[1]
Sattell, D.B.; Cordova, D.; Cheek, T.R. Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invert. Neurosci., 2008, 8, 107-119.
[2]
Amador, F.J.; Stathopulos, P.B.; Enomoto, M.; Ikura, M. Ryanodine receptor calcium release channels: Lessons from structure-function studies. FEBS J., 2013, 280, 5456-5470.
[3]
Lanner, J.T.; Georgiou, D.K.; Joshi, A.D.; Hamilton, S.L. Ryanodine receptors: Structure, expression, molecular details, and function in calcium release. CSH. Perspect. Biol, 2010, 2, a003996.
[4]
Jefferies, P.R.; Blumenkopf, T.A.; Gengo, P.J.; Cole, L.C.; Casida, J.E. Ryanodine action at calcium release channels. 1. importance of hydroxyl substituents. J. Med. Chem., 1996, 39, 2331-2338.
[5]
Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem., 2009, 17, 4127-4133.
[6]
Schwarz, T.; Snow, T.A.; Santee, C.; Mulligan, C.C.; Class, T.J.; Wadsley, M.; Nanita, S.C. QuEChERS multiresidue method validation and mass spectrometric assessment for the novel anthranilic diamide insecticides chlorantraniliprole and cyantraniliprole. J. Agric. Food Chem., 2011, 59, 814-821.
[7]
Clark, D.A.; Lahm, G.P.; Smith, B.K.; Barry, J.D.; Clagg, D.G. Synthesis of insecticidal fluorinated anthranilic diamides. Bioorg. Med. Chem., 2008, 16, 3163-3170.
[8]
Troczka, B.J.; Williamson, M.S.; Field, L.M.; Davies, T.G.E. Rapid selection for resistance to diamide insecticides in Plutella xylostella via specific amino acid polymorphisms in the ryanodine receptor. Neurotoxicology, 2017, 60, 224-233.
[9]
Troczka, B.J.; Zimmer, C.T.; Elias, J.; Schorn, C.; Bass, C.; Davies, T.G.; Field, L.M.; Williamson, S.M.; Slater, R.; Nauen, R. Resistance to diamide insecticides in diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is associated with a mutation in the membrane-spanning domain of the ryanodine receptor. Insect Biochem. Mol. Biol., 2012, 42, 873-880.
[10]
Feng, M.L.; Li, Y.; Zhu, H.; Zhao, L.; Xi, B.B.; Ni, J. Synthesis, insecticidal activity, and structure-activity relationship of trifluoromethyl-containing phthalic acid diamide structures. J. Agric. Food Chem., 2010, 58, 10999-11006.
[11]
Gaburjakova, M.; Bal, N.C.; Gaburjakova, J.; Periasamy, M. Functional interaction between calsequestrin and ryanodine receptor in the heart. Cell. Mol. Life Sci., 2012, 70, 2935-2945.
[12]
Feng, Q.; Liu, Z.L.; Xiong, L.; Wang, M.; Li, Y.; Li, Z. Synthesis and insecticidal activities of novel anthranilic diamides containing modified N-pyridylpyrazoles. J. Agric. Food Chem., 2010, 58, 12327-12336.
[13]
Zhang, J.; Xu, J.; Wang, B.; Li, Y.; Xiong, L.X.; Li, Y.; Xiong, L.; Li, Y.; Ma, Y.; Li, Z. Synthesis and insecticidal activities of novel anthranilic diamides containing acylthiourea and acylurea. J. Agric. Food Chem., 2012, 60, 7565-7572.
[14]
Kaufmann, A.; Kraft, B.; Michaleksauberer, A.; Weigl, L. Novel ryanodine receptor mutation that may cause malignant hyperthermia. Anesthesiology, 2008, 109, 457-464.
[15]
Xin, W.; Soder, R.P.; Cheng, Q.; Rovner, E.S.; Petkov, G.V. Selective inhibition of phosphodiesterase 1 relaxes urinary bladder smooth muscle: role for ryanodine receptor-mediated BK channel activation. Am. J. Physiol. Cell Physiol., 2012, 303, 1079-1089.
[16]
Choia, R.H.; Koeniga, X.; Launikonis, B.A. Dantrolene requires Mg2+ to arrest malignant hyperthermia. Proc. Natl. Acad. Sci. USA, 2017, 114, 4576-4578.
[17]
Lunde, P.K.; Sejersted, O.M. Ryanodine binding sites measured in small skeletal muscle biopsies. Scand. J. Clin. Lab. Invest., 1997, 57, 569-580.
[18]
Cui, L.; Rui, C.; Yang, D.; Wang, Z.; Yuan, H. De novo transcriptome and expression profile analyses of the Asian corn borer (Ostrinia furnacalis) reveals relevant flubendiamide response genes. BMC Genomics, 2017, 18, 20.
[19]
Zhu, B.; Li, X.; Liu, Y.; Gao, X.; Liang, P. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). Sci. Rep., 2017, 7, 40713.
[20]
Li, X.; Guo, L.; Zhou, X.; Gao, X.; Liang, P. miRNAs regulated overexpression of ryanodine receptor is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Sci. Rep., 2015, 5, 14095.
[21]
Zhu, B.; Xu, M.; Shi, H.; Gao, X.; Liang, P. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.). BMC Genomics, 2017, 18, 380.
[22]
Zalk, R.; Lehnart, S.E.; Marks, A.R. Modulation of the ryanodine receptor and intracellular calcium. Annu. Rev. Biochem., 2007, 76, 367-385.
[23]
Masuda, K.; Koshimizu, M.; Nagatomo, M.; Inoue, M. Asymmetric total synthesis of (+)-ryanodol and (+)-ryanodine. Chem. Eur. J., 2016, 22, 230-236.
[24]
Kato, K.; Kiyonaka, S.; Sawaguchi, Y.; Tohnishi, M.; Masaki, T.; Yasokawa, N.; Mizuno, Y.; Mori, E.; Inoue, K.; Hamachi, I.; Takeshima, H.; Mori, Y. Molecular characterization of flubendiamide sensitivity in the lepidopterous ryanodine receptor Ca2+ release channel. Biochemistry, 2009, 48, 10342-10352.
[25]
Butandaochoa, A.; Hojer, G.; Moralestlalpan, V.; Diazmunoz, M. Recognition and activation of ryanodine receptors by purines. Curr. Med. Chem., 2006, 13, 647-657.
[26]
Roditakis, E.; Steinbach, D.; Moritz, G.; Vasakis, E.; Stavrakaki, M.; Ilias, A.; García-Vidal, L.; Martínez-Aguirre, M.D.; Bielza, P.; Morou, E.; Silva, J.E.; Silva, W.M.; Siqueira, H.A.; Iqbal, S.; Troczka, B.J.; Williamson, M.S.; Bass, C.; Tsagkarakou, A.; Vontas, J.; Nauen, R. Ryanodine receptor point mutations confer diamide insecticide resistance in tomato leafminer, Tuta absoluta. Insect Biochem. Mol. Biol., 2016, 80, 11-20.
[27]
Guo, L.; Liang, P.; Zhou, X.; Gao, X. Novel mutations and mutation combinations of ryanodine receptor in a chlorantraniliprole resistant population of Plutella xylostella (L.). Sci. Rep., 2014, 4, 6924.
[28]
Yan, H.; Xue, C.; Li, G.; Zhao, X.; Che, X.; Wang, L. Flubendiamide resistance and Bi-PASA detection of ryanodine receptor G4946E mutation in the diamondback moth (Plutella xylostella L.). Pestic. Biochem. Physiol., 2014, 115, 73-77.
[29]
Fill, M.; Copello, J.A. Ryanodine receptor calcium release channels. Physiol. Rev., 2002, 82, 893-922.
[30]
Leeb, T.; Brenig, B. Ryanodine receptors and their role in genetic diseases. Int. J. Mol. Med., 1998, 2, 293-593.
[31]
Guerrerohernandez, A.; Avila, G.R.; Rueda, A. Ryanodine receptors as leak channels. Eur. J. Pharmacol., 2014, 739, 26-38.
[32]
Scoote, M.; Williams, A.J. The cardiac ryanodine receptor (calcium release channel): Emerging role in heart failure and arrhythmia pathogenesis. Cardiovasc. Res., 2002, 56, 359-372.
[33]
Yan, Z.; Bai, X.; Yan, C.; Wu, J.; Li, Z.; Xie, T.; Peng, W.; Yin, C.; Li, X.; Scheres, S.H.W.; Shi, Y.; Yan, N. Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 2015, 517, 50-55.
[34]
Bai, X.; Yan, Z.; Wu, J.; Li, Z.; Yan, N. The central domain of RyR1 is the transducer for long-range allosteric gating of channel opening. Cell Res., 2016, 26, 995-1006.
[35]
Peng, W.; Shen, H.; Wu, J.; Guo, W.; Pan, X.; Wang, R.; Chen, S.R.W.; Yan, N. Structural basis for the gating mechanism of the type 2 ryanodine receptor RyR2. Science, 2016, 26, 995-1006.
[36]
Wan, P.; Guo, W.; Yang, Y.; Lu, F.; Lu, W.; Li, G. RNAi suppression of the ryanodine receptor gene results in decreased susceptibility to chlorantraniliprole in Colorado potato beetle Leptinotarsa decemlineata. J. Insect Physiol., 2014, 63, 48-55.
[37]
Liu, G.; Ju, X.; Cheng, J.; Liu, Z. 3D-QSAR studies of insecticidal anthranilic diamides as ryanodine receptor activators using CoMFA, CoMSIA and DISCOtech. Chemosphere, 2010, 78, 300-306.
[38]
Huang, L.; Lu, M.; Han, G.; Du, Y.; Wang, J. Sublethal effects of chlorantraniliprole on development, reproduction and vitellogenin gene (CsVg) expression in the rice stem borer, Chilo suppressalis. Pest Manag. Sci., 2016, 72, 2280-2286.
[39]
Guo, L.; Tang, B.; Dong, W.; Liang, P.; Gao, X. Cloning, characterisation and expression profiling of the cDNA encoding the ryanodine receptor in diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae). Pest Manag. Sci., 2012, 68, 1605-1614.
[40]
Mackrill, J.J. Ryanodine receptor calcium channels and their partners as drug targets. Biochem. Pharmacol., 2010, 79, 1535-1543.
[41]
Prestle, J.; Quinn, F.R.; Smith, G.L. Ca2+ handling proteins and heart failure: Novel molecular targets? Curr. Med. Chem., 2003, 10, 967-981.
[42]
Wehrens, X.H.; Lehnart, S.E.; Reiken, S.; Vest, J.A.; Wronska, A.; Marks, A.R. Ryanodine receptor/calcium release channel PKA phosphorylation: A critical mediator of heart failure progression. Proc. Natl. Acad. Sci. USA, 2006, 103, 511-518.
[43]
Selby, T.P.; Lahm, G.P.; Stevenson, T.M.; Hughes, K.A.; Cordova, D.; Annan, I.B.; Barry, J.D.; Benner, E.A.; Currie, M.J.; Pahutski, T.F. Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg. Med. Chem. Lett., 2013, 23, 6341-6345.
[44]
Sun, L.; Zhang, H.J.; Quan, L.; Yan, W.T.; Yue, Q.; Li, Y.; Qiu, G. Characterization of the ryanodine receptor gene with a unique 3′-UTR and alternative splice site from the oriental fruit moth. J. Insect Sci., 2016, 16, 1-9.
[45]
Wang, K.; Jiang, X.; Yuan, G.; Shang, F.; Wang, J. Molecular characterization, mRNA expression and alternative splicing of ryanodine receptor gene in the brown citrus aphid, Toxoptera citricida (Kirkaldy). Int. J. Mol. Sci., 2015, 16, 15220-15234.
[46]
Takeshima, H.; Nishi, M.; Iwabe, N.; Miyata, T.; Hosoya, T.; Masai, I.; Hotta, Y. Isolation and characterization of a gene for a ryanodine receptor/calcium release channel in Drosophila melanogaster. FEBS Lett., 1994, 337, 81-87.
[47]
Puente, E.; Suner, M.; Evans, A.D.; Mccaffery, A.R.; Windass, J.D. Identification of a polymorphic ryanodine receptor gene from Heliothis virescens (Lepidoptera: noctuidae). Insect Biochem. Mol. Biol., 2000, 30, 335-347.
[48]
Schmitt, M.; Turberg, A.; Londershausen, M.; Dorn, A. Binding sites for Ca2+-channel effectors and ryanodine in Periplaneta americana-possible targets for new insecticides. Pestic. Sci., 1996, 48, 375-388.
[49]
Collet, C. Excitation-contraction coupling in skeletal muscle fibers from adult domestic honeybee. Pflügers Archiv-. Eur. J. Phys., 2009, 458, 601-612.
[50]
Arnon, A.; Cook, B.; Montell, C.; Selinger, Z.; Minke, B. Calmodulin regulation of calcium stores in phototransduction of Drosophila. Science, 1997, 275, 1119-1121.
[51]
Troczka, B.J.; Williams, A.J.; Williamson, M.S.; Field, L.M.; Lüemmen, P.; Davies, T.G.E. Stable expression and functional characterisation of the diamondback moth ryanodine receptor G4946E variant conferring resistance to diamide insecticides. Sci. Rep., 2015, 5, 14680.
[52]
Xu, C.; Han, A.; Virgil, S.C.; Reisman, S.E. Chemical synthesis of (+)-ryanodine and (+)-20-deoxyspiganthine. ACS Cent. Sci., 2017, 3, 278-282.
[53]
Ledbetter, M.W.; Preiner, J.; Louis, C.F.; Mickelson, J.R. Tissue distribution of ryanodine receptor isoforms and alleles determined by reverse transcription polymerase chain reaction. J. Biol. Chem., 1994, 269, 31544-31551.
[54]
Liu, J.; Li, Y.; Zhang, X.; Hua, X.; Wu, C.; Wei, W.; Wan, Y.; Cheng, D.; Xiong, L.; Yang, N.; Song, H.; Li, Z. Novel anthranilic diamide scaffolds containing N-substituted phenylpyrazole as potential ryanodine Receptor activators. J. Agric. Food Chem., 2016, 64, 3697-3704.
[55]
Qi, S.; Lummen, P.; Nauen, R.; Casida, J.E. Diamide insecticide target site specificity in the Heliothis and Musca ryanodine receptors relative to toxicity. J. Agric. Food Chem., 2014, 62, 4077-4082.
[56]
Buck, E.; Zimanyi, I.; Abramson, J.J.; Pessah, I.N. Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J. Biol. Chem., 1992, 267, 23560-23567.
[57]
Chen, S.R.; Li, X.; Ebisawa, K.; Zhang, L. Functional characterization of the recombinant type 3 Ca2+ release channel (ryanodine receptor) expressed in HEK293 cells. J. Biol. Chem., 1992, 272, 24234-24246.
[58]
Donoso, P.; Prieto, H.; Hidalgo, C. Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. Biophys. J., 1995, 68, 507-515.
[59]
Waterhouse, A.L.; Pessah, I.N.; Francini, A.O.; Casida, J.E. Structural aspects of ryanodine action and selectivity. J. Med. Chem., 1987, 30, 710-716.
[60]
Chuang, K.V.; Xu, C.K.; Reisman, S.E. A 15-step synthesis of (+)-ryanodol. Science, 2016, 353, 912-915.
[61]
Nagatomo, M.; Koshimizu, M.; Masuda, K.; Tabuchi, T.; Urabe, D.; Inoue, M. Total synthesis of ryanodol. J. Am. Chem. Soc., 2014, 136, 5916-5919.
[62]
Pepper, B.P.; Carruth, L.A. A new plant insecticide for control of the european corn borer. J. Econ. Entomol., 1945, 38, 59-66.
[63]
Bannister, R.A. Dantrolene-induced inhibition of skeletal L-type Ca2+ current requires RyR1 expression. BioMed Res. Int., 2013, 2013, 390493.
[64]
Zhao, X.; Weisleder, N.; Han, X.; Pan, Z.; Parness, J.; Brotto, M.; Ma, J. Azumolene inhibits a component of store-operated calcium entry coupled to the skeletal muscle ryanodine receptor. J. Biol. Chem., 2006, 281, 33477-33486.
[65]
Durham, W.J.; Aracena-parks, P.; Long, C.; Rossi, A.E.; Goonasekera, S.A.; Boncompagni, S.; Galvan, D.L.; Gilman, C.P.; Baker, M.R.; Shirokova, N.; Protasi, F.; Dirksen, R.T.; Hamilton, S.L. RyR1 S-nitrosylation underlies environmental heat stroke and sudden death in Y522S RyR1 knockin mice. Cell, 2008, 133, 53-65.
[66]
Lanner, J.T.; Georgiou, D.K.; Dagnino-Acosta, A.; Ainbinder, A.; Cheng, Q.; Joshi, A.D.; Chen, Z.; Yarotskyy, V.; Oakes, J.; Lee, C.S.; Monroe, T.O.; Santillan, A.; Dong, K.; Goodyear, L.J.; Ismailov, I.I. Rodney, G.G.; Dirksen, R.T.; Hamilton, S.L. AICAR prevents heat induced sudden death in RyR1 mutant mice independent of AMPK activation. Nat. Med., 2012, 18, 244-251.
[67]
Pessah, I.N.; Lehmler, H.J.; Robertson, L.W.; Perez, C.F.; Cabrales, E.; Bose, D.D.; Feng, W. Enantiomeric specificity of (-)-2,2′,3,3′,6,6′-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. Chem. Res. Toxicol., 2009, 22, 201-207.
[68]
Kim, K.H.; Inan, S.Y.; Berman, R.F.; Pessah, I.N. Excitatory and inhibitory synaptic transmission is differentially influenced by two ortho-substituted polychlorinated biphenyls in the hippocampal slice preparation. Toxicol. Appl. Pharmacol., 2009, 237, 168-177.
[69]
Fusi, F.; Iozzi, D.; Sgaragli, G.; Frosini, M. 3,5-di-t-butylcatechol (DTCAT) as an activator of rat skeletal muscle ryanodine receptor Ca2+ channel (RyRC). Biochem. Pharmacol., 2005, 69, 485-491.
[70]
Herrmannfrank, A.; Richter, M.; Sarkozi, S.; Mohr, U.; Lehmannhorn, F. 4-Chloro-m-cresol, a potent and specific activator of the skeletal muscle ryanodine receptor. BBA-Gen. Subjects, 1996, 1289, 31-40.
[71]
Eguchi, K.; Kato, H.; Fujiwara, Y.; Losung, F.; Mangindaan, R.E.; De Voogd, N.J.; Takeya, M.; Tsukamoto, S. Bastadins, brominated-tyrosine derivatives, suppress accumulation of cholesterol ester in macrophages. Bioorg. Med. Chem. Lett., 2015, 25, 5389-5392.
[72]
Aoki, S.; Cho, S.; Hiramatsu, A.; Kotoku, N.; Kobayashi, M. Bastadins, cyclic tetramers of brominated-tyrosine derivatives, selectively inhibit the proliferation of endothelial cells. J. Nat. Med., 2006, 60, 231-235.
[73]
Zieminska, E.; Lazarewicz, J.W.; Couladouros, E.A.; Moutsos, V.I.; Pitsinos, E.N. Open-chain half-bastadins mimic the effects of cyclic bastadins on calcium homeostasis in cultured neurons. Bioorg. Med. Chem. Lett., 2008, 18, 5734-5737.
[74]
Masuno, M.N.; Pessah, I.N.; Olmstead, M.M.; Molinski, T.F. Simplified cyclic analogues of bastadin-5. Structure-activity relationships for modulation of the RyR1/FKBP12 Ca2+ channel complex. J. Med. Chem., 2006, 49, 4497-4511.
[75]
Kaftan, E.J.; Marks, A.R.; Ehrlich, B.E. Effects of rapamycin on ryanodine receptor/Ca2+-release channels from cardiac muscle. Circ. Res., 1996, 78, 990-997.
[76]
Dammermann, W.; Zhang, B.; Nebel, M.; Cordiglieri, C.; Odoardi, F.; Kirchberger, T.; Kawakami, N.; Dowden, J.; Schmid, F.; Dornmair, K.; Hohenegger, M.; Flugel, A.; Guse, A.H.; Potter, B.V. NAADP-mediated Ca2+ signaling via type 1 ryanodine receptor in T cells revealed by a synthetic NAADP antagonist. Proc. Natl. Acad. Sci. USA, 2009, 106, 10678-10683.
[77]
Papineni, R.V.; Oconnell, K.M.; Zhang, H.; Dirksen, R.T.; Hamilton, S.L. Suramin interacts with the calmodulin binding site on the ryanodine receptor, RYR1. J. Biol. Chem., 2002, 277, 49167-49174.
[78]
Sun, J.; Yamaguchi, N.; Xu, L.; Eu, J.P.; Stamler, J.S.; Meissner, G. Regulation of the cardiac muscle ryanodine receptor by O2 tension and S-nitrosoglutathione. Biochemistry, 2008, 47, 13985-13990.
[79]
Xu, L.; Eu, J.P.; Meissner, G.; Stamler, J.S. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science, 1998, 279, 234-237.
[80]
Zherebitskaya, E.; Schapansky, J.; Akude, E.; Smith, D.R.; Van der Ploeg, R.; Solovyova, N.; Verkhratsky, A.; Fernyhough, P. Sensory neurons derived from diabetic rats have diminished internal Ca2+ stores linked to impaired re-uptake by the endoplasmic reticulum. ASN Neuro, 2012, 4, e00072.
[81]
Mochizuki, M.; Yano, M.; Oda, T.; Tateishi, H.; Kobayashi, S.; Yamamoto, T.; Ikeda, Y.; Ohkusa, T.; Ikemoto, N.; Matsuzaki, M. Scavenging free radicals by low-dose carvedilol prevents redox-dependent Ca2+ leak via stabilization of ryanodine receptor in heart failure. J. Am. Coll. Cardiol., 2007, 49, 1722-1732.
[82]
Watanabe, H.; Chopra, N.; Laver, D.R.; Hwang, H.S.; Davies, S.S.; Roach, D.E.; Duff, H.J.; Roden, D.M.; Wilde, A.A.; Knollmann, B.C. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat. Med., 2009, 15, 380-383.
[83]
Mehra, D.; Imtiaz, M.S.; Van Helden, D.F.; Knollmann, B.C.; Laver, D.R. Multiple modes of ryanodine receptor 2 inhibition by flecainide. Mol. Pharmacol., 2014, 86, 696-706.
[84]
Jiang, X.; Liu, W.; Deng, J.; Lan, L.; Xue, X.; Zhang, C.; Ikeda, Y.; Ohkusa, T.; Ikemoto, N.; Matsuzaki, M. Polydatin protects cardiac function against burn injury by inhibiting sarcoplasmic reticulum Ca2+ leak by reducing oxidative modification of ryanodine receptors. Free Radic. Biol. Med., 2013, 60, 292-299.
[85]
Fritsch, E.B.; Connon, R.E.; Werner, I.; Davies, R.E.; Beggel, S.; Feng, W.; Pessah, I.N. Triclosan impairs swimming behavior and alters expression of excitation-contraction coupling proteins in fathead minnow (Pimephales promelas). Environ. Sci. Technol., 2013, 47, 2008-2017.
[86]
Murayama, T.; Ogawa, Y. Characterization of type 3 ryanodine receptor (RyR3) of sarcoplasmic reticulum from rabbit skeletal muscles. J. Biol. Chem., 1997, 272, 24030-24037.
[87]
Shiomi, K.; Matsui, R.; Kakei, A.; Yamaguchi, Y.; Masuma, R.; Hatano, H.; Arai, N.; Isozaki, M.; Tanaka, H.; Kobayashi, S.; Turberg, A.; Omura, S. Verticilide, a new ryanodine-binding inhibitor, produced by Verticillium sp. FKI-1033. J. Antibiot., 2010, 63, 77-82.
[88]
Ni, J.; Auston, D.A.; Freilich, D.; Muralidharan, S.; Sobie, E.A.; Kao, J.P. Photochemical gating of intracellular Ca2+ release channels. J. Am. Chem. Soc., 2007, 129, 5316-5317.
[89]
Guerreiro, S.; Toulorge, D.; Hirsch, E.C.; Marien, M.; Sokoloff, P.; Michel, P.P. Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol. Pharmacol., 2008, 74, 980-989.
[90]
Jin, S.W.; Choi, C.Y.; Hwang, Y.P.; Kim, H.G.; Kim, S.J.; Chung, Y.C.; Lee, K.J.; Jeong, T.C.; Jeong, H.G. Betulinic acid Increases eNOS phosphorylation and NO synthesis via the calcium-signaling pathway. J. Agric. Food Chem., 2016, 64, 785-791.
[91]
Lehmberg, E.; Casida, J.E. Similarity of insect and mammalian ryanodine binding sites. Pestic. Biochem. Physiol., 1994, 48, 145-152.
[92]
Steinbach, D.; Gutbrod, O.; Lummen, P.; Matthiesen, S.; Schorn, C.; Nauen, R. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Insect Biochem. Mol. Biol., 2015, 63, 14-22.
[93]
Wang, X.; Khakame, S.K.; Ye, C.; Yang, Y.; Wu, Y. Characterisation of field-evolved resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella, from China. Pest Manag. Sci., 2013, 69, 661-665.
[94]
Nauen, R.; Steinbach, D. Resistance to Diamide Insecticides in Lepidopteran Pests.In: Advances in Insect Control and Resistance Management; Horowitz, A.R.; Ishaaya, I., Eds.; Springer International Publishing: Switzerland, 2016, pp. 219-240.
[95]
Cordova, D.; Benner, E.A.; Sacher, M.D.; Rauh, J.J.; Sopa, J.S.; Lahm, G.P.; Selby, T.P.; Stevenson, T.M.; Flexner, L.; Gutteridge, S.; Rhoades, D.F.; Wu, L.; Smith, R.M.; Tao, Y. Anthranilic diamides: A new class of insecticides with a novel mode of action, ryanodine receptor activation. Pestic. Biochem. Physiol., 2006, 84, 196-214.
[96]
Nauen, R. Insecticide mode of action: Return of the ryanodine receptor. Pest Manag. Sci., 2006, 62, 690-692.
[97]
Vega, A.V.; Ramosmondragon, R.; Calderonrivera, A.; Zarainherzberg, A.; Avila, G. Calcitonin gene-related peptide restores disrupted excitation-contraction coupling in myotubes expressing central core disease mutations in RyR1. J. Physiol., 2011, 589, 4649-4669.
[98]
Priori, S.G.; Napolitano, C.; Memmi, M.; Colombi, B.; Drago, F.; Gasparini, M.; Delogu, A.B. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation, 2002, 106, 69-74.
[99]
Priori, S.G.; Napolitano, C.; Tiso, N.; Memmi, M.; Vignati, G.; Bloise, R.; Sorrentino, V.; Danieli, G.A. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation, 2001, 103, 196-200.
[100]
Ying, S.; Chang, D.C.; Lin, S. The MicroRNA (miRNA): Overview of the RNA genes that modulate gene function. Mol. Biotechnol., 2008, 38, 257-268.
[101]
Beavers, D.L.; Wang, W.; Ather, S.; Voigt, N.; Garbino, A.; Dixit, S.S.; Landstrom, A.P.; Li, N. \Wang, Q.; Olivotto, I.; Dobrev, D.; Ackerman, M.J.; Wehrens, X.H. Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J. Am. Coll. Cardiol., 2013, 62, 2010-2019.
[102]
Chiang, D.Y.; Kongchan, N.; Beavers, D.L.; Alsina, K.M.; Voigt, N.; Neilson, J.R.; Jakob, H.; Martin, J.F.; Dobrev, D.; Wehrens, X.H.; Li, N. Loss of microRNA-106b-25 cluster promotes atrial fibrillation by enhancing ryanodine receptor type-2 expression and calcium release. Circ-arrhythmia Elec., 2014, 7, 1214-1222.
[103]
Belevych, A.E.; Sansom, S.E.; Terentyeva, R.; Ho, H.; Nishijima, Y.; Martin, M.M.; Jindal, H.K.; Rochira, J.A.; Kunitomo, Y.; Abdellatif, M.; Carnes, C.A.; Elton, T.S.; Gyorke, S.; Terentyev, D. MicroRNA-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLoS One, 2011, 6, e28324.
[104]
Zhang, L.; Liu, Y.; Song, F.; Zheng, H.; Hu, L.; Lu, H.; Liu, P.; Hao, X.; Zhang, W.; Chen, K. Functional SNP in the microRNA-367 binding site in the 3′UTR of the calcium channel ryanodine receptor gene 3 (RYR3) affects breast cancer risk and calcification. Proc. Natl. Acad. Sci. USA, 2011, 108, 13653-13658.
[105]
Tao, Y.; Gutteridge, S.; Benner, E.A.; Wu, L.; Rhoades, D.F.; Sacher, M.D.; Cordova, D. Identification of a critical region in the Drosophila ryanodine receptor that confers sensitivity to diamide insecticides. Insect Biochem. Mol. Biol., 2013, 43, 820-828.
[106]
Ebbinghaus-Kintscher, U.; Luemmen, P.; Lobitz, N.; Schulte, T.; Funke, C.; Fischer, R.; Masaki, T.; Yasokawa, N.; Tohnishi, M. Phthalic acid diamides activate ryanodine-sensitive Ca2+ release channels in insects. Cell Cal., 2006, 39, 21-33.
[107]
Gong, W.; Yan, H.; Gao, L.; Guo, Y.; Xue, C. Chlorantraniliprole resistance in the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol., 2014, 107, 806-814.
[108]
Ramachandran, S.; Chakraborty, A.; Xu, L.; Mei, Y.; Samso, M.; Dokholyan, N.V.; Meissner, G. Structural determinants of skeletal muscle ryanodine receptor gating. J. Biol. Chem., 2013, 288, 6154-6165.
[109]
Fessenden, J.D.; Chen, L.; Wang, Y.; Paolini, C.; Franziniarmstrong, C.; Allen, P.D.; Pessah, I.N. Ryanodine receptor point mutant E4032A reveals an allosteric interaction with ryanodine. Proc. Natl. Acad. Sci. USA, 2001, 98, 2865-2870.
[110]
Douris, V.; Papapostolou, K.M.; Ilias, A.; Roditakis, E.; Kounadi, S.; Riga, M.; Nauen, R.; Vontas, J. Investigation of the contribution of RyR target-site mutations in diamide resistance by CRISPR/ Cas9 genome modification in Drosophila. Insect Biochem. Mol. Biol., 2017, 87, 127-135.
[111]
Zimmer, C.T.; Garrood, W.T.; Puinean, A.M.; Eckelzimmer, M.; Williamson, M.S.; Davies, T.G.; Bass, C.A. CRISPR/Cas9 mediated point mutation in the alpha 6 subunit of the nicotinic acetylcholine receptor confers resistance to spinosad in Drosophila melanogaster. Insect Biochem. Mol. Biol., 2016, 73, 62-69.
[112]
Sang, S.; Shu, B.; Yi, X.; Liu, J.; Hu, M.; Zhong, G. Cross-resistance and baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Manag. Sci., 2015, 72, 922-928.
[113]
Lin, Q.; Jin, F.; Hu, Z.; Chen, H.; Yin, F.; Li, Z.; Dong, X.; Zhang, D.; Ren, S.; Feng, X. Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella. PLoS One, 2013, 8, e72314.
[114]
Li, X.; Zhu, B.; Guo, L.; Liang, P. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.). Pest Manag. Sci., 2017, 73, 1402-1409.
[115]
Ribeiro, L.M.S.; Wanderley-Teixeira, V.; Ferreira, H.N.; Teixeira, A.A.C.; Siqueira, H.A.A. Fitness costs associated with field-evolved resistance to chlorantraniliprole in Plutella xylostella (Lepidoptera: Plutellidae). Bull. Entomol. Res., 2014, 104, 88-96.