[1]
Andrés, R.C.; Helena, B.C.; Juliana, P.P.; Viviana, A.M.; Margarita, G.B.; Marisa, C.G. Diabetes-related neurological implications and pharmacogenomics. Curr. Pharm. Des., 2018, 24, 1695-1710.
[2]
Hugill, A.J.; Stewart, M.E.; Yon, M.A.; Probert, F.; Cox, I.J.; Hough, T.A.; Scudamore, C.L.; Bentley, L.; Wall, G.; Wells, S.E.; Cox, R.D. Loss of arylformamidase with reduced thymidine kinase expression leads to impaired glucose tolerance. Biol. Open, 2015, 4, 1367-1375.
[3]
Testa, R.; Bonfigli, A.R.; Genovese, S.; De Nigris, V.; Ceriello, A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients, 2016, 8, E310.
[4]
Gu, J.; Yan, J.; Wu, W.; Huang, Q.; Ouyang, D. Research progress in aldose reductase. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2010, 35, 395-400.
[5]
Vedantham, S.; Ananthakrishnan, R.; Schmidt, A.M.; Ramasamy, R. Aldose reductase, oxidative stress and diabetic cardiovascular complications. Cardiovasc. Hematol. Agents Med. Chem., 2012, 10, 234-240.
[6]
Thiagarajan, D.; Ananthakrishnan, R.; Zhang, J.; O’Shea, K.M.; Quadri, N.; Li, Q.; Sas, K.; Jing, X.; Rosario, R.; Pennathur, S.; Schmidt, A.M.; Ramasamy, R. Aldose Reductase Acts as a Selective Derepressor of PPARγ and the Retinoic Acid Receptor. Cell Rep, 2016, 15, 181-196.
[7]
Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev., 2013, 93, 137-188.
[8]
El Gamal, H.; Eid, A.H.; Munusamy, S. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. Biomed Res. Int., 2017, 2017, 5903105.
[9]
Abdul Nasir, N.A.; Agarwal, R.; Sheikh Abdul Kadir, S.H.; Vasudevan, S.; Tripathy, M.; Iezhitsa, I.; Mohammad Daher, A.; Ibrahim, M.I.; Mohd Ismail, N. Reduction of oxidative-nitrosative stress underlies anticataract effect of topically applied tocotrienol in streptozotocin-induced diabetic rats. PLoS One, 2017, 12, e0174542.
[10]
Dodda, D.; Ciddi, V. Plants used in the management of diabetic complications. Indian J. Pharm. Sci., 2014, 76, 97-106.
[11]
Tammali, R.; Srivastava, S.K.; Ramana, K.V. Targeting aldose reductase for the treatment of cancer. Curr. Cancer Drug Targets, 2011, 11, 560-571.
[12]
Grewal, A.S.; Bhardwaj, S.; Pandita, D.; Lather, V.; Sekhon, B.S. Updates on Aldose Reductase Inhibitors for Management of Diabetic Complications and Non-diabetic Diseases. Mini Rev. Med. Chem., 2016, 16, 120-162.
[13]
Chang, K.C.; Snow, A.; LaBarbera, D.V.; Petrash, J.M. Aldose reductase inhibition alleviates hyperglycemic effects on human retinal pigment epithelial cells. Chem. Biol. Interact., 2015, 234, 254-260.
[14]
Brings, S.; Fleming, T.; Freichel, M.; Muckenthaler, M.U.; Herzig, S.; Nawroth, P.P. Dicarbonyls and advanced glycation end-products in the development of diabetic complications and targets for intervention. Int. J. Mol. Sci, 2017, 18, E984.
[15]
Yadav, U.C.; Srivastava, S.K.; Ramana, K.V. Understanding the role of aldose reductase in ocular inflammation. Curr. Mol. Med., 2010, 10, 540-549.
[16]
Wu, J.; Jin, Z.; Yan, L.J. Redox imbalance and mitochondrial abnormalities in the diabetic lung. Redox Biol., 2017, 11, 51-59.
[17]
ElGamal, H.; Munusamy, S. Aldose reductase as a drug target for treatment of diabetic nephropathy: Promises and challenges. Protein Pept. Lett., 2017, 24, 71-77.
[18]
Forbes, J.M.; Coughlan, M.T.; Cooper, M.E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes, 2008, 57, 1446-1454.
[19]
Huang, Z.; Hong, Q.; Zhang, X.; Xiao, W.; Wang, L.; Cui, S.; Feng, Z.; Lv, Y.; Cai, G.; Chen, X.; Wu, D. Aldose reductase mediates endothelial cell dysfunction induced by high uric acid concentrations. Cell Commun. Signal., 2017, 15, 3.
[20]
Javed, S.; Alam, U.; Malik, R.A. Burning through the pain: treatments for diabetic neuropathy. Diabetes Obes. Metab., 2015, 17, 1115-1125.
[21]
Østergaard, L.; Finnerup, N.B.; Terkelsen, A.J.; Olesen, R.A.; Drasbek, K.R.; Knudsen, L.; Jespersen, S.N.; Frystyk, J.; Charles, M.; Thomsen, R.W.; Christiansen, J.S.; Beck-Nielsen, H.; Jensen, T.S.; Andersen, H. The effects of capillary dysfunction on oxygen and glucose extraction in diabetic neuropathy. Diabetologia, 2015, 58, 666-677.
[22]
Li, Q.R.; Wang, Z.; Zhou, W.; Fan, S.R.; Ma, R.; Xue, L.; Yang, L.; Li, Y.S.; Tan, H.L.; Shao, Q.H.; Yang, H.Y. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway. Neural Regen. Res., 2016, 11, 345-351.
[23]
Robinson, R.; Barathi, V.A.; Chaurasia, S.S.; Wong, T.Y.; Kern, T.S. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis. Model. Mech., 2012, 5, 444-456.
[24]
Pradhan, P.; Upadhyay, N.; Tiwari, A.; Singh, L.P. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression. New Front Ophthalmol, 2016, 2, 192-204.
[25]
Safi, S.Z.; Qvist, R.; Kumar, S.; Batumalaie, K.; Ismail, I.S. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res. Int., 2014, 2014, 801269.
[26]
Watarai, A.; Nakashima, E.; Hamada, Y.; Watanabe, G.; Naruse, K.; Miwa, K.; Kobayashi, Y.; Kamiya, H.; Nakae, M.; Hamajima, N.; Sekido, Y.; Niwa, T.; Oiso, Y.; Nakamura, J. Aldose reductase gene is associated with diabetic macroangiopathy in Japanese Type 2 diabetic patients. Diabet. Med., 2006, 23, 894-899.
[27]
Yang, B.; Millward, A.; Demaine, A. Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications. Biochim. Biophys. Acta, 2003, 1639, 1-7.
[28]
Hao, X.; Han, Z.; Zhu, C. Topical composition for treating diabetic cataracts: a patent evaluation (WO2015026380A1). Expert Opin. Ther. Pat., 2016, 26, 731-735.
[29]
Coppey, L.J.; Gellett, J.S.; Davidson, E.P.; Dunlap, J.A.; Yorek, M.A. Effect of antioxidant treatment of streptozotocin-induced diabetic rats on endoneurial blood flow, motor nerve conduction velocity, and vascular reactivity of epineurial arterioles of the sciatic nerve. Diabetes, 2001, 50, 1927-1937.
[30]
Obrosova, I.G.; Fathallah, L. Evaluation of an aldose reductase inhibitor on lens metabolism, ATPases and antioxidative defense in streptozotocin-diabetic rats: an intervention study. Diabetologia, 2000, 43, 1048-1055.
[31]
Ramana, K.V.; Tammali, R.; Reddy, A.B.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase-regulated tumor necrosis factor-alpha production is essential for high glucose-induced vascular smooth muscle cell growth. Endocrinology, 2007, 148, 4371-4384.
[32]
Asnaghi, V.; Gerhardinger, C.; Hoehn, T.; Adeboje, A.; Lorenzi, M. A role for the polyol pathway in the early neuroretinal apoptosis and glial changes induced by diabetes in the rat. Diabetes, 2003, 52, 506-511.
[33]
Sun, W.; Gerhardinger, C.; Dagher, Z.; Hoehn, T.; Lorenzi, M. Aspirin at low-intermediate concentrations protects retinal vessels in experimental diabetic retinopathy through non-platelet-mediated effects. Diabetes, 2005, 54, 3418-3426.
[34]
Dagher, Z.; Park, Y.S.; Asnaghi, V.; Hoehn, T.; Gerhardinger, C.; Lorenzi, M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes, 2004, 53, 2404-2411.
[35]
Gerhardinger, C.; Dagher, Z.; Sebastiani, P.; Park, Y.S.; Lorenzi, M. The transforming growth factor-beta pathway is a common target of drugs that prevent experimental diabetic retinopathy. Diabetes, 2009, 58, 1659-1667.
[36]
Nencetti, S.; La Motta, C.; Rossello, A.; Sartini, S.; Nuti, E.; Ciccone, L.; Orlandini, E.N. -(Aroyl)-N-(arylmethyloxy)-α-alanines: Selective inhibitors of aldose reductase. Bioorg. Med. Chem., 2017, 25, 3068-3076.
[37]
Chang, K.C.; Ponder, J.; Labarbera, D.V.; Petrash, J.M. Aldose reductase inhibition prevents endotoxin-induced inflammatory responses in retinal microglia. Invest. Ophthalmol. Vis. Sci., 2014, 55, 2853-2861.
[38]
Ramana, K.V.; Friedrich, B.; Tammali, R.; West, M.B.; Bhatnagar, A.; Srivastava, S.K. Requirement of aldose reductase for the hyperglycemic activation of protein kinase C and formation of diacylglycerol in vascular smooth muscle cells. Diabetes, 2005, 54, 818-829.
[39]
Bhatnagar, A.; Ruef, J.; Liu, S.; Srivastava, S.; Srivastava, S.K. Regulation of vascular smooth muscle cell growth by aldose reductase. Chem. Biol. Interact., 2001, 130-132, 627-636.
[40]
Tammali, R.; Saxena, A.; Srivastava, S.K.; Ramana, K.V. Aldose reductase regulates vascular smooth muscle cell proliferation by modulating G1/S phase transition of cell cycle. Endocrinology, 2010, 151, 2140-2150.
[41]
Song, X.M.; Yu, Q.; Dong, X.; Yang, H.O.; Zeng, K.W.; Li, J.; Tu, P.F. Aldose reductase inhibitors attenuate β-amyloid-induced TNF-α production in microlgia via ROS-PKC-mediated NF-κB and MAPK pathways. Int. Immunopharmacol., 2017, 50, 30-37.
[42]
Reddy, A.B.; Ramana, K.V.; Srivastava, S.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase regulates high glucose-induced ectodomain shedding of tumor necrosis factor (TNF)-alpha via protein kinase C-delta and TNF-alpha converting enzyme in vascular smooth muscle cells. Endocrinology, 2009, 150, 63-74.
[43]
Demiot, C.; Tartas, M.; Fromy, B.; Abraham, P.; Saumet, J.L.; Sigaudo-Roussel, D. Aldose reductase pathway inhibition improved vascular and C-fiber functions, allowing for pressure-induced vasodilation restoration during severe diabetic neuropathy. Diabetes, 2006, 55, 1478-1483.
[44]
Ramana, K.V.; Chandra, D.; Srivastava, S.; Bhatnagar, A.; Srivastava, S.K. Aldose reductase mediates the mitogenic signals of cytokines. Chem. Biol. Interact., 2003, 143-144, 587-596.
[45]
Schmidt, R.E.; Dorsey, D.A.; Beaudet, L.N.; Plurad, S.B.; Parvin, C.A.; Yarasheski, K.E.; Smith, S.R.; Lang, H.J.; Williamson, J.R.; Ido, Y. Inhibition of sorbitol dehydrogenase exacerbates autonomic neuropathy in rats with streptozotocin-induced diabetes. J. Neuropathol. Exp. Neurol., 2001, 60, 1153-1169.
[46]
Obrosova, I.G.; Van Huysen, C.; Fathallah, L.; Cao, X.C.; Greene, D.A.; Stevens, M.J. An aldose reductase inhibitor reverses early diabetes-induced changes in peripheral nerve function, metabolism, and antioxidative defense. FASEB J., 2002, 16, 123-125.
[47]
Sellers, D.J.; Chess-Williams, R. The effects of streptozotocin-induced diabetes and aldose reductase inhibition with sorbinil, on left and right atrial function in the rat. J. Pharm. Pharmacol., 2000, 52, 687-694.
[48]
Rusak, T.; Misztal, T.; Rusak, M.; Branska-Januszewska, J.; Tomasiak, M. Involvement of hyperglycemia in the development of platelet procoagulant response: The role of aldose reductase and platelet swelling. Blood Coagul. Fibrinolysis, 2017, 28, 443-451.
[49]
Coppey, L.J.; Gellett, J.S.; Davidson, E.P.; Dunlap, J.A.; Yorek, M.A. Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve. Int. J. Exp. Diabetes Res., 2002, 3, 21-36.