx.doi.org/10.1111/dom.13101]
[65]
Chino, Y.; Samukawa, Y.; Sakai, S.; Nakai, Y.; Yamaguchi, J.; Nakanishi, T.; Tamai, I. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm. Drug Dispos., 2014, 35(7), 391-404.
[http://dx.doi.org/10.1002/bdd.1909] [PMID: 25044127]
[66]
Pisano, A.; Cernaro, V.; Gembillo, G.; D’Arrigo, G.; Buemi, M.; Bolignano, D. Xanthine oxidase inhibitors for improving renal function in chronic kidney disease patients: an updated systematic review and meta-analysis. Int. J. Mol. Sci., 2017, 18(11), 2283.
[http://dx.doi.org/10.3390/ijms18112283]
[67]
Liu, X.Y.; Zhang, N.; Chen, R.; Zhao, J.G.; Yu, P. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2years. J. Diabetes Complications, 2015, 29(8), 1295-1303.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.07.011] [PMID: 26365905]
[68]
Eren, Z.; Günal, M.Y.; Arı, E.; Çoban, J.; Çakalağaoğlu, F.; Çağlayan, B.; Beker, M.Ç.; Akdeniz, T.; Yanıkkaya, G.; Kılıç, E.; Kantarcı, G. Pleiotropic and renoprotective effects of erythropoietin beta on experimental diabetic nephropathy model. Nephron, 2016, 132(4), 292-300.
[http://dx.doi.org/10.1159/000444649] [PMID: 26938976]
[69]
Sano, M.; Takei, M.; Shiraishi, Y.; Suzuki, Y. Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys. J. Clin. Med. Res., 2016, 8(12), 844-847.
[http://dx.doi.org/10.14740/jocmr2760w] [PMID: 27829948]
[70]
Tsuruya, K.; Yoshida, H.; Suehiro, T.; Fujisaki, K.; Masutani, K.; Kitazono, T. Erythropoiesis-stimulating agent slows the progression of chronic kidney disease: a possibility of a direct action of erythropoietin. Ren. Fail., 2016, 38(3), 390-396.
[http://dx.doi.org/10.3109/0886022X.2015.1136874] [PMID: 26822074]
[71]
Anderson, S.; Brenner, B.M. The role of intraglomerular pressure in the initiation and progression of renal disease. J. Hypertens. Suppl., 1986, 4(5), S236-S238.
[PMID: 3033176]
[72]
Fogo, A.B. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol., 2015, 11(2), 76-87.
[http://dx.doi.org/10.1038/nrneph.2014.216] [PMID: 25447132]
[73]
Georgianos, P.I.; Agarwal, R. Revisiting RAAS blockade in CKD with newer potassium-binding drugs. Kidney Int., 2018, 93(2), 325-334.
[http://dx.doi.org/10.1016/j.kint.2017.08.038] [PMID: 29276100]
[74]
Rajasekeran, H.; Reich, H.N.; Hladunewich, M.A.; Cattran, D.; Lovshin, J.A.; Lytvyn, Y.; Bjornstad, P.; Lai, V.; Tse, J.; Cham, L.; Majumder, S.; Bowskill, B.B.; Kabir, M.G.; Advani, S.L.; Gibson, I.W.; Sood, M.M.; Advani, A.; Cherney, D.Z.I. Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. Am. J. Physiol. Renal Physiol., 2018, 314(3), F412-F422.
[http://dx.doi.org/10.1152/ajprenal.00445.2017] [PMID: 29141939]
[75]
Wu, J.H.; Foote, C.; Blomster, J.; Toyama, T.; Perkovic, V.; Sundström, J.; Neal, B. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diabetes Endocrinol., 2016, 4(5), 411-419.
[http://dx.doi.org/10.1016/S2213-8587(16)00052-8] [PMID: 27009625]
[76]
Hayami, T.; Kato, Y.; Kamiya, H.; Kondo, M.; Naito, E.; Sugiura, Y.; Kojima, C.; Sato, S.; Yamada, Y.; Kasagi, R.; Ando, T.; Noda, S.; Nakai, H.; Takada, E.; Asano, E.; Motegi, M.; Watarai, A.; Kato, K.; Nakamura, J. Case of ketoacidosis by a sodium-glucose cotransporter 2 inhibitor in a diabetic patient with a low-carbohydrate diet. J. Diabetes Investig., 2015, 6(5), 587-590.
[http://dx.doi.org/10.1111/jdi.12330] [PMID: 26417418]
[77]
Peters, A.L.; Buschur, E.O.; Buse, J.B.; Cohan, P.; Diner, J.C.; Hirsch, I.B. Euglycemic diabetic ketoacidosis: a potential complication of treatment with sodium-glucose cotransporter 2 inhibition. Diabetes Care, 2015, 38(9), 1687-1693.
[http://dx.doi.org/10.2337/dc15-0843] [PMID: 26078479]
[78]
Johnsson, K.M.; Ptaszynska, A.; Schmitz, B.; Sugg, J.; Parikh, S.J.; List, J.F. Vulvovaginitis and balanitis in patients with diabetes treated with dapagliflozin. J. Diabetes Complications, 2013, 27(5), 479-484.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.04.012] [PMID: 23806570]
[79]
Vlotides, G.; Mertens, P.R. Sodium-glucose cotransport inhibitors: mechanisms, metabolic effects and implications for the treatment of diabetic patients with chronic kidney disease. Nephrol. Dial. Transplant., 2015, 30(8), 1272-1276.
[http://dx.doi.org/10.1093/ndt/gfu299] [PMID: 25230708]
[80]
Filippatos, T.D.; Tsimihodimos, V.; Liamis, G.; Elisaf, M.S. SGLT2 inhibitors-induced electrolyte abnormalities: An analysis of the associated mechanisms. Diabetes Metab. Syndr., 2018, 12(1), 59-63.
[http://dx.doi.org/10.1016/j.dsx.2017.08.003]
[81]
Weir, M.R.; Kline, I.; Xie, J.; Edwards, R.; Usiskin, K. Effect of canagliflozin on serum electrolytes in patients with type 2 diabetes in relation to estimated glomerular filtration rate (eGFR). Curr. Med. Res. Opin., 2014, 30(9), 1759-1768. [eGFR]
[http://dx.doi.org/10.1185/03007995.2014.919907] [PMID: 24786834]
[82]
Taylor, S.I.; Blau, J.E.; Rother, K.I. Possible adverse effects of SGLT2 inhibitors on bone. Lancet Diabetes Endocrinol., 2015, 3(1), 8-10.
[http://dx.doi.org/10.1016/S2213-8587(14)70227-X] [PMID: 25523498]
[83]
Imprialos, K.P.; Boutari, C.; Stavropoulos, K.; Doumas, M.; Karagiannis, A.I. Stroke paradox with SGLT-2 inhibitors: a play of chance or a viscosity-mediated reality? J. Neurol. Neurosurg. Psychiatry, 2017, 88(3), 249-253.
[http://dx.doi.org/10.1136/jnnp-2016-314704] [PMID: 27895093]
[84]
Nagata, T.; Fukuzawa, T.; Takeda, M.; Fukazawa, M.; Mori, T.; Nihei, T.; Honda, K.; Suzuki, Y.; Kawabe, Y. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice. Br. J. Pharmacol., 2013, 170(3), 519-531.
[http://dx.doi.org/10.1111/bph.12269] [PMID: 23751087]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy