[1]
Martin, P.; Anders, W.; Maëlenn, G.; Gemma, C.A.; Yu Tzu, W.; Matthew, P. World Alzheimer Report 2015 The Global Impact of Dementia An Analysis of Prevalence, Incidence, Cost and Trends, Alzheimer’s Disease International; Alzheimer's Disease International: London, 2015, pp. 1-82.
[2]
Qiu, C.; Kivipelto, M.; von Strauss, E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci., 2009, 11(2), 111-128.
[3]
Armstrong, R.A. What causes alzheimer’s disease? Folia Neuropathol., 2013, 3, 169-188.
[4]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[5]
Kumar, A.; Singh, A. Ekavali A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[6]
Anand, R.; Gill, K.D.; Mahdi, A.A. Therapeutics of Alzheimer's disease: Past, present and future. Neuropharmacology, 2014, 76Pt A, 27-50.
[7]
Unzeta, M.; Esteban, G.; Bolea, I.; Fogel, W.A.; Ramsay, R.R.; Youdim, M.B.H.; Tipton, K.F.; Marco-Contelles, J. Multi-target directed donepezil-like ligands for alzheimer’s disease. Front. Neurosci., 2016, 10, 205.
[8]
Prati, F.; Cavalli, A.; Bolognesi, M.L. Navigating the chemical space of multitarget-directed ligands: From hybrids to fragments in Alzheimer’s disease. Molecules, 2016, 21(4), 466.
[9]
Guzior, N.; Wieckowska, A.; Panek, D.; Malawska, B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer’s disease. Curr. Med. Chem., 2015, 22(3), 373-404.
[10]
Giacobini, E. selective inhibitors of butyrylcholinesterase a valid alternative for therapy of alzheimer’s disease? Drugs Aging, 2001, 18(21), 891-898.
[11]
Darvesh, S.; Hopkins, D.A.; Geula, C. Neurobiology of butyrylcholinesterase. Nat. Rev. Neurosci., 2003, 4(2), 131-138.
[12]
Inestrosa, N.; Alvarez, A.; Moreno, R.; Vicente, M.; Linker, C.; Casanueva, O.; Soto, C.; Garrido, J. Acetylcholinesterase accelerates assembly of amyloid-β-peptides into alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron, 1996, 16, 881-891.
[13]
Munoz-Ruiz, P.; Rubio, L.; Garcia-Palomero, E.; Dorronsoro, I.; del Monte-Millan, M.; Valenzuela, R.; Usan, P.; de Austria, C.; Bartolini, M.; Andrisano, V.; Bidon-Chanal, A.; Orozco, M.; Luque, F.J.; Medina, M.; Martinez, A. Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J. Med. Chem., 2005, 48(23), 7223-7233.
[14]
Gazit, E. Mechanisms of amyloid fibril self-assembly and inhibition. Model short peptides as a key research tool. FEBS J., 2005, 272(23), 5971-5978.
[15]
Reinke, A.A.; Gestwicki, J.E. Structure–activity Relationships of Amyloid Beta‐aggregation Inhibitors Based on Curcumin: Influence of Linker Length and Flexibility. Chem. Biol. Drug Des., 2007, 70(3), 206-215.
[16]
Sakono, M.; Zako, T. Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J., 2010, 277(6), 1348-1358.
[17]
Kılıc, B.; Gulcan, H.O.; Yalcın, M.; Aksakal, F.; Dimoglo, A.; Sahin, M.F.; Dogruer, D.S. Synthesis of Some New 1 (2H)-Phthalazinone Derivatives and Evaluation of Their Acetylcholinesterase and Butyrylcholinesterase Inhibitory Activities. Lett. Drug Des. Discov., 2017, 14(2), 159-166.
[18]
Saxena, A.; Fedorko, J.M.; Vinayaka, C.R.; Medhekar, R.; Radic, Z.; Taylor, P.; Lockridge, O.; Doctor, B.P. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (AriceptR) to cholinesterases. Eur. J. Biochem., 2003, 270(22), 4447-4458.
[19]
Yamali, C.; Gulcan, H.O.; Kahya, B.; Cobanoglu, S.; Sukuroglu, M.K.; Dogruer, D.S. Synthesis of some 3(2H)-pyridazinone and 1(2H)-phthalazinone derivatives incorporating aminothiazole moiety and investigation of their antioxidant, acetylcholinesterase, and butyrylcholinesterase inhibitory activities. Med. Chem. Res., 2015, 24(3), 1210-1217.
[20]
Sotelo, E.; Coelho, A.; Raviña, E. Pyridazines. Part 34: Retro-ene-assisted palladium-catalyzed synthesis of 4,5-disubstituted-3(2H)-pyridazinones. Tetrahedron Lett., 2003, 44(24), 4459-4462.
[21]
Kavitha, N.; Divekar, K.; Priyadarshini, B.; Gajanan, S.; Manjunath, M. Synthesis and antimicrobial activities of some new pyrazole derivatives. Der. Pharma. Chemica, 2011, 3(4), 55-62.
[22]
Allen, C.F.H.; Kimball, R.K. α-Phenyl-β-Benzoylpropionitrile. Org. Synth., 1930, 10, 80.
[23]
Coudert, P.; Couquelet, J.; Tronche, P. A New Synthetic Route to 4,6-Diarylpyridazinones and Some of their Derivatives. J. Heterocycl. Chem., 1988, 25.
[24]
Allen, C.F.H.; Barker, W.E. Desoxybenzoin. Org. Synth. 1932, 16-16.
[25]
Ranade, A.C.; Mali, R.S.; Kurnawal, V.M. An Unusual Reaction of A Phosphorane With Benzoins: Formation of 1, 2‐Dicarbonyl and 1,4‐Dicarbonyl Compounds. Indian J. Chem., 1984, 23B, 514-517.
[26]
Taylor, H.M.; Hauser, C.R. Conjugate addition of α-Dimethyl-aminophenylacetonitrile with Benzalacetophenone and Ethyl Cinnamate by Means of Potassium Amide. J. Am. Chem. Soc., 1960, 82(7), 1790-1792.
[27]
Baddar, F.G.; El-Habashi, A.; Fateen, A.K. Pyridazines. Part II. The action of grignard reagents on 6-aryl-2, 3, 4, 5-tetrahydro-and-2, 3-dihydropyridazin-3-ones. J. Chem. Soc., 1965, 3342-3348.
[28]
Mohamed, T.; Zhao, X.; Habib, L.K.; Yang, J.; Rao, P.P. Design, synthesis and structure-activity relationship (SAR) studies of 2,4-disubstituted pyrimidine derivatives: dual activity as cholinesterase and Abeta-aggregation inhibitors. Bioorg. Med. Chem., 2011, 19(7), 2269-2281.
[29]
Bolognesi, M.L.; Andrisano, V.; Bartolini, M.; Banzi, R.; Melchiorre, C. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation. J. Med. Chem., 2005, 48(1), 24-27.
[30]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[31]
Molinspiration. Molinspiration Cheminformatics Nova ulica SK- 900 26 Slovensky Grob Slovak Republic
[32]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: a comprehensive source and free tool for evaluating chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[33]
Kryger, G.; Silman, I.; Sussman, J. Structure of acetylcholinesterase complexed with E2020 (Aricep): implications for the design of new anti-Alzheimer drugs. Structure, 1999, 7(3), 297-307.
[34]
Ellman, G.L.; Courtney, K.D.; Andres, V.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[35]
Obregon, A.D.C.; Schetinger, M.R.C.; Correa, M.M.; Morsch, V.M.; Silva, J.E.P.; Martins, M.A.P.; Bonacorso, H.G.; Zanatta, N. Effects per se of organic solvents in the cerebral acetylcholinesterase of rats. Neurochem. Res., 2005, 30(3), 379-384.
[36]
Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem., 2003, 278(42), 41141-41147.
[37]
Molecular Operating Environment (MOE), C.C.G.I., 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7 2015.