[1]
Cattaneo, F.; Guerra, G.; Parisi, M.; De Marinis, M.; Tafuri, D.; Cinelli, M.; Ammendola, R. Cell-surface receptors transactivation mediated by g protein-coupled receptors. Int. J. Mol. Sci., 2014, 15(11), 19700-19728. [http://dx.doi.org/10.3390/ijms151119700]. [PMID: 25356505].
[2]
Rivero-Müller A.; Jonas, K.C.; Hanyaloglu, A.C.; Huhtaniemi, I. Di/oligomerization of GPCRs-mechanisms and functional significance. Prog. Mol. Biol. Transl. Sci., 2013, 117, 163-185. [http://dx.doi.org/10.1016/B978-0-12-386931-9.00007-6]. [PMID: 23663969].
[3]
Rajagopal, S.; Shenoy, S.K. GPCR desensitization: Acute and prolonged phases. Cell. Signal., 2018, 41, 9-16. [PMID: 28137506].
[4]
Borroto-Escuela, D.O.; Brito, I.; Romero-Fernandez, W.; Di Palma, M.; Oflijan, J.; Skieterska, K.; Duchou, J.; Van Craenenbroeck, K.; Suárez-Boomgaard, D.; Rivera, A.; Guidolin, D.; Agnati, L.F.; Fuxe, K. The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int. J. Mol. Sci., 2014, 15(5), 8570-8590. [http://dx.doi.org/10.3390/ijms15058570]. [PMID: 24830558].
[5]
Farran, B. An update on the physiological and therapeutic relevance of GPCR oligomers. Pharmacol. Res., 2017, 117, 303-327. [http://dx.doi.org/10.1016/j.phrs.2017.01.008]. [PMID: 28087443].
[6]
Dalet, F.G.; Guadalupe, T.F.; María Del Carmen, C.H.; Humberto, G.A.; Antonio, S.U. Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes. Neural Regen. Res., 2013, 8(24), 2290-2302. [PMID: 25206539].
[7]
Burford, N.T.; Wehrman, T.; Bassoni, D.; O’Connell, J.; Banks, M.; Zhang, L.; Alt, A. Identification of selective agonists and positive allosteric modulators for µ- and δ-opioid receptors from a single high-throughput screen. J. Biomol. Screen., 2014, 19(9), 1255-1265. [http://dx.doi.org/10.1177/1087057114542975]. [PMID: 25047277].
[8]
Chen, J.F.; Eltzschig, H.K.; Fredholm, B.B. Adenosine receptors as drug targets--what are the challenges? Nat. Rev. Drug Discov., 2013, 12(4), 265-286. [http://dx.doi.org/10.1038/nrd3955]. [PMID: 23535933].
[9]
Ciruela, F.; Gómez-Soler, M.; Guidolin, D.; Borroto-Escuela, D.O.; Agnati, L.F.; Fuxe, K.; Fernández-Dueñas, V. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim. Biophys. Acta, 2011, 1808(5), 1245-1255. [http://dx.doi.org/10.1016/j.bbamem.2011.02.007]. [PMID: 21316336].
[10]
Nakata, H.; Suzuki, T.; Namba, K.; Oyanagi, K. Dimerization of G protein-coupled purinergic receptors: increasing the diversity of purinergic receptor signal responses and receptor functions. J. Recept. Signal Transduct. Res., 2010, 30(5), 337-346. [http://dx.doi.org/10.3109/10799893.2010.509729]. [PMID: 20843271].
[11]
Fuxe, K.; Borroto-Escuela, D.O.; Marcellino, D.; Romero-Fernandez, W.; Frankowska, M.; Guidolin, D.; Filip, M.; Ferraro, L.; Woods, A.S.; Tarakanov, A.; Ciruela, F.; Agnati, L.F.; Tanganelli, S. GPCR heteromers and their allosteric receptor-receptor interactions. Curr. Med. Chem., 2012, 19(3), 356-363. [http://dx.doi.org/10.2174/092986712803414259]. [PMID: 22335512].
[12]
Franco, R.; Casadó, V.; Cortés, A.; Ferrada, C.; Mallol, J.; Woods, A.; Lluis, C.; Canela, E.I.; Ferré, S. Basic concepts in G-protein-coupled receptor homo- and heterodimerization. Sci. World J., 2007, 7, 48-57. [http://dx.doi.org/10.1100/tsw.2007.197]. [PMID: 17982576].
[13]
Zezula, J.; Freissmuth, M. The A(2A)-adenosine receptor: a GPCR with unique features? Br. J. Pharmacol., 2008, 153(Suppl. 1), S184-S190. [http://dx.doi.org/10.1038/sj.bjp.0707674]. [PMID: 18246094].
[14]
Julio-Pieper, M.; Flor, P.J.; Dinan, T.G.; Cryan, J.F. Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol. Rev., 2011, 63(1), 35-58. [http://dx.doi.org/10.1124/pr.110.004036]. [PMID: 21228260].
[15]
Pin, J.P.; Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord., 2002, 1(3), 297-317. [http://dx.doi.org/10.2174/1568007023339328]. [PMID: 12769621].
[16]
Ribeiro, J.A.; Sebastião, A.M. Modulation and metamodulation of synapses by adenosine. Acta Physiol. (Oxf.), 2010, 199(2), 161-169. [http://dx.doi.org/10.1111/j.1748-1716.2010.02115.x]. [PMID: 20345418].
[17]
Cunha, R.A. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal., 2005, 1(2), 111-134. [http://dx.doi.org/10.1007/s11302-005-0649-1]. [PMID: 18404497].
[18]
Hettinger, B.D.; Lee, A.; Linden, J.; Rosin, D.L. Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J. Comp. Neurol., 2001, 431(3), 331-346. [http://dx.doi.org/10.1002/1096-9861(20010312)431:3<331:AID-CNE1074>3.0.CO;2-W]. [PMID: 11170009].
[19]
Rebola, N.; Canas, P.M.; Oliveira, C.R.; Cunha, R.A. Different synaptic and subsynaptic localization of adenosine A2A receptors in the hippocampus and striatum of the rat. Neuroscience, 2005, 132(4), 893-903. [http://dx.doi.org/10.1016/j.neuroscience.2005.01.014]. [PMID: 15857695].
[20]
Ciruela, F.; Casadó, V.; Rodrigues, R.J.; Luján, R.; Burgueño, J.; Canals, M.; Borycz, J.; Rebola, N.; Goldberg, S.R.; Mallol, J.; Cortés, A.; Canela, E.I.; López-Giménez, J.F.; Milligan, G.; Lluis, C.; Cunha, R.A.; Ferré, S.; Franco, R. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J. Neurosci., 2006, 26(7), 2080-2087. [http://dx.doi.org/10.1523/JNEUROSCI.3574-05.2006]. [PMID: 16481441].
[21]
Ferré, S.; Agnati, L.F.; Ciruela, F.; Lluis, C.; Woods, A.S.; Fuxe, K.; Franco, R. Neurotransmitter receptor heteromers and their integrative role in ‘local modules’: the striatal spine module. Brain Res. Brain Res. Rev., 2007, 55(1), 55-67. [http://dx.doi.org/10.1016/j.brainresrev.2007.01.007]. [PMID: 17408563].
[22]
Cabello, N.; Gandía, J.; Bertarelli, D.C.; Watanabe, M.; Lluís, C.; Franco, R.; Ferré, S.; Luján, R.; Ciruela, F. Metabotropic glutamate type 5, dopamine D2 and adenosine A2a receptors form higher-order oligomers in living cells. J. Neurochem., 2009, 109(5), 1497-1507. [http://dx.doi.org/10.1111/j.1471-4159.2009.06078.x]. [PMID: 19344374].
[23]
Bogenpohl, J.W.; Ritter, S.L.; Hall, R.A.; Smith, Y. Adenosine A2A receptor in the monkey basal ganglia: ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum. J. Comp. Neurol., 2012, 520(3), 570-589. [http://dx.doi.org/10.1002/cne.22751]. [PMID: 21858817].
[24]
Xie, J.D.; Chen, S.R.; Pan, H.L. Presynaptic mGluR5 receptor controls glutamatergic input through protein kinase C-NMDA receptors in paclitaxel-induced neuropathic pain. J. Biol. Chem., 2017, 292(50), 20644-20654. [http://dx.doi.org/10.1074/jbc.M117.818476]. [PMID: 29074619].
[25]
Bragina, L.; Bonifacino, T.; Bassi, S.; Milanese, M.; Bonanno, G.; Conti, F. Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals. Front. Cell. Neurosci., 2015, 9, 345. [http://dx.doi.org/10.3389/fncel.2015.00345]. [PMID: 26388733].
[26]
Sheffler, D.J.; Gregory, K.J.; Rook, J.M.; Conn, P.J. Allosteric modulation of metabotropic glutamate receptors. Adv. Pharmacol., 2011, 62, 37-77. [http://dx.doi.org/10.1016/B978-0-12-385952-5.00010-5]. [PMID: 21907906].
[27]
Rodrigues, R.J.; Alfaro, T.M.; Rebola, N.; Oliveira, C.R.; Cunha, R.A. Co-localization and functional interaction between adenosine A(2A) and metabotropic group 5 receptors in glutamatergic nerve terminals of the rat striatum. J. Neurochem., 2005, 92(3), 433-441. [http://dx.doi.org/10.1111/j.1471-4159.2004.02887.x]. [PMID: 15659214].
[28]
Ogata, T.; Nakamura, Y.; Schubert, P. Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2+- related A1/A2 adenosine receptor cooperation. Eur. J. Neurosci., 1996, 8(6), 1124-1131. [http://dx.doi.org/10.1111/j.1460-9568.1996.tb01280.x]. [PMID: 8752582].
[29]
Zhang, C.; Schmidt, J.T. Adenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission. J. Neurophysiol., 1999, 82(6), 2947-2955. [http://dx.doi.org/10.1152/jn.1999.82.6.2947]. [PMID: 10601431].
[30]
Ogata, T.; Nakamura, Y.; Tsuji, K.; Shibata, T.; Kataoka, K.; Schubert, P. Adenosine enhances intracellular Ca2+ mobilization in conjunction with metabotropic glutamate receptor activation by t-ACPD in cultured hippocampal astrocytes. Neurosci. Lett., 1994, 170(1), 5-8. [http://dx.doi.org/10.1016/0304-3940(94)90225-9]. [PMID: 8041512].
[31]
Toms, N.J.; Roberts, P.J. Group 1 mGlu receptors elevate [Ca2+]i in rat cultured cortical type 2 astrocytes: [Ca2+]i synergy with adenosine A1 receptors. Neuropharmacology, 1999, 38(10), 1511-1517. [http://dx.doi.org/10.1016/S0028-3908(99)00090-8]. [PMID: 10530813].
[32]
Ciruela, F.; Escriche, M.; Burgueno, J.; Angulo, E.; Casado, V.; Soloviev, M.M.; Canela, E.I.; Mallol, J.; Chan, W.Y.; Lluis, C.; McIlhinney, R.A.; Franco, R. Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J. Biol. Chem., 2001, 276(21), 18345-18351. [http://dx.doi.org/10.1074/jbc.M006960200]. [PMID: 11278325].
[33]
Kamikubo, Y.; Tabata, T.; Sakairi, H.; Hashimoto, Y.; Sakurai, T. Complex formation and functional interaction between adenosine A1 receptor and type-1 metabotropic glutamate receptor. J. Pharmacol. Sci., 2015, 128(3), 125-130. [http://dx.doi.org/10.1016/j.jphs.2015.06.002]. [PMID: 26154847].
[34]
Albasanz, J.L.; León, D.; Ruíz, M.A.; Fernández, M.; Martín, M. Adenosine A1 receptor agonist treatment up-regulates rat brain metabotropic glutamate receptors. Biochim. Biophys. Acta, 2002, 1593(1), 69-75. [http://dx.doi.org/10.1016/S0167-4889(02)00330-0]. [PMID: 12431785].
[35]
León, D.A.; Albasanz, J.L.; Castillo, C.A.; Iglesias, I.; Martín, M. Effect of chronic gestational treatment with the adenosine A1 receptor agonist R-phenylisopropyladenosine on metabotropic glutamate receptors/phospholipase C pathway in maternal and fetal brain. J. Neurosci. Res., 2008, 86(15), 3295-3305. [http://dx.doi.org/10.1002/jnr.21771]. [PMID: 18615645].
[36]
León, D.; Albasanz, J.L.; Castillo, C.A.; Martín, M. Effect of glutamate intake during gestation on adenosine A(1) receptor/adenylyl cyclase pathway in both maternal and fetal rat brain. J. Neurochem., 2008, 104(2), 435-445. [PMID: 17953672].
[37]
León, D.; Albasanz, J.L.; Ruíz, M.A.; Iglesias, I.; Martín, M. Effect of chronic gestational treatment with caffeine or theophylline on Group I metabotropic glutamate receptors in maternal and fetal brain. J. Neurochem., 2005, 94(2), 440-451. [http://dx.doi.org/10.1111/j.1471-4159.2005.03211.x]. [PMID: 15998294].
[38]
Tabata, T.; Kawakami, D.; Hashimoto, K.; Kassai, H.; Yoshida, T.; Hashimotodani, Y.; Fredholm, B.B.; Sekino, Y.; Aiba, A.; Kano, M. G protein-independent neuromodulatory action of adenosine on metabotropic glutamate signalling in mouse cerebellar Purkinje cells. J. Physiol., 2007, 581(Pt 2), 693-708. [http://dx.doi.org/10.1113/jphysiol.2007.129866]. [PMID: 17379632].
[39]
Kamikubo, Y.; Shimomura, T.; Fujita, Y.; Tabata, T.; Kashiyama, T.; Sakurai, T.; Fukurotani, K.; Kano, M. Functional cooperation of metabotropic adenosine and glutamate receptors regulates postsynaptic plasticity in the cerebellum. J. Neurosci., 2013, 33(47), 18661-18671. [http://dx.doi.org/10.1523/JNEUROSCI.5567-12.2013]. [PMID: 24259587].
[40]
Budd, D.C.; Nicholls, D.G. Protein kinase C-mediated suppression of the presynaptic adenosine A1 receptor by a facilitatory metabotropic glutamate receptor. J. Neurochem., 1995, 65(2), 615-621. [http://dx.doi.org/10.1046/j.1471-4159.1995.65020615.x]. [PMID: 7616216].
[41]
Shahraki, A.; Stone, T.W. Interactions between adenosine and metabotropic glutamate receptors in the rat hippocampal slice. Br. J. Pharmacol., 2003, 138(6), 1059-1068. [http://dx.doi.org/10.1038/sj.bjp.0705083]. [PMID: 12684261].
[42]
Díaz-Cabiale, Z.; Vivó, M.; Del Arco, A.; O’Connor, W.T.; Harte, M.K.; Müller, C.E.; Martínez, E.; Popoli, P.; Fuxe, K.; Ferré, S. Metabotropic glutamate mGlu5 receptor-mediated modulation of the ventral striopallidal GABA pathway in rats. Interactions with adenosine A(2A) and dopamine D(2) receptors. Neurosci. Lett., 2002, 324(2), 154-158. [http://dx.doi.org/10.1016/S0304-3940(02)00179-9]. [PMID: 11988350].
[43]
Nishi, A.; Liu, F.; Matsuyama, S.; Hamada, M.; Higashi, H.; Nairn, A.C.; Greengard, P. Metabotropic mGlu5 receptors regulate adenosine A2A receptor signaling. Proc. Natl. Acad. Sci. USA, 2003, 100(3), 1322-1327. [http://dx.doi.org/10.1073/pnas.0237126100]. [PMID: 12538871].
[44]
Ferré, S.; Karcz-Kubicha, M.; Hope, B.T.; Popoli, P.; Burgueño, J.; Gutiérrez, M.A.; Casadó, V.; Fuxe, K.; Goldberg, S.R.; Lluis, C.; Franco, R.; Ciruela, F. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11940-11945. [http://dx.doi.org/10.1073/pnas.172393799]. [PMID: 12189203].
[45]
Domenici, M.R.; Pepponi, R.; Martire, A.; Tebano, M.T.; Potenza, R.L.; Popoli, P. Permissive role of adenosine A2A receptors on metabotropic glutamate receptor 5 (mGluR5)-mediated effects in the striatum. J. Neurochem., 2004, 90(5), 1276-1279. [http://dx.doi.org/10.1111/j.1471-4159.2004.02607.x]. [PMID: 15312183].
[46]
Tebano, M.T.; Martire, A.; Pepponi, R.; Domenici, M.R.; Popoli, P. Is the functional interaction between adenosine A(2A) receptors and metabotropic glutamate 5 receptors a general mechanism in the brain? Differences and similarities between the striatum and the hippocampus. Purinergic Signal., 2006, 2(4), 619-625. [http://dx.doi.org/10.1007/s11302-006-9026-y]. [PMID: 18404464].
[47]
Beggiato, S.; Tomasini, M.C.; Borelli, A.C.; Borroto-Escuela, D.O.; Fuxe, K.; Antonelli, T.; Tanganelli, S.; Ferraro, L. Functional role of striatal A2A, D2, and mGlu5 receptor interactions in regulating striatopallidal GABA neuronal transmission. J. Neurochem., 2016, 138(2), 254-264. [http://dx.doi.org/10.1111/jnc.13652]. [PMID: 27127992].
[48]
Popoli, P.; Pèzzola, A.; Torvinen, M.; Reggio, R.; Pintor, A.; Scarchilli, L.; Fuxe, K.; Ferré, S. The selective mGlu(5) receptor agonist CHPG inhibits quinpirole-induced turning in 6-hydroxydopamine-lesioned rats and modulates the binding characteristics of dopamine D(2) receptors in the rat striatum: interactions with adenosine A(2a) receptors. Neuropsychopharmacology, 2001, 25(4), 505-513. [http://dx.doi.org/10.1016/S0893-133X(01)00256-1]. [PMID: 11557164].
[49]
Coccurello, R.; Breysse, N.; Amalric, M. Simultaneous blockade of adenosine A2A and metabotropic glutamate mGlu5 receptors increase their efficacy in reversing Parkinsonian deficits in rats. Neuropsychopharmacology, 2004, 29(8), 1451-1461. [http://dx.doi.org/10.1038/sj.npp.1300444]. [PMID: 15039773].
[50]
Kachroo, A.; Orlando, L.R.; Grandy, D.K.; Chen, J.F.; Young, A.B.; Schwarzschild, M.A. Interactions between metabotropic glutamate 5 and adenosine A2A receptors in normal and parkinsonian mice. J. Neurosci., 2005, 25(45), 10414-10419. [http://dx.doi.org/10.1523/JNEUROSCI.3660-05.2005]. [PMID: 16280580].
[51]
Brown, R.M.; Duncan, J.R.; Stagnitti, M.R.; Ledent, C.; Lawrence, A.J. mGlu5 and adenosine A2A receptor interactions regulate the conditioned effects of cocaine. Int. J. Neuropsychopharmacol., 2012, 15(7), 995-1001. [http://dx.doi.org/10.1017/S146114571100126X]. [PMID: 21816123].
[52]
Adams, C.L.; Cowen, M.S.; Short, J.L.; Lawrence, A.J. Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int. J. Neuropsychopharmacol., 2008, 11(2), 229-241. [http://dx.doi.org/10.1017/S1461145707007845]. [PMID: 17517168].
[53]
Wright, S.R.; Zanos, P.; Georgiou, P.; Yoo, J.H.; Ledent, C.; Hourani, S.M.; Kitchen, I.; Winsky-Sommerer, R.; Bailey, A. A critical role of striatal A2A R-mGlu5 R interactions in modulating the psychomotor and drug-seeking effects of methamphetamine. Addict. Biol., 2016, 21(4), 811-825. [http://dx.doi.org/10.1111/adb.12259]. [PMID: 25975203].
[54]
De Las Rivas, J.; Fontanillo, C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLOS Comput. Biol., 2010, 6(6), e1000807. [http://dx.doi.org/10.1371/journal.pcbi.1000807]. [PMID: 20589078].
[55]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504. [http://dx.doi.org/10.1101/gr.1239303]. [PMID: 14597658].
[56]
Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide protein data bank. Nat. Struct. Biol., 2003, 10(12), 980. [http://dx.doi.org/10.1038/nsb1203-980]. [PMID: 14634627].
[57]
Guo, H.; An, S.; Ward, R.; Yang, Y.; Liu, Y.; Guo, X.X.; Hao, Q.; Xu, T.R. Methods used to study the oligomeric structure of G-protein-coupled receptors. Biosci. Rep., 2017, 37(2), BSR20160547. [http://dx.doi.org/10.1042/BSR20160547]. [PMID: 28062602].
[58]
Lohse, M.J. Dimerization in GPCR mobility and signaling. Curr. Opin. Pharmacol., 2010, 10(1), 53-58. [http://dx.doi.org/10.1016/j.coph.2009.10.007]. [PMID: 19910252].
[59]
Sevastyanova, T.N.; Kammermeier, P.J. Cooperative signaling between homodimers of metabotropic glutamate receptors 1 and 5. Mol. Pharmacol., 2014, 86(5), 492-504. [http://dx.doi.org/10.1124/mol.114.093468]. [PMID: 25113912].
[60]
Schonenbach, N.S.; Rieth, M.D.; Han, S.; O’Malley, M.A. Adenosine A2a receptors form distinct oligomers in protein detergent complexes. FEBS Lett., 2016, 590(18), 3295-3306. [http://dx.doi.org/10.1002/1873-3468.12367]. [PMID: 27543907].
[61]
El Moustaine, D.; Granier, S.; Doumazane, E.; Scholler, P.; Rahmeh, R.; Bron, P.; Mouillac, B.; Banères, J.L.; Rondard, P.; Pin, J.P. Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proc. Natl. Acad. Sci. USA, 2012, 109(40), 16342-16347. [http://dx.doi.org/10.1073/pnas.1205838109]. [PMID: 22988116].
[62]
Maurel, D.; Comps-Agrar, L.; Brock, C.; Rives, M.L.; Bourrier, E.; Ayoub, M.A.; Bazin, H.; Tinel, N.; Durroux, T.; Prézeau, L.; Trinquet, E.; Pin, J.P. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat. Methods, 2008, 5(6), 561-567. [http://dx.doi.org/10.1038/nmeth.1213]. [PMID: 18488035].
[63]
Doumazane, E.; Scholler, P.; Zwier, J.M.; Trinquet, E.; Rondard, P.; Pin, J.P. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J., 2011, 25(1), 66-77. [http://dx.doi.org/10.1096/fj.10-163147]. [PMID: 20826542].
[64]
Levitz, J.; Habrian, C.; Bharill, S.; Fu, Z.; Vafabakhsh, R.; Isacoff, E.Y. Mechanism of assembly and cooperativity of homomeric and heteromeric metabotropic glutamate receptors. Neuron, 2016, 92(1), 143-159. [http://dx.doi.org/10.1016/j.neuron.2016.08.036]. [PMID: 27641494].
[65]
Xue, L.; Rovira, X.; Scholler, P.; Zhao, H.; Liu, J.; Pin, J.P.; Rondard, P. Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nat. Chem. Biol., 2015, 11(2), 134-140. [http://dx.doi.org/10.1038/nchembio.1711]. [PMID: 25503927].
[66]
Ciruela, F.; Fernández-Dueñas, V.; Llorente, J.; Borroto-Escuela, D.; Cuffí, M.L.; Carbonell, L.; Sánchez, S.; Agnati, L.F.; Fuxe, K.; Tasca, C.I. G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. Brain Res., 2012, 1476, 86-95. [http://dx.doi.org/10.1016/j.brainres.2012.04.056]. [PMID: 22575562].
[67]
Cabrera-Vera, T.M.; Vanhauwe, J.; Thomas, T.O.; Medkova, M.; Preininger, A.; Mazzoni, M.R.; Hamm, H.E. Insights into G protein structure, function, and regulation. Endocr. Rev., 2003, 24(6), 765-781. [http://dx.doi.org/10.1210/er.2000-0026]. [PMID: 14671004].
[68]
Gomeza, J.; Mary, S.; Brabet, I.; Parmentier, M.L.; Restituito, S.; Bockaert, J.; Pin, J.P. Coupling of metabotropic glutamate receptors 2 and 4 to G alpha 15, G alpha 16, and chimeric G alpha q/i proteins: characterization of new antagonists. Mol. Pharmacol., 1996, 50(4), 923-930. [PMID: 8863838].
[69]
Dhingra, A.; Lyubarsky, A.; Jiang, M.; Pugh, E.N., Jr; Birnbaumer, L.; Sterling, P.; Vardi, N. The light response of ON bipolar neurons requires G[alpha]o. J. Neurosci., 2000, 20(24), 9053-9058. [http://dx.doi.org/10.1523/JNEUROSCI.20-24-09053.2000]. [PMID: 11124982].
[70]
Waldhoer, M.; Wise, A.; Milligan, G.; Freissmuth, M.; Nanoff, C. Kinetics of ternary complex formation with fusion proteins composed of the A(1)-adenosine receptor and G protein alpha-subunits. J. Biol. Chem., 1999, 274(43), 30571-30579. [http://dx.doi.org/10.1074/jbc.274.43.30571]. [PMID: 10521440].
[71]
Soundararajan, M.; Willard, F.S.; Kimple, A.J.; Turnbull, A.P.; Ball, L.J.; Schoch, G.A.; Gileadi, C.; Fedorov, O.Y.; Dowler, E.F.; Higman, V.A.; Hutsell, S.Q.; Sundström, M.; Doyle, D.A.; Siderovski, D.P. Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proc. Natl. Acad. Sci. USA, 2008, 105(17), 6457-6462. [http://dx.doi.org/10.1073/pnas.0801508105]. [PMID: 18434541].
[72]
Snow, B.E.; Hall, R.A.; Krumins, A.M.; Brothers, G.M.; Bouchard, D.; Brothers, C.A.; Chung, S.; Mangion, J.; Gilman, A.G.; Lefkowitz, R.J.; Siderovski, D.P. GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain. J. Biol. Chem., 1998, 273(28), 17749-17755. [http://dx.doi.org/10.1074/jbc.273.28.17749]. [PMID: 9651375].
[73]
Roux, B.T.; Cottrell, G.S. G protein-coupled receptors: what a difference a ‘partner’ makes. Int. J. Mol. Sci., 2014, 15(1), 1112-1142. [http://dx.doi.org/10.3390/ijms15011112]. [PMID: 24441568].
[74]
Gracia, E.; Farré, D.; Cortés, A.; Ferrer-Costa, C.; Orozco, M.; Mallol, J.; Lluís, C.; Canela, E.I.; McCormick, P.J.; Franco, R.; Fanelli, F.; Casadó, V. The catalytic site structural gate of adenosine deaminase allosterically modulates ligand binding to adenosine receptors. FASEB J., 2013, 27(3), 1048-1061. [http://dx.doi.org/10.1096/fj.12-212621]. [PMID: 23193172].
[75]
Franco, R.; Casadó, V.; Ciruela, F.; Saura, C.; Mallol, J.; Canela, E.I.; Lluis, C. Cell surface adenosine deaminase: much more than an ectoenzyme. Prog. Neurobiol., 1997, 52(4), 283-294. [http://dx.doi.org/10.1016/S0301-0082(97)00013-0]. [PMID: 9247966].
[76]
Torvinen, M.; Ginés, S.; Hillion, J.; Latini, S.; Canals, M.; Ciruela, F.; Bordoni, F.; Staines, W.; Pedata, F.; Agnati, L.F.; Lluis, C.; Franco, R.; Ferré, S.; Fuxe, K. Interactions among adenosine deaminase, adenosine A(1) receptors and dopamine D(1) receptors in stably cotransfected fibroblast cells and neurons. Neuroscience, 2002, 113(3), 709-719. [http://dx.doi.org/10.1016/S0306-4522(02)00058-1]. [PMID: 12150791].
[77]
Herrera, C.; Casadó, V.; Ciruela, F.; Schofield, P.; Mallol, J.; Lluis, C.; Franco, R. Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol. Pharmacol., 2001, 59(1), 127-134. [http://dx.doi.org/10.1124/mol.59.1.127]. [PMID: 11125033].
[78]
Málaga-Diéguez, L.; Yang, Q.; Bauer, J.; Pankevych, H.; Freissmuth, M.; Nanoff, C. Pharmacochaperoning of the A1 adenosine receptor is contingent on the endoplasmic reticulum. Mol. Pharmacol., 2010, 77(6), 940-952. [http://dx.doi.org/10.1124/mol.110.063511]. [PMID: 20219842].
[79]
Brakeman, P.R.; Lanahan, A.A.; O’Brien, R.; Roche, K.; Barnes, C.A.; Huganir, R.L.; Worley, P.F. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature, 1997, 386(6622), 284-288. [http://dx.doi.org/10.1038/386284a0]. [PMID: 9069287].
[80]
Ango, F.; Prézeau, L.; Muller, T.; Tu, J.C.; Xiao, B.; Worley, P.F.; Pin, J.P.; Bockaert, J.; Fagni, L. Agonist-independent activation of metabotropic glutamate receptors by the intracellular protein Homer. Nature, 2001, 411(6840), 962-965. [http://dx.doi.org/10.1038/35082096]. [PMID: 11418862].
[81]
Ango, F.; Robbe, D.; Tu, J.C.; Xiao, B.; Worley, P.F.; Pin, J.P.; Bockaert, J.; Fagni, L. Homer-dependent cell surface expression of metabotropic glutamate receptor type 5 in neurons. Mol. Cell. Neurosci., 2002, 20(2), 323-329. [http://dx.doi.org/10.1006/mcne.2002.1100]. [PMID: 12093163].
[82]
Paquet, M.; Asay, M.J.; Fam, S.R.; Inuzuka, H.; Castleberry, A.M.; Oller, H.; Smith, Y.; Yun, C.C.; Traynelis, S.F.; Hall, R.A. The PDZ scaffold NHERF-2 interacts with mGluR5 and regulates receptor activity. J. Biol. Chem., 2006, 281(40), 29949-29961. [http://dx.doi.org/10.1074/jbc.M602262200]. [PMID: 16891310].
[83]
Ritter-Makinson, S.L.; Paquet, M.; Bogenpohl, J.W.; Rodin, R.E.; Chris Yun, C.; Weinman, E.J.; Smith, Y.; Hall, R.A. Group II metabotropic glutamate receptor interactions with NHERF scaffold proteins: Implications for receptor localization in brain. Neuroscience, 2017, 353, 58-75. [http://dx.doi.org/10.1016/j.neuroscience.2017.03.060]. [PMID: 28392297].
[84]
Enz, R. The actin-binding protein Filamin-A interacts with the metabotropic glutamate receptor type 7. FEBS Lett., 2002, 514(2-3), 184-188. [http://dx.doi.org/10.1016/S0014-5793(02)02361-X]. [PMID: 11943148].
[85]
Canela, L.; Luján, R.; Lluís, C.; Burgueño, J.; Mallol, J.; Canela, E.I.; Franco, R.; Ciruela, F. The neuronal Ca(2+) -binding protein 2 (NECAB2) interacts with the adenosine A(2A) receptor and modulates the cell surface expression and function of the receptor. Mol. Cell. Neurosci., 2007, 36(1), 1-12. [http://dx.doi.org/10.1016/j.mcn.2007.05.007]. [PMID: 17689978].
[86]
Canela, L.; Fernández-Dueñas, V.; Albergaria, C.; Watanabe, M.; Lluís, C.; Mallol, J.; Canela, E.I.; Franco, R.; Luján, R.; Ciruela, F. The association of metabotropic glutamate receptor type 5 with the neuronal Ca2+-binding protein 2 modulates receptor function. J. Neurochem., 2009, 111(2), 555-567. [http://dx.doi.org/10.1111/j.1471-4159.2009.06348.x]. [PMID: 19694902].
[87]
Uematsu, K.; Heiman, M.; Zelenina, M.; Padovan, J.; Chait, B.T.; Aperia, A.; Nishi, A.; Greengard, P. Protein kinase A directly phosphorylates metabotropic glutamate receptor 5 to modulate its function. J. Neurochem., 2015, 132(6), 677-686. [http://dx.doi.org/10.1111/jnc.13038]. [PMID: 25639954].
[88]
Palmer, T.M.; Stiles, G.L. Stimulation of A(2A) adenosine receptor phosphorylation by protein kinase C activation: evidence for regulation by multiple protein kinase C isoforms. Biochemistry, 1999, 38(45), 14833-14842. [http://dx.doi.org/10.1021/bi990825p]. [PMID: 10555965].
[89]
Cartmell, J.; Goepfert, F.; Knoflach, F.; Pink, J.R.; Bleuel, Z.; Richards, J.G.; Schaffhauser, H.; Kemp, J.A.; Wichmann, J.; Mutel, V. Effect of metabotropic glutamate receptor activation on receptor-mediated cyclic AMP responses in primary cultures of rat striatal neurones. Brain Res., 1998, 791(1-2), 191-199. [http://dx.doi.org/10.1016/S0006-8993(98)00094-8]. [PMID: 9593890].
[90]
de Mendonça, A.; Ribeiro, J.A. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus. Br. J. Pharmacol., 1997, 121(8), 1541-1548. [http://dx.doi.org/10.1038/sj.bjp.0701291]. [PMID: 9283686].
[91]
Macek, T.A.; Schaffhauser, H.; Conn, P.J. Protein kinase C and A3 adenosine receptor activation inhibit presynaptic metabotropic glutamate receptor (mGluR) function and uncouple mGluRs from GTP-binding proteins. J. Neurosci., 1998, 18(16), 6138-6146. [http://dx.doi.org/10.1523/JNEUROSCI.18-16-06138.1998]. [PMID: 9698308].
[92]
Minakami, R.; Jinnai, N.; Sugiyama, H. Phosphorylation and calmodulin binding of the metabotropic glutamate receptor subtype 5 (mGluR5) are antagonistic in vitro. J. Biol. Chem., 1997, 272(32), 20291-20298. [http://dx.doi.org/10.1074/jbc.272.32.20291]. [PMID: 9242710].
[93]
Saugstad, J.A.; Yang, S.; Pohl, J.; Hall, R.A.; Conn, P.J. Interaction between metabotropic glutamate receptor 7 and alpha tubulin. J. Neurochem., 2002, 80(6), 980-988. [http://dx.doi.org/10.1046/j.0022-3042.2002.00778.x]. [PMID: 11953448].
[94]
Lidwell, K.; Dillon, J.; Sihota, A.; O’Connor, V.; Pilkington, B. Determining calmodulin binding to metabotropic glutamate receptors with distinct protein-interaction methods. Biochem. Soc. Trans., 2004, 32(Pt 5), 868-870. [http://dx.doi.org/10.1042/BST0320868]. [PMID: 15494036].
[95]
El Far, O.; Betz, H. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes. Biochem. J., 2002, 365(Pt 2), 329-336. [http://dx.doi.org/10.1042/bj20020481]. [PMID: 12006104].
[96]
Ko, S.J.; Isozaki, K.; Kim, I.; Lee, J.H.; Cho, H.J.; Sohn, S.Y.; Oh, S.R.; Park, S.; Kim, D.G.; Kim, C.H.; Roche, K.W. PKC phosphorylation regulates mGluR5 trafficking by enhancing binding of Siah-1A. J. Neurosci., 2012, 32(46), 16391-16401. [http://dx.doi.org/10.1523/JNEUROSCI.1964-12.2012]. [PMID: 23152621].
[97]
Nakajima, Y.; Yamamoto, T.; Nakayama, T.; Nakanishi, S. A relationship between protein kinase C phosphorylation and calmodulin binding to the metabotropic glutamate receptor subtype 7. J. Biol. Chem., 1999, 274(39), 27573-27577. [http://dx.doi.org/10.1074/jbc.274.39.27573]. [PMID: 10488094].
[98]
El Far, O.; Bofill-Cardona, E.; Airas, J.M.; O’Connor, V.; Boehm, S.; Freissmuth, M.; Nanoff, C.; Betz, H. Mapping of calmodulin and Gbetagamma binding domains within the C-terminal region of the metabotropic glutamate receptor 7A. J. Biol. Chem., 2001, 276(33), 30662-30669. [http://dx.doi.org/10.1074/jbc.M102573200]. [PMID: 11395497].
[99]
Sorensen, S.D.; Macek, T.A.; Cai, Z.; Saugstad, J.A.; Conn, P.J. Dissociation of protein kinase-mediated regulation of metabotropic glutamate receptor 7 (mGluR7) interactions with calmodulin and regulation of mGluR7 function. Mol. Pharmacol., 2002, 61(6), 1303-1312. [http://dx.doi.org/10.1124/mol.61.6.1303]. [PMID: 12021391].
[100]
Navarro, G.; Aymerich, M.S.; Marcellino, D.; Cortés, A.; Casadó, V.; Mallol, J.; Canela, E.I.; Agnati, L.; Woods, A.S.; Fuxe, K.; Lluís, C.; Lanciego, J.L.; Ferré, S.; Franco, R. Interactions between calmodulin, adenosine A2A, and dopamine D2 receptors. J. Biol. Chem., 2009, 284(41), 28058-28068. [http://dx.doi.org/10.1074/jbc.M109.034231]. [PMID: 19632986].
[101]
Kitano, J.; Kimura, K.; Yamazaki, Y.; Soda, T.; Shigemoto, R.; Nakajima, Y.; Nakanishi, S. Tamalin, a PDZ domain-containing protein, links a protein complex formation of group 1 metabotropic glutamate receptors and the guanine nucleotide exchange factor cytohesins. J. Neurosci., 2002, 22(4), 1280-1289. [http://dx.doi.org/10.1523/JNEUROSCI.22-04-01280.2002]. [PMID: 11850456].
[102]
Gsandtner, I.; Charalambous, C.; Stefan, E.; Ogris, E.; Freissmuth, M.; Zezula, J. Heterotrimeric G protein-independent signaling of a G protein-coupled receptor. Direct binding of ARNO/cytohesin-2 to the carboxyl terminus of the A2A adenosine receptor is necessary for sustained activation of the ERK/MAP kinase pathway. J. Biol. Chem., 2005, 280(36), 31898-31905. [http://dx.doi.org/10.1074/jbc.M506515200]. [PMID: 16027149].
[103]
Francesconi, A.; Duvoisin, R.M. Opposing effects of protein kinase C and protein kinase A on metabotropic glutamate receptor signaling: selective desensitization of the inositol trisphosphate/Ca2+ pathway by phosphorylation of the receptor-G protein-coupling domain. Proc. Natl. Acad. Sci. USA, 2000, 97(11), 6185-6190. [http://dx.doi.org/10.1073/pnas.97.11.6185]. [PMID: 10823959].
[104]
Dev, K.K.; Nakajima, Y.; Kitano, J.; Braithwaite, S.P.; Henley, J.M.; Nakanishi, S. PICK1 interacts with and regulates PKC phosphorylation of mGLUR7. J. Neurosci., 2000, 20(19), 7252-7257. [http://dx.doi.org/10.1523/JNEUROSCI.20-19-07252.2000]. [PMID: 11007882].
[105]
Dev, K.K.; Nakanishi, S.; Henley, J.M. The PDZ domain of PICK1 differentially accepts protein kinase C-alpha and GluR2 as interacting ligands. J. Biol. Chem., 2004, 279(40), 41393-41397. [http://dx.doi.org/10.1074/jbc.M404499200]. [PMID: 15247289].
[106]
Hirbec, H.; Perestenko, O.; Nishimune, A.; Meyer, G.; Nakanishi, S.; Henley, J.M.; Dev, K.K. The PDZ proteins PICK1, GRIP, and syntenin bind multiple glutamate receptor subtypes. Analysis of PDZ binding motifs. J. Biol. Chem., 2002, 277(18), 15221-15224. [http://dx.doi.org/10.1074/jbc.C200112200]. [PMID: 11891216].
[107]
Boudin, H.; Doan, A.; Xia, J.; Shigemoto, R.; Huganir, R.L.; Worley, P.; Craig, A.M. Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron, 2000, 28(2), 485-497. [http://dx.doi.org/10.1016/S0896-6273(00)00127-6]. [PMID: 11144358].
[108]
Thompson, J.W.; Nagel, J.; Hoving, S.; Gerrits, B.; Bauer, A.; Thomas, J.R.; Kirschner, M.W.; Schirle, M.; Luchansky, S.J. Quantitative Lys-ϵ-Gly-Gly (diGly) proteomics coupled with inducible RNAi reveals ubiquitin-mediated proteolysis of DNA damage-inducible transcript 4 (DDIT4) by the E3 ligase HUWE1. J. Biol. Chem., 2014, 289(42), 28942-28955. [http://dx.doi.org/10.1074/jbc.M114.573352]. [PMID: 25147182].
[109]
Wagner, S.A.; Beli, P.; Weinert, B.T.; Nielsen, M.L.; Cox, J.; Mann, M.; Choudhary, C. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell. Proteomics, 2011, 10(10), M111-M013284.
[110]
Danielsen, J.M.; Sylvestersen, K.B.; Bekker-Jensen, S.; Szklarczyk, D.; Poulsen, J.W.; Horn, H.; Jensen, L.J.; Mailand, N.; Nielsen, M.L. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol. Cell. Proteomics, 2011, 10(3), M110-M003590. [http://dx.doi.org/10.1074/mcp.M110.003590].
[111]
Dores, M.R.; Trejo, J. Atypical regulation of G protein-coupled receptor intracellular trafficking by ubiquitination. Curr. Opin. Cell Biol., 2014, 27, 44-50. [http://dx.doi.org/10.1016/j.ceb.2013.11.004]. [PMID: 24680429].
[112]
Whistler, J.L.; Enquist, J.; Marley, A.; Fong, J.; Gladher, F.; Tsuruda, P.; Murray, S.R.; Von Zastrow, M. Modulation of postendocytic sorting of G protein-coupled receptors. Science, 2002, 297(5581), 615-620. [http://dx.doi.org/10.1126/science.1073308]. [PMID: 12142540].
[113]
Heydorn, A.; Søndergaard, B.P.; Ersbøll, B.; Holst, B.; Nielsen, F.C.; Haft, C.R.; Whistler, J.; Schwartz, T.W. A library of 7TM receptor C-terminal tails. Interactions with the proposed post-endocytic sorting proteins ERM-binding phosphoprotein 50 (EBP50), N-ethylmaleimide-sensitive factor (NSF), sorting nexin 1 (SNX1), and G protein-coupled receptor-associated sorting protein (GASP). J. Biol. Chem., 2004, 279(52), 54291-54303. [http://dx.doi.org/10.1074/jbc.M406169200]. [PMID: 15452121].
[114]
Schonenbach, N.S.; Hussain, S.; O’Malley, M.A. Structure and function of G protein-coupled receptor oligomers: implications for drug discovery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2015, 7(3), 408-427. [http://dx.doi.org/10.1002/wnan.1319]. [PMID: 25521522].
[115]
Ferré, S.; Casadó, V.; Devi, L.A.; Filizola, M.; Jockers, R.; Lohse, M.J.; Milligan, G.; Pin, J.P.; Guitart, X. G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol. Rev., 2014, 66(2), 413-434. [http://dx.doi.org/10.1124/pr.113.008052]. [PMID: 24515647].
[116]
Gracia, E.; Moreno, E.; Cortés, A.; Lluís, C.; Mallol, J.; McCormick, P.J.; Canela, E.I.; Casadó, V. Homodimerization of adenosine A1 receptors in brain cortex explains the biphasic effects of caffeine. Neuropharmacology, 2013, 71, 56-69. [http://dx.doi.org/10.1016/j.neuropharm.2013.03.005]. [PMID: 23523559].
[117]
Ferre, S.; von Euler, G.; Johansson, B.; Fredholm, B.B.; Fuxe, K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc. Natl. Acad. Sci. USA, 1991, 88(16), 7238-7241. [http://dx.doi.org/10.1073/pnas.88.16.7238]. [PMID: 1678519].
[118]
Kühhorn, J.; Hübner, H.; Gmeiner, P. Bivalent dopamine D2 receptor ligands: synthesis and binding properties. J. Med. Chem., 2011, 54(13), 4896-4903. [http://dx.doi.org/10.1021/jm2004859]. [PMID: 21599022].
[119]
Borroto-Escuela, D.O.; Pintsuk, J.; Schäfer, T.; Friedland, K.; Ferraro, L.; Tanganelli, S.; Liu, F.; Fuxe, K. Multiple D2 heteroreceptor complexes: new targets for treatment of schizophrenia. Ther. Adv. Psychopharmacol., 2016, 6(2), 77-94. [http://dx.doi.org/10.1177/2045125316637570]. [PMID: 27141290].
[120]
Shen, J.; Zhang, L.; Song, W.L.; Meng, T.; Wang, X.; Chen, L.; Feng, L.Y.; Xu, Y.C.; Shen, J.K. Design, synthesis and biological evaluation of bivalent ligands against A(1)-D(1) receptor heteromers. Acta Pharmacol. Sin., 2013, 34(3), 441-452. [http://dx.doi.org/10.1038/aps.2012.151]. [PMID: 23334237].
[121]
Soriano, A.; Ventura, R.; Molero, A.; Hoen, R.; Casadó, V.; Cortés, A.; Fanelli, F.; Albericio, F.; Lluís, C.; Franco, R.; Royo, M. Adenosine A2A receptor-antagonist/dopamine D2 receptor-agonist bivalent ligands as pharmacological tools to detect A2A-D2 receptor heteromers. J. Med. Chem., 2009, 52(18), 5590-5602. [http://dx.doi.org/10.1021/jm900298c]. [PMID: 19711895].
[122]
Peterson, C.D.; Kitto, K.F.; Akgün, E.; Lunzer, M.M.; Riedl, M.S.; Vulchanova, L.; Wilcox, G.L.; Portoghese, P.S.; Fairbanks, C.A. Bivalent ligand that activates mu opioid receptor and antagonizes mGluR5 receptor reduces neuropathic pain in mice. Pain, 2017, 158(12), 2431-2441. [http://dx.doi.org/10.1097/j.pain.0000000000001050]. [PMID: 28891868].
[123]
Hasbi, A.; O’Dowd, B.F.; George, S.R. Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Mol. Brain, 2011, 4, 26. [http://dx.doi.org/10.1186/1756-6606-4-26]. [PMID: 21663703].
[124]
Bhattacharyya, S. Inside story of Group I Metabotropic Glutamate Receptors (mGluRs) Int. J. Biochem. Cell Biol., 2016, 77 (Pt B),
205-12.
[125]
Cordomí, A.; Navarro, G.; Aymerich, M.S.; Franco, R. Structures for G-protein-coupled receptor tetramers in complex with G Proteins. Trends Biochem. Sci., 2015, 40(10), 548-551. [http://dx.doi.org/10.1016/j.tibs.2015.07.007]. [PMID: 26410595].
[126]
Navarro, G.; Cordomí, A.; Zelman-Femiak, M.; Brugarolas, M.; Moreno, E.; Aguinaga, D.; Perez-Benito, L.; Cortés, A.; Casadó, V.; Mallol, J.; Canela, E.I.; Lluís, C.; Pardo, L.; García-Sáez, A.J.; McCormick, P.J.; Franco, R. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol., 2016, 14, 26. [http://dx.doi.org/10.1186/s12915-016-0247-4]. [PMID: 27048449].