[1]
Hasnain, H.; Ali, H.; Tariq, A.; Zafar, F.; Naveed, S. NSAIDs; safety and risk assessment in CVS events, comparisons and facts. J. Bioequiv. Availab., 2016, 8, 84-88.
[2]
lshizaki, T.; Nomura, T.; Abe, T. Pharmacokinetics of piroxicam, a new nonsteroidal anti-inflammatory agent, under fasting and postprandial states in man. J. Pharmacokinet. Biopharm., 1979, 7, 369-381.
[3]
Asanuma, M.; Nishibayashi-Asanuma, S.; Miyazaki, I.; Kohno, M.; Ogawa, N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J. Neurochem., 2001, 76, 1895-1904.
[4]
Boudinot, S.G.; Funderburang, E.D.; Boudinot, F.D. Effects of age on the pharmacokinetics of piroxicam in rats. J. Pharm. Sci., 1993, 82, 254-257.
[5]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24, 121-132.
[6]
Bartsch, H.; Eiper, A.; Kopelent-Frank, H. Stability indicating assays for the determination of piroxicam-comparison of methods. J. Pharm. Biomed. Anal., 1999, 20, 531-541.
[7]
Milligan, P.A. Determination of piroxicam and its major metabolites in the plasma, urine and bile of humans by highperformance liquid chromatography. J. Chromatogr. B, 1992, 576, 121-128.
[8]
Katzung, B.G.; Masters, S.B.; Trevor, A.J. Basic and clinical pharmacology, 12th ed; McGraw-Hill Medical: New York, 2012.
[9]
Yua, F.; Zhang, Y.; Chena, F.; Chen, L. Chemiluminescence method for the determination of piroxicam by the enhancement of the tris-(4,7-diphenyl-1,10- phenanthrolinedisulphonic acid) ruthenium(II) (RuBPS)–cerium(IV) system and its application. Luminescence, 2009, 24, 50-54.
[10]
Sanchez-Pedreno, C.; Garcia, M.S.; Albero, M.I.; Rodriguez, J. Flow-injection spectrophotometric determination of piroxicam. J. Pharm. Biomed. Anal., 1993, 11, 933-938.
[11]
Amin, A.S. Spectrophotometric determination of piroxicam and tenoxicam in pharmaceutical formulations using alizarin. J. Pharm. Biomed. Anal., 2002, 29, 729-736.
[12]
Nagaralli, B.S.; Seetharamappa, J.; Melwanki, M.B. Sensitive spectrophotometric methods for the determination of amoxycillin, ciprofloxacin and piroxicam in pure and pharmaceutical formulations. J. Pharm. Biomed. Anal., 2002, 29, 859-864.
[13]
Amin, A.S.; Dessouki, H.A.; Khalil, K.M. Indirect spectrophotometric determination of piroxicam and tenoxicam through oxidation with potassium permanganate. Bull. Chem. Soc. Ethiop., 2010, 24, 121-126.
[14]
Nepote, A.J.; Vera-Candiotti, L.; Williner, M.R.; Damiani, P.C.; Olivieri, A.C. Development and validation of chemometrics-assisted spectrophotometry and micellar electrokinetic chromatography for the determination of four-component pharmaceuticals. Anal. Chim. Acta, 2003, 489, 77-84.
[15]
Pascual-Reguera, M.I.; Ayora-Canada, M.J.; Ruiz, M.S.C. Determination of piroxicam by solid-phase spectrophotometry in a continuous flow system. Eur. J. Pharm. Sci., 2002, 15, 179-184.
[16]
Bunaciu, A.A.; Fleschin, S. Aboul-Enein. H.Y. A new method for a quantitative determination of piroxicam in pharmaceutical formulations using FT-IR spectrometry. Antiinflamm. Antiallergy Agents Med. Chem., 2012, 11, 262-266.
[17]
Dixon, J.S.; Lowe, J.R. Rapid method for the determination of either piroxicam or tenoxicam in plasma using high-performance liquid chromatography. J. Chromatogr., 1984, 310, 455-459.
[18]
Cerretani, D.; Micheli, L.; Fiaschi, A.I.; Giorgi, G. Rapid and sensitive plasma, muscle and chromatography determination of piroxicam in rat skin by high-performance liquid. J. Chromatogr., 1993, 614, 103-108.
[19]
Avgerinos, A.; Axarlis, S.; Dragatsis, J.; Karidas, T.; Malamataris, S. Extractionless high-performance liquid chromatographic method for the simultaneous determination of piroxicam and 5′-hydroxypiroxicam in human plasma and urine. J. Chromatogr. B., 1995, 673, 142-146.
[20]
Dadashzadeh, S.; Vali, A.M.; Rezagholi, N. LC determination of piroxicam in human plasma. J. Pharm. Biomed. Anal., 2002, 28, 1201-1204.
[21]
Song, X.Y.; Shi, Y.P.; Chen, J. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the measurement of piroxicam and diclofenac combined with high performance liquid chromatography. Talanta, 2012, 100, 153-161.
[22]
Shirako, J.; Kawasaki, M.; Komine, K.; Kunisue, Y.; Terada, M.; Sasaki, C.; Irie, W.; Murakami, C.; Tonooka, K.; Tomobe, K.; Shinozuka, T. Simultaneous determination for oxicam non-steroidal anti-inflammatory drugs in human serum by liquid chromatography–tandem mass spectrometry. Forensic Sci. Int., 2013, 227, 100-102.
[23]
Dowling, G.; Malone, E. Analytical strategy for the confirmatory analysis of the non-steroidal anti-inflammatory drugs firocoxib, propyphenazone, ramifenazone and piroxicam in bovine plasma by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2011, 56(2), 359-365.
[24]
Kaynak, M.S.; Akgeyik, E.; Ates, M.; Celebier, M. Sahin. S. Development of HPLC methods for individual determination of 20 active pharmaceutical ingredients for ussing-chamber studies. Curr. Pharm. Anal., 2017, 13, 145-153.
[25]
Arancibia, J.A.; Escandar, G.M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60, 1113-1121.
[26]
Escandar, G.M.; Bystol, A.J.; Campiglia, A.D. Spectrofluorimetric method for the determination of piroxicam and pyridoxine. Anal. Chim. Acta, 2002, 466, 275-283.
[27]
Chen, Y.; Wu, S. Capillary zone electrophoresis for simultaneous determination of seven nonsteroidal anti-inflammatory drugs in pharmaceuticals. Anal. Bioanal. Chem., 2005, 381, 907-912.
[28]
Boone, C.M.; Douma, J.W.; Franke, J.P.; de Zeeuw, R.A.; Ensing, K. Screening for the presence of drugs in serum and urine using different separation modes of capillary electrophoresis. Forensic Sci. Int., 2001, 121, 89-96.
[29]
Dal, A.G.; Oktayer, Z.; Doğrukol-Ak, D. Validated method for the determination of piroxicam by capillary zone electrophoresis and its application to tablets. J. Anal. Methods Chem., 2014, 2014, 1-7.
[30]
Crecelius, A.; Clench, M.R.; Richards, D.S.; Parr, V. Quantitative determination of piroxicam by TLC-MALDI TOF MS. J. Pharm. Biomed. Anal., 2004, 35, 31-39.
[31]
Abo El-Maali, N.; Hassan, R.M. Electrooxidation and determination of the anti-inflammatory drugs piroxicam and tenoxicam at the carbon paste electrode. Bioelectroch. Bioener., 1990, 24, 155-163.
[32]
Paniagua, A.R.; Vazquez, M.D.; Tascon, M.L.; Sanchez-Batanero, P. Voltammetric determination of piroxicam after incorporation within carbon pastes. Electroanalysis, 1994, 6, 265-268.
[33]
Shaikh, T. uddin, S.; Talpur, F.N.; Khaskeli, A.R.; Agheem, M.H.; Shah, M.R.; Sherazi, T.H.; Siddiqui, S. Ultrasensitive determination of piroxicam at diflunisal-derived gold nanoparticle-modified glassy carbon electrode. J. Electron. Mater., 2017, 49, 5957-5966.
[34]
de Macêdo, I.Y.L.; Alecrim, M.F.; Garcia, L.F.; de Souza, A.R.; dos Santos, W.T.P.; de Souza Gil, E.; Cubillana-Aguilera, L.M.; Palacios-Santander, J.M. Differential pulse voltammetric determination of piroxicam on lanthanide ferric oxide nanoparticles-carbon paste modified electrode. Curr. Pharm. Anal., 2018, 14(3), 271-276.
[35]
Maleki, N.; Safavi, A.; Tajabadi, F. High-performance carbon composite electrode based on an ionic liquid as a binder. Anal. Chem., 2006, 78, 3820-3826.
[36]
Safavi, A.; Ahmadi, R.; Mahyari, F.A. Simultaneous electrochemical determination of L-cysteine and L-cysteine disulfide at carbon ionic liquid electrode. Amino Acids, 2014, 46, 1079-1085.
[37]
Opallo, M.; Lesniewski, A. A review on electrodes modified with ionic liquids. J. Electroanal. Chem., 2011, 656, 2-16.
[38]
Fisicaro, E.; Ghiozzi, A.; Pelizzetti, E.; Viscardi, G.; Quagliotto, P.L. Effect of the counterion on thermodynamic properties of aqueous micellar solutions of 1-(3,3,4,4,5,5,6,6,6-nonafluorohexyl) pyridinium halides. J. Colloid Interface Sci., 1996, 182, 549-557.
[39]
Kachoosangi, R.T.; Musameh, M.M.; Abu-Yousef, I.; Yousef, J.M.; Kanan, S.M.; Xiao, L.; Davies, S.G.; Russell, A.; Compton, R.G. Carbon nanotube-ionic liquid composite sensors and biosensors. Anal. Chem., 2009, 81, 435-442.
[40]
Aberoomand, A.P.; Farjami, F.; Saber, T.M.; Eslami, E. A carbon nanocomposite ionic liquid electrode based on montmorillonite nanoclay for sensitive voltammetric determination of thioridazine. Int. J. Electrochem. Sci., 2014, 9, 2535-2547.
[41]
Fasihi, F.; Farjami, F.; Shafiee, G.H. Highly sensitive determination of perphenazine on a carbon nanocomposite ionic liquid electrode. RSC Adv., 2015, 5, 95087-95095.
[42]
Radi, A.; El Ries, M.A.; El-Anwar, F.; El-Sherif, Z. Electrochemical oxidation of meloxicam and its determination in tablet dosage form. Anal. Lett., 2001, 35, 739-748.
[43]
Harrison, J.A.; Khan, Z.A. The oxidation of hydrazine on platinum in acid solution. J. Electroanal. Chem., 1970, 28, 131-138.
[44]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, second ed; Wiley: New York, 2001.