Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Mechanism and Inhibition of Matrix Metalloproteinases

Author(s): Linda Cerofolini, Marco Fragai* and Claudio Luchinat*

Volume 26, Issue 15, 2019

Page: [2609 - 2633] Pages: 25

DOI: 10.2174/0929867325666180326163523

Price: $65

Abstract

Matrix metalloproteinases hydrolyze proteins and glycoproteins forming the extracellular matrix, cytokines and growth factors released in the extracellular space, and membrane-bound receptors on the outer cell membrane. The pathological relevance of MMPs has prompted the structural and functional characterization of these enzymes and the development of synthetic inhibitors as possible drug candidates. Recent studies have provided a better understanding of the substrate preference of the different members of the family, and structural data on the mechanism by which these enzymes hydrolyze the substrates. Here, we report the recent advancements in the understanding of the mechanism of collagenolysis and elastolysis, and we discuss the perspectives of new therapeutic strategies for targeting MMPs.

Keywords: Matrix metalloproteinases, enzyme, mechanism, collagenolysis, elastolysis, inhibitor.

[1]
Andreini, C.; Banci, L.; Bertini, I.; Luchinat, C.; Rosato, A. Bioinformatic comparison of structures and homology-models of matrix metalloproteinases. J. Proteome Res., 2004, 3(1), 21-31.
[http://dx.doi.org/10.1021/pr0340476] [PMID: 14998159]
[2]
Maskos, K.; Bode, W. Structural basis of matrix metalloproteinases and tissue inhibitors of metalloproteinases. Mol. Biotechnol., 2003, 25(3), 241-266.
[http://dx.doi.org/10.1385/MB:25:3:241] [PMID: 14668538]
[3]
Fanjul-Fernández, M.; Folgueras, A.R.; Cabrera, S.; López-Otín, C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim. Biophys. Acta, 2010, 1803(1), 3-19.
[http://dx.doi.org/10.1016/j.bbamcr.2009.07.004] [PMID: 19631700]
[4]
Morrison, C.J.; Butler, G.S.; Rodríguez, D.; Overall, C.M. Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr. Opin. Cell Biol, 2009, 21(5), 645-653.
[http://dx.doi.org/10.1016/j.ceb.2009.06.006] [PMID: 19616423]
[5]
Overall, C.M.; McQuibban, G.A.; Clark-Lewis, I. Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics. Biol. Chem., 2002, 383(7-8), 1059-1066.
[http://dx.doi.org/10.1515/BC.2002.114] [PMID: 12437088]
[6]
Boire, A.; Covic, L.; Agarwal, A.; Jacques, S.; Sherifi, S.; Kuliopulos, A. PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 2005, 120(3), 303-313.
[http://dx.doi.org/10.1016/j.cell.2004.12.018] [PMID: 15707890]
[7]
Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res., 2006, 69(3), 562-573.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.002] [PMID: 16405877]
[8]
Parks, W.C.; Wilson, C.L.; López-Boado, Y.S. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol., 2004, 4(8), 617-629.
[http://dx.doi.org/10.1038/nri1418] [PMID: 15286728]
[9]
D’Alessio, S.; Fibbi, G.; Cinelli, M.; Guiducci, S.; Del Rosso, A.; Margheri, F.; Serratì, S.; Pucci, M.; Kahaleh, B.; Fan, P.; Annunziato, F.; Cosmi, L.; Liotta, F.; Matucci-Cerinic, M.; Del Rosso, M. Matrix metalloproteinase 12-dependent cleavage of urokinase receptor in systemic sclerosis microvascular endothelial cells results in impaired angiogenesis. Arthritis Rheum., 2004, 50(10), 3275-3285.
[http://dx.doi.org/10.1002/art.20562] [PMID: 15476218]
[10]
Nesi, A.; Fragai, M. Substrate specificities of matrix metalloproteinase 1 in PAR-1 exodomain proteolysis. ChemBioChem, 2007, 8(12), 1367-1369.
[http://dx.doi.org/10.1002/cbic.200700055] [PMID: 17600790]
[11]
Doucet, A.; Overall, C.M. Protease proteomics: revealing protease in vivo functions using systems biology approaches. Mol. Aspects Med., 2008, 29(5), 339-358.
[http://dx.doi.org/10.1016/j.mam.2008.04.003] [PMID: 18571712]
[12]
Dandachi, N.; Kelly, N.J.; Wood, J.P.; Burton, C.L.; Radder, J.E.; Leme, A.S.; Gregory, A.D.; Shapiro, S.D. Macrophage Elastase Induces TRAIL-mediated Tumor Cell Death through Its Carboxy-Terminal Domain. Am. J. Respir. Crit. Care Med., 2017, 196(3), 353-363.
[http://dx.doi.org/10.1164/rccm.201606-1150OC]] [PMID: 28345958]
[13]
Limb, G.A.; Matter, K.; Murphy, G.; Cambrey, A.D.; Bishop, P.N.; Morris, G.E.; Khaw, P.T. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am. J. Pathol., 2005, 166(5), 1555-1563.
[http://dx.doi.org/10.1016/S0002-9440(10)62371-1] [PMID: 15855654]
[14]
Wang, W.; Schulze, C.J.; Suarez-Pinzon, W.L.; Dyck, J.R.
Sawicki, G.; Schulz, R. Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation, 2002, 106(12), 1543-1549.
[http://dx.doi.org/10.1161/01.CIR.0000028818.33488.7B] [PMID: 12234962]
[15]
Sawicki, G.; Leon, H.; Sawicka, J.; Sariahmetoglu, M.; Schulze, C.J.; Scott, P.G.; Szczesna-Cordary, D.; Schulz, R. Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation, 2005, 112(4), 544-552.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.104.531616] [PMID: 16027249]
[16]
Kwan, J.A.; Schulze, C.J.; Wang, W.; Leon, H.; Sariahmetoglu, M.; Sung, M.; Sawicka, J.; Sims, D.E.; Sawicki, G.; Schulz, R. Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J., 2004, 18(6), 690-692.
[http://dx.doi.org/10.1096/fj.02-1202fje] [PMID: 14766804]
[17]
Luo, D.; Mari, B.; Stoll, I.; Anglard, P. Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J. Biol. Chem., 2002, 277(28), 25527-25536.
[http://dx.doi.org/10.1074/jbc.M202494200] [PMID: 12006591]
[18]
Marchant, D.J.; Bellac, C.L.; Moraes, T.J.; Wadsworth, S.J.; Dufour, A.; Butler, G.S.; Bilawchuk, L.M.; Hendry, R.G.; Robertson, A.G.; Cheung, C.T.; Ng, J.; Ang, L.; Luo, Z.; Heilbron, K.; Norris, M.J.; Duan, W.; Bucyk, T.; Karpov, A.; Devel, L.; Georgiadis, D.; Hegele, R.G.; Luo, H.; Granville, D.J.; Dive, V.; McManus, B.M.; Overall, C.M. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat. Med., 2014, 20(5), 493-502.
[http://dx.doi.org/10.1038/nm.3508] [PMID: 24784232]
[19]
Dandachi, N.G.; Shapiro, S.D. A protean protease: MMP-12 fights viruses as a protease and a transcription factor. Nat. Med., 2014, 20(5), 470-472.
[http://dx.doi.org/10.1038/nm.3561] [PMID: 24804752]
[20]
Xie, Y.; Mustafa, A.; Yerzhan, A.; Merzhakupova, D. Yerlan, P.; N Orakov, A.; Wang, X.; Huang, Y.; Miao, L. Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Dis., 2017, 3, 17036.
[http://dx.doi.org/10.1038/cddiscovery.2017.36]] [PMID: 28811933]
[21]
Shapiro, S.D. Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr. Opin. Cell Biol., 1998, 10(5), 602-608.
[http://dx.doi.org/10.1016/S0955-0674(98)80035-5] [PMID: 9818170]
[22]
Nagase, H.; Woessner, J.F., Jr Matrix metalloproteinases. J. Biol. Chem., 1999, 274(31), 21491-21494.
[http://dx.doi.org/10.1074/jbc.274.31.21491]] [PMID: 10419448]
[23]
Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233.
[http://dx.doi.org/10.1038/nrm2125] [PMID: 17318226]
[24]
Overall, C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol., 2002, 22(1), 51-86.
[http://dx.doi.org/10.1385/MB:22:1:051] [PMID: 12353914]
[25]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[26]
Amar, S.; Smith, L.; Fields, G.B. Matrix metalloproteinase collagenolysis in health and disease. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11 Pt A), 1940-1951.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.015] [PMID: 28456643]
[27]
Zhang, Y.; Yang, C.; Dancis, A.; Nakamaru-Ogiso, E. EPR studies of wild type and mutant Dre2 identify essential [2Fe--2S] and [4Fe--4S] clusters and their cysteine ligands. J. Biochem., 2017, 161(1), 67-78.
[http://dx.doi.org/10.1093/jb/mvw054] [PMID: 27672211]
[28]
Bosman, F.T.; Stamenkovic, I. Functional structure and composition of the extracellular matrix. J. Pathol., 2003, 200(4), 423-428.
[http://dx.doi.org/10.1002/path.1437] [PMID: 12845610]
[29]
Tanzer, M.L. Current concepts of extracellular matrix. J. Orthop. Sci., 2006, 11(3), 326-331.
[http://dx.doi.org/10.1007/s00776-006-1012-2] [PMID: 16721539]
[30]
Eble, J.A. The extracellular matrix in health and disease. Curr. Pharm. Des., 2009, 15(12), 1275-1276.
[http://dx.doi.org/10.2174/138161209787846694] [PMID: 19355967]
[31]
Berrier, A.L.; Yamada, K.M. Cell-matrix adhesion. J. Cell. Physiol., 2007, 213(3), 565-573.
[http://dx.doi.org/10.1002/jcp.21237] [PMID: 17680633]
[32]
Kessenbrock, K.; Wang, C.Y.; Werb, Z. Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol., 2015, 44-46, 184-190.
[http://dx.doi.org/10.1016/j.matbio.2015.01.022] [PMID: 25661772]
[33]
Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002, 295(5564), 2387-2392.
[http://dx.doi.org/10.1126/science.1067100] [PMID: 11923519]
[34]
Fingleton, B. Matrix metalloproteinases: roles in cancer and metastasis. Front. Biosci., 2006, 11, 479-491.
[http://dx.doi.org/10.2741/1811] [PMID: 16146745]
[35]
Fingleton, B. MMPs as therapeutic targets--still a viable option? Semin. Cell Dev. Biol., 2008, 19(1), 61-68.
[http://dx.doi.org/10.1016/j.semcdb.2007.06.006] [PMID: 17693104]
[36]
Löffek, S.; Schilling, O.; Franzke, C.W. Series “matrix metalloproteinases in lung health and disease”: Biological role of matrix metalloproteinases: a critical balance. Eur. Respir. J., 2011, 38(1), 191-208.
[http://dx.doi.org/10.1183/09031936.00146510] [PMID: 21177845]
[37]
Goffin, J.R.; Anderson, I.C.; Supko, J.G.; Eder, J.P., Jr; Shapiro, G.I.; Lynch, T.J.; Shipp, M.; Johnson, B.E.; Skarin, A.T. Phase I trial of the matrix metalloproteinase inhibitor marimastat combined with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Clin. Cancer Res., 2005, 11(9), 3417-3424.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-2144] [PMID: 15867243]
[38]
Engel, C.K.; Pirard, B.; Schimanski, S.; Kirsch, R.; Habermann, J.; Klingler, O.; Schlotte, V.; Weithmann, K.U.; Wendt, K.U. Structural basis for the highly selective inhibition of MMP-13. Chem. Biol., 2005, 12(2), 181-189.
[http://dx.doi.org/10.1016/j.chembiol.2004.11.014] [PMID: 15734645]
[39]
Devel, L.; Rogakos, V.; David, A.; Makaritis, A.; Beau, F.; Cuniasse, P.; Yiotakis, A.; Dive, V. Development of selective inhibitors and substrate of matrix metalloproteinase-12. J. Biol. Chem., 2006, 281(16), 11152-11160.
[http://dx.doi.org/10.1074/jbc.M600222200] [PMID: 16481329]
[40]
Johnson, J.L.; Devel, L.; Czarny, B.; George, S.J.; Jackson, C.L.; Rogakos, V.; Beau, F.; Yiotakis, A.; Newby, A.C.; Dive, V. A selective matrix metalloproteinase-12 inhibitor retards atherosclerotic plaque development in apolipoprotein E-knockout mice. Arterioscler. Thromb. Vasc. Biol., 2011, 31(3), 528-535.
[http://dx.doi.org/10.1161/ATVBAHA.110.219147] [PMID: 21212406]
[41]
Vandenbroucke, R.E.; Libert, C. Is there new hope for therapeutic matrix metalloproteinase inhibition? Nat. Rev. Drug Discov., 2014, 13(12), 904-927.
[http://dx.doi.org/10.1038/nrd4390] [PMID: 25376097]
[42]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17, 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[43]
Khokha, R.; Murthy, A.; Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat. Rev. Immunol., 2013, 13(9), 649-665.
[http://dx.doi.org/10.1038/nri3499] [PMID: 23969736]
[44]
Cauwe, B.; Van den Steen, P.E.; Opdenakker, G. The biochemical, biological, and pathological kaleidoscope of cell surface substrates processed by matrix metalloproteinases. Crit. Rev. Biochem. Mol. Biol., 2007, 42(3), 113-185.
[http://dx.doi.org/10.1080/10409230701340019] [PMID: 17562450]
[45]
Vallee, B.L.; Auld, D.S. Active-site zinc ligands and activated H2O of zinc enzymes. Proc. Natl. Acad. Sci. USA, 1990, 87(1), 220-224.
[http://dx.doi.org/10.1073/pnas.87.1.220] [PMID: 2104979]
[46]
Cha, J.; Auld, D.S. Site-directed mutagenesis of the active site glutamate in human matrilysin: investigation of its role in catalysis. Biochemistry, 1997, 36(50), 16019-16024.
[http://dx.doi.org/10.1021/bi972223g] [PMID: 9398337]
[47]
Soler, D.; Nomizu, T.; Brown, W.E.; Chen, M.; Ye, Q.Z.; Van Wart, H.E.; Auld, D.S. Zinc content of promatrilysin, matrilysin and the stromelysin catalytic domain. Biochem. Biophys. Res. Commun., 1994, 201(2), 917-923.
[http://dx.doi.org/10.1006/bbrc.1994.1789] [PMID: 8003031]
[48]
Bhaskaran, R.; Palmier, M.O.; Bagegni, N.A.; Liang, X.; Van Doren, S.R. Solution structure of inhibitor-free human metalloelastase (MMP-12) indicates an internal conformational adjustment. J. Mol. Biol., 2007, 374(5), 1333-1344.
[http://dx.doi.org/10.1016/j.jmb.2007.10.028] [PMID: 17997411]
[49]
Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, M.; Pourmotabbed, T.; Bode, W.; Goettig, P. Crystal structures of MMP-9 complexes with five inhibitors: contribution of the flexible Arg424 side-chain to selectivity. J. Mol. Biol., 2007, 371(4), 989-1006.
[http://dx.doi.org/10.1016/j.jmb.2007.05.068] [PMID: 17599356]
[50]
Bertini, I.; Calderone, V.; Fragai, M.; Luchinat, C.; Mangani, S.; Terni, B. X-ray structures of ternary enzyme-product-inhibitor complexes of MMP. Angew. Chem. Int. Ed., 2003, 42(23), 2673-2676.
[http://dx.doi.org/10.1002/anie.200350957] [PMID: 12813751]
[51]
Lovejoy, B.; Hassell, A.M.; Luther, M.A.; Weigl, D.; Jordan, S.R. Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry, 1994, 33(27), 8207-8217.
[http://dx.doi.org/10.1021/bi00193a006] [PMID: 8031754]
[52]
Bode, W.; Reinemer, P.; Huber, R.; Kleine, T.; Schnierer, S.; Tschesche, H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J., 1994, 13(6), 1263-1269.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06378.x] [PMID: 8137810]
[53]
Borkakoti, N.; Winkler, F.K.; Williams, D.H.; D’Arcy, A.; Broadhurst, M.J.; Brown, P.A.; Johnson, W.H.; Murray, E.J. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Nat. Struct. Biol., 1994, 1(2), 106-110.
[http://dx.doi.org/10.1038/nsb0294-106] [PMID: 7656013]
[54]
Browner, M.F.; Smith, W.W.; Castelhano, A.L. Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry, 1995, 34(20), 6602-6610.
[http://dx.doi.org/10.1021/bi00020a004] [PMID: 7756291]
[55]
Grams, F.; Crimmin, M.; Hinnes, L.; Huxley, P.; Pieper, M.; Tschesche, H.; Bode, W. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry, 1995, 34(43), 14012-14020.
[http://dx.doi.org/10.1021/bi00043a007] [PMID: 7577999]
[56]
Betz, M.; Huxley, P.; Davies, S.J.; Mushtaq, Y.; Pieper, M.; Tschesche, H.; Bode, W.; Gomis-Rüth, F.X. 1.8-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur. J. Biochem., 1997, 247(1), 356-363.
[http://dx.doi.org/10.1111/j.1432-1033.1997.00356.x] [PMID: 9249047]
[57]
Esser, C.K.; Bugianesi, R.L.; Caldwell, C.G.; Chapman, K.T.; Durette, P.L.; Girotra, N.N.; Kopka, I.E.; Lanza, T.J.; Levorse, D.A.; MacCoss, M.; Owens, K.A.; Ponpipom, M.M.; Simeone, J.P.; Harrison, R.K.; Niedzwiecki, L.; Becker, J.W.; Marcy, A.I.; Axel, M.G.; Christen, A.J.; McDonnell, J.; Moore, V.L.; Olszewski, J.M.; Saphos, C.; Visco, D.M.; Hagmann, W.K. Inhibition of stromelysin-1 (MMP-3) by P1′-biphenylylethyl carboxyalkyl dipeptides. J. Med. Chem., 1997, 40(6), 1026-1040.
[http://dx.doi.org/10.1021/jm960465t] [PMID: 9083493]
[58]
Brandstetter, H.; Engh, R.A.; Von Roedern, E.G.; Moroder, L.; Huber, R.; Bode, W.; Grams, F. Structure of malonic acid-based inhibitors bound to human neutrophil collagenase. A new binding mode explains apparently anomalous data. Protein Sci., 1998, 7(6), 1303-1309.
[http://dx.doi.org/ 10.1002/pro.5560070605] [PMID: 9655333]
[59]
Chen, L.; Rydel, T.J.; Gu, F.; Dunaway, C.M.; Pikul, S.; Dunham, K.M.; Barnett, B.L. Crystal structure of the stromelysin catalytic domain at 2.0 A resolution: inhibitor-induced conformational changes. J. Mol. Biol., 1999, 293(3), 545-557.
[http://dx.doi.org/10.1006/jmbi.1999.3147] [PMID: 10543949]
[60]
Lovejoy, B.; Welch, A.R.; Carr, S.; Luong, C.; Broka, C.; Hendricks, R.T.; Campbell, J.A.; Walker, K.A.; Martin, R.; Van Wart, H.; Browner, M.F. Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors. Nat. Struct. Biol., 1999, 6(3), 217-221.
[http://dx.doi.org/10.1038/6657] [PMID: 10074939]
[61]
Moy, F.J.; Chanda, P.K.; Chen, J.M.; Cosmi, S.; Edris, W.; Skotnicki, J.S.; Wilhelm, J.; Powers, R. NMR solution structure of the catalytic fragment of human fibroblast collagenase complexed with a sulfonamide derivative of a hydroxamic acid compound. Biochemistry, 1999, 38(22), 7085-7096.
[http://dx.doi.org/10.1021/bi982576v] [PMID: 10353819]
[62]
Brandstetter, H.; Grams, F.; Glitz, D.; Lang, A.; Huber, R.; Bode, W.; Krell, H.W.; Engh, R.A. The 1.8-A crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. J. Biol. Chem., 2001, 276(20), 17405-17412.
[http://dx.doi.org/10.1074/jbc.M007475200] [PMID: 11278347]
[63]
Dunten, P.; Kammlott, U.; Crowther, R.; Levin, W.; Foley, L.H.; Wang, P.; Palermo, R. X-ray structure of a novel matrix metalloproteinase inhibitor complexed to stromelysin. Protein Sci., 2001, 10(5), 923-926.
[http://dx.doi.org/10.1110/ps.48401] [PMID: 11316871]
[64]
Gall, A.L.; Ruff, M.; Kannan, R.; Cuniasse, P.; Yiotakis, A.; Dive, V.; Rio, M.C.; Basset, P.; Moras, D. Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state. J. Mol. Biol., 2001, 307(2), 577-586.
[http://dx.doi.org/10.1006/jmbi.2001.4493] [PMID: 11254383]
[65]
Lang, R.; Kocourek, A.; Braun, M.; Tschesche, H.; Huber, R.; Bode, W.; Maskos, K. Substrate specificity determinants of human macrophage elastase (MMP-12) based on the 1.1 A crystal structure. J. Mol. Biol., 2001, 312(4), 731-742.
[http://dx.doi.org/10.1006/jmbi.2001.4954] [PMID: 11575928]
[66]
Bertini, I.; Calderone, V.; Fragai, M.; Luchinat, C.; Mangani, S.; Terni, B. Crystal structure of the catalytic domain of human matrix metalloproteinase 10. J. Mol. Biol., 2004, 336(3), 707-716.
[http://dx.doi.org/10.1016/j.jmb.2003.12.033] [PMID: 15095982]
[67]
Bertini, I.; Calderone, V.; Cosenza, M.; Fragai, M.; Lee, Y-M.; Luchinat, C.; Mangani, S.; Terni, B.; Turano, P. Conformational variability of MMPs: beyond a single 3D structure. Proc. Natl. Acad. Sci. USA, 2005, 102(15), 5334-5339.
[http://dx.doi.org/10.1073/pnas.0407106102] [PMID: 15809432]
[68]
Bertini, I.; Calderone, V.; Fragai, M.; Luchinat, C.; Maletta, M.; Yeo, K.J. Snapshots of the reaction mechanism of matrix metalloproteinases. Angew. Chem. Int. Ed. Engl., 2006, 45(47), 7952-7955.
[http://dx.doi.org/10.1002/anie.200603100] [PMID: 17096442]
[69]
Bertini, I.; Calderone, V.; Fragai, M.; Giachetti, A.; Loconte, M.; Luchinat, C.; Maletta, M.; Nativi, C.; Yeo, K.J. Exploring the subtleties of drug-receptor interactions: the case of matrix metalloproteinases. J. Am. Chem. Soc., 2007, 129(9), 2466-2475.
[http://dx.doi.org/10.1021/ja065156z] [PMID: 17269766]
[70]
Maskos, K. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie, 2005, 87(3-4), 249-263.
[http://dx.doi.org/10.1016/j.biochi.2004.11.019] [PMID: 15781312]
[71]
Jozic, D.; Bourenkov, G.; Lim, N.H.; Visse, R.; Nagase, H.; Bode, W.; Maskos, K. X-ray structure of human proMMP-1: new insights into procollagenase activation and collagen binding. J. Biol. Chem., 2005, 280(10), 9578-9585.
[http://dx.doi.org/10.1074/jbc.M411084200] [PMID: 15611040]
[72]
Iyer, S.; Visse, R.; Nagase, H.; Acharya, K.R. Crystal structure of an active form of human MMP-1. J. Mol. Biol., 2006, 362(1), 78-88.
[http://dx.doi.org/10.1016/j.jmb.2006.06.079] [PMID: 16890240]
[73]
Morgunova, E.; Tuuttila, A.; Bergmann, U.; Isupov, M.; Lindqvist, Y.; Schneider, G.; Tryggvason, K. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science, 1999, 284(5420), 1667-1670.
[http://dx.doi.org/10.1126/science.284.5420.1667] [PMID: 10356396]
[74]
Bertini, I.; Calderone, V.; Fragai, M.; Jaiswal, R.; Luchinat, C.; Melikian, M.; Mylonas, E.; Svergun, D.I. Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP-12. J. Am. Chem. Soc., 2008, 130(22), 7011-7021.
[http://dx.doi.org/10.1021/ja710491y] [PMID: 18465858]
[75]
Bertini, I.; Fragai, M.; Luchinat, C.; Melikian, M.; Mylonas, E.; Sarti, N.; Svergun, D.I. Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1). J. Biol. Chem., 2009, 284(19), 12821-12828.
[http://dx.doi.org/10.1074/jbc.M809627200] [PMID: 19282283]
[76]
Rosenblum, G.; Van den Steen, P.E.; Cohen, S.R.; Grossmann, J.G.; Frenkel, J.; Sertchook, R.; Slack, N.; Strange, R.W.; Opdenakker, G.; Sagi, I. Insights into the structure and domain flexibility of full-length pro-matrix metalloproteinase-9/gelatinase B. Structure, 2007, 15(10), 1227-1236.
[http://dx.doi.org/10.1016/j.str.2007.07.019] [PMID: 17937912]
[77]
Cerofolini, L.; Fields, G.B.; Fragai, M.; Geraldes, C.F.; Luchinat, C.; Parigi, G.; Ravera, E.; Svergun, D.I.; Teixeira, J.M. Examination of matrix metalloproteinase-1 in solution: a preference for the pre-collagenolysis state. J. Biol. Chem., 2013, 288(42), 30659-30671.
[http://dx.doi.org/10.1074/jbc.M113.477240] [PMID: 24025334]
[78]
Wise, S.G.; Weiss, A.S. Tropoelastin. Int. J. Biochem. Cell Biol., 2009, 41(3), 494-497.
[http://dx.doi.org/10.1016/j.biocel.2008.03.017] [PMID: 18468477]
[79]
Fields, G.B. Interstitial collagen catabolism. J. Biol. Chem., 2013, 288(13), 8785-8793.
[http://dx.doi.org/10.1074/jbc.R113.451211] [PMID: 23430258]
[80]
Badylak, S.F.; Freytes, D.O.; Gilbert, T.W. Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomater., 2009, 5(1), 1-13.
[http://dx.doi.org/10.1016/j.actbio.2008.09.013] [PMID: 18938117]
[81]
Quan, B.D.; Sone, E.D. Cryo-TEM analysis of collagen fibrillar structure. Methods Enzymol., 2013, 532, 189-205.
[http://dx.doi.org/10.1016/B978-0-12-416617-2.00009-6] [PMID: 24188768]
[82]
Muiznieks, L.D.; Keeley, F.W. Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. Biochim. Biophys. Acta, 2013, 1832(7), 866-875.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.022] [PMID: 23220448]
[83]
Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1)a004978
[http://dx.doi.org/10.1101/cshperspect.a004978] [PMID: 21421911]
[84]
Orgel, J.P.; Antipova, O.; Sagi, I.; Bitler, A.; Qiu, D.; Wang, R.; Xu, Y.; San Antonio, J.D. Collagen fibril surface displays a constellation of sites capable of promoting fibril assembly, stability, and hemostasis. Connect. Tissue Res., 2011, 52(1), 18-24.
[http://dx.doi.org/10.3109/03008207.2010.511354] [PMID: 21117898]
[85]
Canty, E.G.; Kadler, K.E. Procollagen trafficking, processing and fibrillogenesis. J. Cell Sci., 2005, 118(Pt 7), 1341-1353.
[http://dx.doi.org/10.1242/jcs.01731] [PMID: 15788652]
[86]
Gordon, M.K.; Hahn, R.A. Collagens. Cell Tissue Res., 2010, 339(1), 247-257.
[http://dx.doi.org/10.1007/s00441-009-0844-4] [PMID: 19693541]
[87]
Baum, J.; Brodsky, B. Real-time NMR investigations of triple-helix folding and collagen folding diseases. Fold. Des., 1997, 2(4), R53-R60.
[http://dx.doi.org/10.1016/S1359-0278(97)00028-X] [PMID: 9269560]
[88]
Buevich, A.V.; Shinde, U.P.; Inouye, M.; Baum, J. Backbone dynamics of the natively unfolded pro-peptide of subtilisin by heteronuclear NMR relaxation studies. J. Biomol. NMR, 2001, 20(3), 233-249.
[http://dx.doi.org/10.1023/A:1011243116136] [PMID: 11519747]
[89]
Li, M.H.; Fan, P.; Brodsky, B.; Baum, J. Two-dimensional NMR assignments and conformation of (Pro-Hyp-Gly)10 and a designed collagen triple-helical peptide. Biochemistry, 1993, 32(29), 7377-7387.
[http://dx.doi.org/10.1021/bi00080a007] [PMID: 8338835]
[90]
Xiao, J.X.; Lauer-Fields, J.L.; Fields, G.B.; Baum, J. Local conformation and dynamics of isoleucine in the collagenase cleavage site provide a recognition signal for matrix metalloproteinases. J. Biol. Chem., 2010, 236(44), 34181-34190.
[http://dx.doi.org/10.1074/jbc.M110.128355] [PMID: 20679339]
[91]
Muiznieks, L.D.; Weiss, A.S. Flexibility in the solution structure of human tropoelastin. Biochemistry, 2007, 46(27), 8196-8205.
[http://dx.doi.org/10.1021/bi700139k]] [PMID: 17567153]
[92]
Rosenbloom, J.; Abrams, W.R.; Mecham, R. Extracellular matrix 4: the elastic fiber. FASEB J., 1993, 7(13), 1208-1218.
[http://dx.doi.org/10.1096/fasebj.7.13.8405806] [PMID: 8405806]
[93]
Mithieux, S.M.; Weiss, A.S. Elastin. Adv. Protein Chem., 2005, 70, 437-461.
[http://dx.doi.org/10.1016/S0065-3233(05)70013-9] [PMID: 15837523]
[94]
Muiznieks, L.D.; Weiss, A.S.; Keeley, F.W. Structural disorder and dynamics of elastin. Biochem. Cell Biol., 2010, 88(2), 239-250.
[http://dx.doi.org/10.1139/O09-161] [PMID: 20453927]
[95]
Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17, 463-516.
[http://dx.doi.org/10.1146/annurev.cellbio.17.1.463] [PMID: 11687497]
[96]
Steffensen, B.; Wallon, U.M.; Overall, C.M. Extracellular matrix binding properties of recombinant fibronectin type II-like modules of human 72-kDa gelatinase/type IV collagenase. High affinity binding to native type I collagen but not native type IV collagen. J. Biol. Chem., 1995, 270(19), 11555-11566.
[http://dx.doi.org/10.1074/jbc.270.19.11555] [PMID: 7744795]
[97]
Strongin, A.Y.; Collier, I.E.; Krasnov, P.A.; Genrich, L.T.; Marmer, B.L.; Goldberg, G.I. Human 92 kDa type IV collagenase: functional analysis of fibronectin and carboxyl-end domains. Kidney Int., 1993, 43(1), 158-162.
[http://dx.doi.org/10.1038/ki.1993.26] [PMID: 8433555]
[98]
Elkins, P.A.; Ho, Y.S.; Smith, W.W.; Janson, C.A.; D’Alessio, K.J.; McQueney, M.S.; Cummings, M.D.; Romanic, A.M. Structure of the C-terminally truncated human ProMMP9, a gelatin-binding matrix metalloproteinase. Acta Crystallogr. D Biol. Crystallogr., 2002, 58(Pt 7), 1182-1192.
[http://dx.doi.org/10.1107/S0907444902007849] [PMID: 12077439]
[99]
Itoh, Y.; Kajita, M.; Kinoh, H.; Mori, H.; Okada, A.; Seiki, M. Membrane type 4 matrix metalloproteinase (MT4- MMP, MMP-17) is a glycosylphosphatidylinositolanchored proteinase. J. Biol. Chem, 1999, 274(48), 34260-34266.
[http://dx.doi.org/10.1074/jbc.274.48.34260] [PMID: 10567400]
[100]
Itoh, Y. Membrane-type matrix metalloproteinases: Their functions and regulations. Matrix Biol., 2015, 44-46, 207-223.
[http://dx.doi.org/10.1016/j.matbio.2015.03.004] [PMID: 25794647]
[101]
Overall, C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol., 2002, 22(1), 51-86.
[http://dx.doi.org/10.1385/MB:22:1:051] [PMID: 12353914]
[102]
Aureli, L.; Gioia, M.; Cerbara, I.; Monaco, S.; Fasciglione, G.F.; Marini, S.; Ascenzi, P.; Topai, A.; Coletta, M. Structural bases for substrate and inhibitor recognition by matrix metalloproteinases. Curr. Med. Chem., 2008, 15(22), 2192-2222.
[http://dx.doi.org/10.2174/092986708785747490] [PMID: 18781944]
[103]
Gioia, M.; Fasciglione, G.F.; Marini, S.; D’Alessio, S.; De Sanctis, G.; Diekmann, O.; Pieper, M.; Politi, V.; Tschesche, H.; Coletta, M. Modulation of the catalytic activity of neutrophil collagenase MMP-8 on bovine collagen I. Role of the activation cleavage and of the hemopexin-like domain. J. Biol. Chem., 2002, 277(26), 23123-23130.
[http://dx.doi.org/10.1074/jbc.M110873200] [PMID: 11953425]
[104]
Piccard, H.; Van den Steen, P.E.; Opdenakker, G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J. Leukoc. Biol., 2007, 81(4), 870-892.
[http://dx.doi.org/10.1189/jlb.1006629] [PMID: 17185359]
[105]
Bertini, I.; Fragai, M.; Luchinat, C.; Melikian, M.; Toccafondi, M.; Lauer, J.L.; Fields, G.B. Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis. J. Am. Chem. Soc., 2012, 134(4), 2100-2110.
[http://dx.doi.org/10.1021/ja208338j] [PMID: 22239621]
[106]
Allan, J.A.; Docherty, A.J.; Barker, P.J.; Huskisson, N.S.; Reynolds, J.J.; Murphy, G. Binding of gelatinases A and B to type-I collagen and other matrix components. Biochem. J., 1995, 309(Pt 1), 299-306.
[http://dx.doi.org/10.1042/bj3090299] [PMID: 7619071]
[107]
Gioia, M.; Monaco, S.; Fasciglione, G.F.; Coletti, A.; Modesti, A.; Marini, S.; Coletta, M. Characterization of the mechanisms by which gelatinase A, neutrophil collagenase, and membrane-type metalloproteinase MMP-14 recognize collagen I and enzymatically process the two alpha-chains. J. Mol. Biol., 2007, 368(4), 1101-1113.
[http://dx.doi.org/10.1016/j.jmb.2007.02.076] [PMID: 17379243]
[108]
Matrisian, L.M.; Bowden, G.T. Stromelysin/transin and tumor progression. Semin. Cancer Biol., 1990, 1(2), 107-115.

[PMID: 2103488]
[109]
Van Doren, S.R. Matrix metalloproteinase interactions with collagen and elastin. Matrix Biol., 2015, 44-46, 224-231.
[http://dx.doi.org/10.1016/j.matbio.2015.01.005] [PMID: 25599938]
[110]
Bertini, I.; Fragai, M.; Luchinat, C.; Melikian, M.; Venturi, C. Characterisation of the MMP-12-elastin adduct. Chemistry, 2009, 15(32), 7842-7845.
[http://dx.doi.org/10.1002/chem.200901009] [PMID: 19609998]
[111]
Taddese, S.; Weiss, A.S.; Jahreis, G.; Neubert, R.H.; Schmelzer, C.E. In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biol., 2009, 28(2), 84-91.
[http://dx.doi.org/10.1016/j.matbio.2008.12.002] [PMID: 19144321]
[112]
Taddese, S.; Weiss, A.S.; Neubert, R.H.; Schmelzer, C.E. Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biol., 2008, 27(5), 420-428.
[http://dx.doi.org/10.1016/j.matbio.2008.02.001] [PMID: 18334288]
[113]
Mecham, R.P.; Broekelmann, T.J.; Fliszar, C.J.; Shapiro, S.D.; Welgus, H.G.; Senior, R.M. Elastin degradation by matrix metalloproteinases. Cleavage site specificity and mechanisms of elastolysis. J. Biol. Chem., 1997, 272(29), 18071-18076.
[http://dx.doi.org/10.1074/jbc.272.29.18071] [PMID: 9218437]
[114]
Bode, W.; Maskos, K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol. Chem., 2003, 384(6), 863-872.
[http://dx.doi.org/10.1515/BC.2003.097]] [PMID: 12887053]
[115]
Overall, C.M. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol., 2002, 22(1), 51-86.
[http://dx.doi.org/10.1385/MB:22:1:051] [PMID: 12353914]
[116]
Fragai, M.; Luchinat, C. Matrix metalloproteinase: from strucutre to function: Matrix metalloproteinase biology; Irit. S.; Jean, P.G., Eds.; Wiley & Sons: New York, 2015, 3, 41- 60. [http://dx.doi.org/10.1002/9781118772287.ch3]
[117]
Bertini, I.; Fragai, M.; Luchinat, C. Intra- and interdomain flexibility in matrix metalloproteinases: functional aspects and drug design. Curr. Pharm. Des., 2009, 15(31), 3592-3605.
[http://dx.doi.org/10.2174/138161209789271852] [PMID: 19925414]
[118]
Pirard, B. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov. Today, 2007, 12(15-16), 640-646.
[http://dx.doi.org/10.1016/j.drudis.2007.06.003] [PMID: 17706545]
[119]
Bertini, I.; Fragai, M.; Giachetti, A.; Luchinat, C.; Maletta, M.; Parigi, G.; Yeo, K.J. Combining in silico tools and NMR data to validate protein-ligand structural models: application to matrix metalloproteinases. J. Med. Chem., 2005, 48(24), 7544-7559.
[http://dx.doi.org/10.1021/jm050574k] [PMID: 16302796]
[120]
Czarny, B.; Stura, E.A.; Devel, L.; Vera, L.; Cassar-Lajeunesse, E.; Beau, F.; Calderone, V.; Fragai, M.; Luchinat, C.; Dive, V. Molecular determinants of a selective matrix metalloprotease-12 inhibitor: insights from crystallography and thermodynamic studies. J. Med. Chem., 2013, 56(3), 1149-1159.
[http://dx.doi.org/10.1021/jm301574d] [PMID: 23343195]
[121]
Li, J.; Brick, P.; O’Hare, M.C.; Skarzynski, T.; Lloyd, L.F.; Curry, V.A.; Clark, I.M.; Bigg, H.F.; Hazleman, B.L.; Cawston, T.E.; Blow, D.M. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed beta-propeller. Structure, 1995, 3(6), 541-549.
[http://dx.doi.org/10.1016/S0969-2126(01)00188-5] [PMID: 8590015]
[122]
Bertini, I.; Calderone, V.; Cerofolini, L.; Fragai, M.; Geraldes, C.F.; Hermann, P.; Luchinat, C.; Parigi, G.; Teixeira, J.M. The catalytic domain of MMP-1 studied through tagged lanthanides. FEBS Lett., 2012, 586(5), 557-567.
[http://dx.doi.org/10.1016/j.febslet.2011.09.020] [PMID: 21945315]
[123]
Fragai, M.; Luchinat, C.; Parigi, G. “Four-dimensional” protein structures: examples from metalloproteins. Acc. Chem. Res., 2006, 39(12), 909-917.
[http://dx.doi.org/10.1021/ar050103s] [PMID: 17176029]
[124]
De Souza, S.J.; Pereira, H.M.; Jacchieri, S.; Brentani, R.R. Collagen/collagenase interaction: does the enzyme mimic the conformation of its own substrate? FASEB J., 1996, 10(8), 927-930.
[http://dx.doi.org/10.1096/fasebj.10.8.8666171] [PMID: 8666171]
[125]
Chung, L.; Dinakarpandian, D.; Yoshida, N.; Lauer-Fields, J.L.; Fields, G.B.; Visse, R.; Nagase, H. Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis. EMBO J., 2004, 23(15), 3020-3030.
[http://dx.doi.org/10.1038/sj.emboj.7600318] [PMID: 15257288]
[126]
Murphy, G.; Allan, J.A.; Willenbrock, F.; Cockett, M.I.; O’Connell, J.P.; Docherty, A.J. The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem., 1992, 267(14), 9612-9618.
[PMID: 1315762]
[127]
McCawley, L.J.; Matrisian, L.M. Matrix metalloproteinases: multifunctional contributors to tumor progression. Mol. Med. Today, 2000, 6(4), 149-156.
[http://dx.doi.org/10.1016/S1357-4310(00)01686-5] [PMID: 10740253]
[128]
Bigg, H.F.; Rowan, A.D.; Barker, M.D.; Cawston, T.E. Activity of matrix metalloproteinase-9 against native collagen types I and III. FEBS J., 2007, 274(5), 1246-1255.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05669.x] [PMID: 17298441]
[129]
Clark, I.M.; Cawston, T.E. Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J., 1989, 263(1), 201-206.
[http://dx.doi.org/10.1042/bj2630201] [PMID: 2557822]
[130]
Knäuper, V.; Cowell, S.; Smith, B.; López-Otin, C.; O’Shea, M.; Morris, H.; Zardi, L.; Murphy, G. The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J. Biol. Chem., 1997, 272(12), 7608-7616.
[http://dx.doi.org/10.1074/jbc.272.12.7608] [PMID: 9065415]
[131]
Knäuper, V.; Wilhelm, S.M.; Seperack, P.K.; DeClerck, Y.A.; Langley, K.E.; Osthues, A.; Tschesche, H. Direct activation of human neutrophil procollagenase by recombinant stromelysin. Biochem. J., 1993, 295(Pt 2), 581-586.
[http://dx.doi.org/10.1042/bj2950581] [PMID: 8240261]
[132]
Ohuchi, E.; Imai, K.; Fujii, Y.; Sato, H.; Seiki, M.; Okada, Y. Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J. Biol. Chem., 1997, 272(4), 2446-2451.
[http://dx.doi.org/10.1074/jbc.272.4.2446] [PMID: 8999957]
[133]
Hurst, D.R.; Schwartz, M.A.; Ghaffari, M.A.; Jin, Y.; Tschesche, H.; Fields, G.B.; Sang, Q.X. Catalytic- and ecto-domains of membrane type 1-matrix metalloproteinase have similar inhibition profiles but distinct endopeptidase activities. Biochem. J., 2004, 377(Pt 3), 775-779.
[http://dx.doi.org/10.1042/bj20031067] [PMID: 14533979]
[134]
Hirose, T.; Patterson, C.; Pourmotabbed, T.; Mainardi, C.L.; Hasty, K.A. Structure-function relationship of human neutrophil collagenase: identification of regions responsible for substrate specificity and general proteinase activity. Proc. Natl. Acad. Sci. USA, 1993, 90(7), 2569-2573.
[http://dx.doi.org/10.1073/pnas.90.7.2569] [PMID: 8464863]
[135]
Chung, L.; Shimokawa, K.; Dinakarpandian, D.; Grams, F.; Fields, G.B.; Nagase, H. Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloproteinase 1 for the expression of collagenolytic activity. J. Biol. Chem., 2000, 275(38), 29610-29617.
[http://dx.doi.org/10.1074/jbc.M004039200] [PMID: 10871619]
[136]
Iyer, S.; Visse, R.; Nagase, H.; Acharya, K.R. Crystal structure of an active form of human MMP-1. J. Mol. Biol., 2006, 362(1), 78-88.
[http://dx.doi.org/10.1016/j.jmb.2006.06.079] [PMID: 16890240]
[137]
Manka, S.W.; Carafoli, F.; Visse, R.; Bihan, D.; Raynal, N.; Farndale, R.W.; Murphy, G.; Enghild, J.J.; Hohenester, E.; Nagase, H. Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1. Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12461-12466.
[http://dx.doi.org/10.1073/pnas.1204991109] [PMID: 22761315]
[138]
Cerofolini, L.; Amar, S.; Lauer, J.L.; Martelli, T.; Fragai, M.; Luchinat, C.; Fields, G.B. Bilayer membrane modulation of membrane type 1 matrix metalloproteinase (MT1-MMP) Structure and proteolytic activity. Sci. Rep., 2016, 6, 29511.
[http://dx.doi.org/10.1038/srep29511] [PMID: 27405411]
[139]
Zhao, Y.; Marcink, T.C.; Sanganna Gari, R.R.; Marsh, B.P.; King, G.M.; Stawikowska, R.; Fields, G.B.; Van Doren, S.R. Transient collagen triple helix binding to a key metalloproteinase in invasion and development. Structure, 2015, 23(2), 257-269.
[http://dx.doi.org/10.1016/j.str.2014.11.021] [PMID: 25651059]
[140]
Marcink, T.C.; Koppisetti, R.K.; Fulcher, Y.G.; Van Doren, S.R. Mapping lipid bilayer recognition sites of metalloproteinases and other prospective peripheral membrane proteins. Methods Mol. Biol., 2017, 1579, 61-86.
[http://dx.doi.org/10.1007/978-1-4939-6863-3_5] [PMID: 28299733]
[141]
Van Doren, S.R.; Marcink, T.C.; Koppisetti, R.K.; Jurkevich, A.; Fulcher, Y.G. Peripheral membrane associations of matrix metalloproteinases. Biochim. Biophys. Acta Mol. Cell Res., 2017, 1864(11 Pt A), 1964-1973.
[http://dx.doi.org/10.1016/j.bbamcr.2017.04.013] [PMID: 28442379]
[142]
Karabencheva-Christova, T.G.; Christov, C.Z.; Fields, G.B. Collagenolytic matrix metalloproteinase structure-function relationships: insights from molecular dynamics studies. Adv. Protein Chem. Struct. Biol., 2017, 109, 1-24.
[http://dx.doi.org/10.1016/bs.apcsb.2017.04.001] [PMID: 28683915]
[143]
Shuo, T.; Koshikawa, N.; Hoshino, D.; Minegishi, T.; Ao-Kondo, H.; Oyama, M.; Sekiya, S.; Iwamoto, S.; Tanaka, K.; Seiki, M. Detection of the heterogeneous O-glycosylation profile of MT1-MMP expressed in cancer cells by a simple MALDI-MS method. PLoS One, 2012, 7(8)e43751
[http://dx.doi.org/10.1371/journal.pone.0043751] [PMID: 22928028]
[144]
Wu, Y.I.; Munshi, H.G.; Sen, R.; Snipas, S.J.; Salvesen, G.S.; Fridman, R.; Stack, M.S. Glycosylation broadens the substrate profile of membrane type 1 matrix metalloproteinase. J. Biol. Chem., 2004, 279(9), 8278-8289.
[http://dx.doi.org/10.1074/jbc.M311870200] [PMID: 14670950]
[145]
Fields, G.B. A model for interstitial collagen catabolism by mammalian collagenases. J. Theor. Biol., 1991, 153(4), 585-602.
[http://dx.doi.org/10.1016/S0022-5193(05)80157-2] [PMID: 1666905]
[146]
Tam, E.M.; Moore, T.R.; Butler, G.S.; Overall, C.M. Characterization of the distinct collagen binding, helicase and cleavage mechanisms of matrix metalloproteinase 2 and 14 (gelatinase A and MT1-MMP): the differential roles of the MMP hemopexin c domains and the MMP-2 fibronectin type II modules in collagen triple helicase activities. J. Biol. Chem., 2004, 279(41), 43336-43344.
[http://dx.doi.org/10.1074/jbc.M407186200] [PMID: 15292230]
[147]
Adhikari, A.S.; Chai, J.; Dunn, A.R. Mechanical load induces a 100-fold increase in the rate of collagen proteolysis by MMP-1. J. Am. Chem. Soc., 2011, 133(6), 1686-1689.
[http://dx.doi.org/10.1021/ja109972p] [PMID: 21247159]
[148]
O’Farrell, T.J.; Guo, R.; Hasegawa, H.; Pourmotabbed, T. Matrix metalloproteinase-1 takes advantage of the induced fit mechanism to cleave the triple-helical type I collagen molecule. Biochemistry, 2006, 45(51), 15411-15418.
[http://dx.doi.org/10.1021/bi060849d] [PMID: 17176063]
[149]
Han, S.; Makareeva, E.; Kuznetsova, N.V.; DeRidder, A.M.; Sutter, M.B.; Losert, W.; Phillips, C.L.; Visse, R.; Nagase, H.; Leikin, S. Molecular mechanism of type I collagen homotrimer resistance to mammalian collagenases. J. Biol. Chem., 2010, 285(29), 22276-22281.
[http://dx.doi.org/10.1074/jbc.M110.102079] [PMID: 20463013]
[150]
Salsas-Escat, R.; Nerenberg, P.S.; Stultz, C.M. Cleavage site specificity and conformational selection in type I collagen degradation. Biochemistry, 2010, 49(19), 4147-4158.
[http://dx.doi.org/10.1021/bi9021473] [PMID: 20394413]
[151]
Lauer-Fields, J.L.; Tuzinski, K.A.; Shimokawa, Ki.; Nagase, H.; Fields, G.B. Hydrolysis of triple-helical collagen peptide models by matrix metalloproteinases. J. Biol. Chem., 2000, 275(18), 13282-13290.
[http://dx.doi.org/10.1074/jbc.275.18.13282] [PMID: 10788434]
[152]
Lauer-Fields, J.L.; Sritharan, T.; Stack, M.S.; Nagase, H.; Fields, G.B. Selective hydrolysis of triple-helical substrates by matrix metalloproteinase-2 and -9. J. Biol. Chem., 2003, 278(20), 18140-18145.
[http://dx.doi.org/10.1074/jbc.M211330200] [PMID: 12642591]
[153]
Lauer-Fields, J.L.; Kele, P.; Sui, G.; Nagase, H.; Leblanc, R.M.; Fields, G.B. Analysis of matrix metalloproteinase triple-helical peptidase activity with substrates incorporating fluorogenic L- or D-amino acids. Anal. Biochem., 2003, 321(1), 105-115.
[http://dx.doi.org/10.1016/S0003-2697(03)00460-3] [PMID: 12963061]
[154]
Fields, G.B. Synthesis and biological applications of collagen-model triple-helical peptides. Org. Biomol. Chem., 2010, 8(6), 1237-1258.
[http://dx.doi.org/10.1039/b920670a] [PMID: 20204190]
[155]
Clark, I.M.; Cawston, T.E. Fragments of human fibroblast collagenase. Purification and characterization. Biochem. J., 1989, 263(1), 201-206.
[http://dx.doi.org/10.1042/bj2630201] [PMID: 2557822]
[156]
Murphy, G.; Allan, J.A.; Willenbrock, F.; Cockett, M.I.; O’Connell, J.P.; Docherty, A.J. The role of the C-terminal domain in collagenase and stromelysin specificity. J. Biol. Chem., 1992, 267(14), 9612-9618.
[PMID: 1315762]
[157]
Ottl, J.; Gabriel, D.; Murphy, G.; Knäuper, V.; Tominaga, Y.; Nagase, H.; Kröger, M.; Tschesche, H.; Bode, W.; Moroder, L. Recognition and catabolism of synthetic heterotrimeric collagen peptides by matrix metalloproteinases. Chem. Biol., 2000, 7(2), 119-132.
[http://dx.doi.org/10.1016/S1074-5521(00)00077-6] [PMID: 10662694]
[158]
Jozic, D.; Bourenkov, G.; Lim, N.H.; Visse, R.; Nagase, H.; Bode, W.; Maskos, K. X-ray structure of human proMMP-1: new insights into procollagenase activation and collagen binding. J. Biol. Chem., 2005, 280(10), 9578-9585.
[http://dx.doi.org/10.1074/jbc.M411084200] [PMID: 15611040]
[159]
Arnold, L.H.; Butt, L.E.; Prior, S.H.; Read, C.M.; Fields, G.B.; Pickford, A.R. The interface between catalytic and hemopexin domains in matrix metalloproteinase-1 conceals a collagen binding exosite. J. Biol. Chem., 2011, 286(52), 45073-45082.
[http://dx.doi.org/10.1074/jbc.M111.285213] [PMID: 22030392]
[160]
Díaz, N.; Suárez, D.; Valdés, H. From the X-ray compact structure to the elongated form of the full-length MMP-2 enzyme in solution: a molecular dynamics study. J. Am. Chem. Soc., 2008, 130(43), 14070-14071.
[http://dx.doi.org/10.1021/ja806090v] [PMID: 18834122]
[161]
Overall, C.M.; Butler, G.S. Protease yoga: extreme flexibility of a matrix metalloproteinase. Structure, 2007, 15(10), 1159-1161.
[http://dx.doi.org/10.1016/j.str.2007.10.001] [PMID: 17937904]
[162]
Saffarian, S.; Collier, I.E.; Marmer, B.L.; Elson, E.L.; Goldberg, G. Interstitial collagenase is a Brownian ratchet driven by proteolysis of collagen. Science, 2004, 306(5693), 108-111.
[http://dx.doi.org/10.1126/science.1099179] [PMID: 15459390]
[163]
Bertini, I.; Gupta, Y.K.; Luchinat, C.; Parigi, G.; Peana, M.; Sgheri, L.; Yuan, J. Paramagnetism-based NMR restraints provide maximum allowed probabilities for the different conformations of partially independent protein domains. J. Am. Chem. Soc., 2007, 129(42), 12786-12794.
[http://dx.doi.org/10.1021/ja0726613] [PMID: 17910448]
[164]
Bertini, I.; Giachetti, A.; Luchinat, C.; Parigi, G.; Petoukhov, M.V.; Pierattelli, R.; Ravera, E.; Svergun, D.I. Conformational space of flexible biological macromolecules from average data. J. Am. Chem. Soc., 2010, 132(38), 13553-13558.
[http://dx.doi.org/10.1021/ja1063923] [PMID: 20822180]
[165]
Bertini, I.; Luchinat, C.; Nagulapalli, M.; Parigi, G.; Ravera, E. Paramagnetic relaxation enhancement for the characterization of the conformational heterogeneity in two-domain proteins. Phys. Chem. Chem. Phys., 2012, 14(25), 9149-9156.
[http://dx.doi.org/10.1039/c2cp40139h] [PMID: 22622816]
[166]
Grossman, M.; Born, B.; Heyden, M.; Tworowski, D.; Fields, G.B.; Sagi, I.; Havenith, M. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat. Struct. Mol. Biol., 2011, 18(10), 1102-1108.
[http://dx.doi.org/10.1038/nsmb.2120] [PMID: 21926991]
[167]
Bhaskaran, R.; Palmier, M.O.; Lauer-Fields, J.L.; Fields, G.B.; Van Doren, S.R. MMP-12 catalytic domain recognizes triple helical peptide models of collagen V with exosites and high activity. J. Biol. Chem., 2008, 283(31), 21779-21788.
[http://dx.doi.org/10.1074/jbc.M709966200] [PMID: 18539597]
[168]
Stetler-Stevenson, W.G.; Hewitt, R.; Corcoran, M. Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic. Semin. Cancer Biol., 1996, 7(3), 147-154.
[http://dx.doi.org/10.1006/scbi.1996.0020] [PMID: 8773300]
[169]
Grasso, G.; D’Agata, R.; Rizzarelli, E.; Spoto, G.; D’Andrea, L.; Pedone, C.; Picardi, A.; Romanelli, A.; Fragai, M.; Yeo, K.J. Activity of anchored human matrix metalloproteinase-1 catalytic domain on Au (111) surfaces monitored by ESI-MS. J. Mass Spectrom., 2005, 40(12), 1565-1571.
[http://dx.doi.org/10.1002/jms.929] [PMID: 16320288]
[170]
Liotta, L.A.; Tryggvason, K.; Garbisa, S.; Hart, I.; Foltz, C.M.; Shafie, S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 1980, 284(5751), 67-68.
[http://dx.doi.org/10.1038/284067a0] [PMID: 6243750]
[171]
Ossowski, L.; Reich, E. Antibodies to plasminogen activator inhibit human tumor metastasis. Cell, 1983, 35(3 Pt 2), 611-619.
[http://dx.doi.org/10.1016/0092-8674(83)90093-4] [PMID: 6418388]
[172]
Hajduk, P.J.; Sheppard, G.; Nettesheim, D.G.; Olejniczak, E.T.; Shuker, S.B.; Meadows, R.P.; Steinman, D.H.; Carrera, G.M.; Marcotte, P.A.; Severin, J.; Walter, K.; Smith, H.; Gubbins, E.; Simmer, R.; Holzman, T.F.; Morgan, D.W.; Davidsen, S.K.; Summers, J.B.; Fesik, S.W. Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. J. Am. Chem. Soc., 1997, 119(25), 5818-5827.
[http://dx.doi.org/10.1021/ja9702778]
[173]
Koivunen, E.; Arap, W.; Valtanen, H.; Rainisalo, A.; Medina, O.P.; Heikkilä, P.; Kantor, C.; Gahmberg, C.G.; Salo, T.; Konttinen, Y.T.; Sorsa, T.; Ruoslahti, E.; Pasqualini, R. Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol., 1999, 17(8), 768-774.
[http://dx.doi.org/10.1038/11703] [PMID: 10429241]
[174]
Xu, X.; Chen, Z.; Wang, Y.; Bonewald, L.; Steffensen, B. Inhibition of MMP-2 gelatinolysis by targeting exodomain-substrate interactions. Biochem. J., 2007, 406(1), 147-155.
[http://dx.doi.org/10.1042/BJ20070591] [PMID: 17516913]
[175]
Baggio, C.; Cerofolini, L.; Fragai, M.; Luchinat, C.; Pellecchia, M. HTS by NMR for the Identification of Potent and Selective Inhibitors of Metalloenzymes. ACS Med. Chem. Lett., 2018, 9(2), 137-142.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00483] [PMID: 29456802]
[176]
Knight, C.G.; Willenbrock, F.; Murphy, G. A novel coumarin-labelled peptide for sensitive continuous assays of the matrix metalloproteinases. FEBS Lett., 1992, 296(3), 263-266.
[http://dx.doi.org/10.1016/0014-5793(92)80300-6] [PMID: 1537400]
[177]
Grasso, G.; Fragai, M.; Rizzarelli, E.; Spoto, G.; Yeo, K.J.; Yeo, K.J. In situ AP/MALDI-MS characterization of anchored matrix metalloproteinases. J. Mass Spectrom., 2006, 41(12), 1561-1569.
[http://dx.doi.org/10.1002/jms.1126] [PMID: 17094173]
[178]
Fields, G.B. New strategies for targeting matrix metalloproteinases. Matrix Biol., 2015, 44-46, 239-246.
[http://dx.doi.org/10.1016/j.matbio.2015.01.002] [PMID: 25595836]
[179]
Jacobsen, J.A.; Major Jourden, J.L.; Miller, M.T.; Cohen, S.M. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta, 2010, 1803(1), 72-94.
[http://dx.doi.org/10.1016/j.bbamcr.2009.08.006] [PMID: 19712708]
[180]
Fragai, M.; Luchinat, C.; Martelli, T.; Ravera, E.; Sagi, I.; Solomonov, I.; Udi, Y. SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem. Commun. (Camb.), 2014, 50(4), 421-423.
[http://dx.doi.org/10.1039/C3CC46896H] [PMID: 24248259]
[181]
Ravera, E.; Schubeis, T.; Martelli, T.; Fragai, M.; Parigi, G.; Luchinat, C. NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. J. Magn. Reson., 2015, 253, 60-70.
[http://dx.doi.org/10.1016/j.jmr.2014.12.019] [PMID: 25797005]
[182]
Martelli, T.; Ravera, E.; Louka, A.; Cerofolini, L.; Hafner, M.; Fragai, M.; Becker, C.F.; Luchinat, C. Atomic level quality assessment of biosilica encapsulated and autoencapsulated enzymes. Chemistry, 2016, 22(1), 425-432.
[http://dx.doi.org/10.1002/chem.201503613] [PMID: 26625942]
[183]
Ravera, E.; Cerofolini, L.; Martelli, T.; Louka, A.; Fragai, M.; Luchinat, C. 1H detected solid state NMR of proteins entrapped in bioinspired silica: a new tool for biomaterials. Sci. Rep., 2016, 6, 27851.
[http://dx.doi.org/10.1038/srep27851] [PMID: 27279168]
[184]
Balayssac, S.; Bertini, I.; Fälber, K.; Fragai, M.; Jehle, S.; Lelli, M.; Luchinat, C.; Oschkinat, H.; Yeo, K.J. Solid-state NMR of matrix metalloproteinase 12: an approach complementary to solution NMR. ChemBioChem, 2007, 8(5), 486-489.
[http://dx.doi.org/10.1002/cbic.200600408] [PMID: 17300109]
[185]
Ishiguro, N.; Ito, T.; Ito, H.; Iwata, H.; Jugessur, H.; Ionescu, M.; Poole, A.R. Relationship of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover: analyses of synovial fluid from patients with osteoarthritis. Arthritis Rheum., 1999, 42(1), 129-136.
[http://dx.doi.org/10.1002/1529-0131(199901)42:1<129:AID-ANR16>3.0.CO;2-4] [PMID: 9920023]
[186]
Gearing, A.J.; Beckett, P.; Christodoulou, M.; Churchill, M.; Clements, J.; Davidson, A.H.; Drummond, A.H.; Galloway, W.A.; Gilbert, R.; Gordon, J.L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature, 1994, 370(6490), 555-557.
[http://dx.doi.org/10.1038/370555a0] [PMID: 8052310]
[187]
Maeda, A.; Sobel, R.A. Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J. Neuropathol. Exp. Neurol., 1996, 55(3), 300-309.
[http://dx.doi.org/10.1097/00005072-199603000-00005] [PMID: 8786388]
[188]
Rosenberg, G.A. Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist, 2002, 8(6), 586-595.
[http://dx.doi.org/10.1177/1073858402238517] [PMID: 12467380]
[189]
Loftus, I.M.; Naylor, A.R.; Goodall, S.; Crowther, M.; Jones, L.; Bell, P.R.; Thompson, M.M. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke, 2000, 31(1), 40-47.
[http://dx.doi.org/10.1161/01.STR.31.1.40] [PMID: 10625713]
[190]
Whittaker, M.; Floyd, C.D.; Brown, P.; Gearing, A.J. Design and therapeutic application of matrix metalloproteinase inhibitors. Chem. Rev., 1999, 99(9), 2735-2776.
[http://dx.doi.org/10.1021/cr9804543] [PMID: 11749499]
[191]
Verma, R.P. Hydroxamic acids as matrix metalloproteinase inhibitors. Exp. Suppl., 2012, 103, 137-176.
[http://dx.doi.org/ 10.1007/978-3-0348-0364-9_5] [PMID: 22642192]
[192]
Sledge, G.W., Jr; Qulali, M.; Goulet, R.; Bone, E.A.; Fife, R. Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. J. Natl. Cancer Inst., 1995, 87(20), 1546-1550.
[http://dx.doi.org/10.1093/jnci/87.20.1546] [PMID: 7563189]
[193]
Macaulay, V.M.; O’Byrne, K.J.; Saunders, M.P.; Braybrooke, J.P.; Long, L.; Gleeson, F.; Mason, C.S.; Harris, A.L.; Brown, P.; Talbot, D.C. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin. Cancer Res., 1999, 5(3), 513-520.
[PMID: 10100701]
[194]
Eccles, S.A.; Box, G.M.; Court, W.J.; Bone, E.A.; Thomas, W.; Brown, P.D. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res., 1996, 56(12), 2815-2822.
[PMID: 8665519]
[195]
Low, J.A.; Johnson, M.D.; Bone, E.A.; Dickson, R.B. The matrix metalloproteinase inhibitor batimastat (BB-94) retards human breast cancer solid tumor growth but not ascites formation in nude mice. Clin. Cancer Res., 1996, 2(7), 1207-1214.

[PMID: 9816289]
[196]
Watson, S.A.; Morris, T.M.; Robinson, G.; Crimmin, M.J.; Brown, P.D.; Hardcastle, J.D. Inhibition of organ invasion by the matrix metalloproteinase inhibitor batimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Res., 1995, 55(16), 3629-3633.
[PMID: 7627972]
[197]
Chirivi, R.G.; Garofalo, A.; Crimmin, M.J.; Bawden, L.J.; Stoppacciaro, A.; Brown, P.D.; Giavazzi, R. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int. J. Cancer, 1994, 58(3), 460-464.
[http://dx.doi.org/10.1002/ijc.2910580326] [PMID: 8050828]
[198]
Taraboletti, G.; Garofalo, A.; Belotti, D.; Drudis, T.; Borsotti, P.; Scanziani, E.; Brown, P.D.; Giavazzi, R. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J. Natl. Cancer Inst., 1995, 87(4), 293-298.
[http://dx.doi.org/10.1093/jnci/87.4.293] [PMID: 7535861]
[199]
Castelhano, A.L.; Billedeau, R.; Dewdney, N.; Donnelly, S.; Horne, S.; Kurz, L.J.; Liak, T.J.; Martin, R.; Uppington, R.; Yuan, Z.; Krantz, A. Novel indolactam-based inhibitors of matrix metalloproteinases. Bioorg. Med. Chem. Lett., 1995, 5, 1415-1420.
[200]
MacPherson, L.J.; Bayburt, E.K.; Capparelli, M.P.; Carroll, B.J.; Goldstein, R.; Justice, M.R.; Zhu, L.; Hu, S.; Melton, R.A.; Fryer, L.; Goldberg, R.L.; Doughty, J.R.; Spirito, S.; Blancuzzi, V.; Wilson, D.; O’Byrne, E.M.; Ganu, V.; Parker, D.T. Discovery of CGS 27023A, a non-peptidic, potent, and orally active stromelysin inhibitor that blocks cartilage degradation in rabbits. J. Med. Chem., 1997, 40(16), 2525-2532.
[http://dx.doi.org/10.1021/jm960871c] [PMID: 9258358]
[201]
Floyd, C.D.; Lewis, C.N.; Patel, S.R.; Whittaker, M. A method for the synthesis of hydroxamic acids on solid phase. Tetrahedron Lett., 1996, 37(44), 8045-8048.
[http://dx.doi.org/10.1016/0040-4039(96)01821-7]
[202]
Eatock, M.; Cassidy, J.; Johnson, J.; Morrison, R.; Devlin, M.; Blackey, R.; Owen, S.; Choi, L.; Twelves, C. A dose-finding and pharmacokinetic study of the matrix metalloproteinase inhibitor MMI270 (previously termed CGS27023A) with 5-FU and folinic acid. Cancer Chemother. Pharmacol., 2005, 55(1), 39-46.
[http://dx.doi.org/10.1007/s00280-004-0856-4] [PMID: 15368080]
[203]
Borsi, V.; Luchinat, C.; Parigi, G. Global and local mobility of apocalmodulin monitored through fast-field cycling relaxometry. Biophys. J., 2009, 97(6), 1765-1771.
[http://dx.doi.org/10.1016/j.bpj.2009.07.005] [PMID: 19751682]
[204]
Moy, F.J.; Chanda, P.K.; Chen, J.M.; Cosmi, S.; Edris, W.; Skotnicki, J.S.; Wilhelm, J.; Powers, R. NMR solution structure of the catalytic fragment of human fibroblast collagenase complexed with a sulfonamide derivative of a hydroxamic acid compound. Biochemistry, 1999, 38(22), 7085-7096.
[http://dx.doi.org/10.1021/bi982576v] [PMID: 10353819]
[205]
Hoekstra, R.; Eskens, F.A.; Verweij, J. Matrix metalloproteinase inhibitors: current developments and future perspectives. Oncologist, 2001, 6(5), 415-427.
[http://dx.doi.org/10.1634/theoncologist.6-5-415] [PMID: 11675519]
[206]
Borsi, V.; Calderone, V.; Fragai, M.; Luchinat, C.; Sarti, N. Entropic contribution to the linking coefficient in fragment based drug design: a case study. J. Med. Chem., 2010, 53(10), 4285-4289.
[http://dx.doi.org/10.1021/jm901723z] [PMID: 20415416]
[207]
Bartoloni, M.; Domínguez, B.E.; Dragoni, E.; Richichi, B.; Fragai, M.; André, S.; Gabius, H-J.; Ardá, A.; Luchinat, C.; Jiménez-Barbero, J.; Nativi, C. Targeting matrix metalloproteinases: design of a bifunctional inhibitor for presentation by tumour-associated galectins. Chemistry, 2013, 19(6), 1896-1902.
[http://dx.doi.org/10.1002/chem.201203794] [PMID: 23280962]
[208]
Baldoneschi, V.; Cerofolini, L.; Dragoni, E.; Storai, A.; Luchinat, C.; Fragai, M.; Richichi, B.; Nativi, C. Active-site targeting paramagnetic probe for matrix metalloproteinase. ChemPlusChem, 2016, 81(12), 1333-1338.
[http://dx.doi.org/10.1002/cplu.201600375]
[209]
Cerofolini, L.; Baldoneschi, V.; Dragoni, E.; Storai, A.; Mamusa, M.; Berti, D.; Fragai, M.; Richichi, B.; Nativi, C. Synthesis and binding monitoring of a new nanomolar PAMAM-based matrix metalloproteinases inhibitor (MMPIs). Bioorg. Med. Chem., 2017, 25(2), 523-527.
[http://dx.doi.org/10.1016/j.bmc.2016.11.028] [PMID: 27914947]
[210]
Coussens, L.M.; Fingleton, B.; Matrisian, L.M. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 2002, 295(5564), 2387-2392.
[http://dx.doi.org/10.1126/science.1067100] [PMID: 11923519]
[211]
Attolino, E.; Calderone, V.; Dragoni, E.; Fragai, M.; Richichi, B.; Luchinat, C.; Nativi, C. Structure-based approach to nanomolar, water soluble matrix metalloproteinases inhibitors (MMPIs). Eur. J. Med. Chem., 2010, 45(12), 5919-5925.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.057] [PMID: 20965620]
[212]
Calderone, V.; Fragai, M.; Luchinat, C.; Nativi, C.; Richichi, B.; Roelens, S. A high-affinity carbohydrate-containing inhibitor of matrix metalloproteinases. ChemMedChem, 2006, 1(6), 598-601.
[http://dx.doi.org/10.1002/cmdc.200600020]] [PMID: 16892399]
[213]
Mori, M.; De Lorenzo, E.; Torre, E.; Fragai, M.; Nativi, C.; Luchinat, C.; Arcangeli, A. A highly soluble matrix metalloproteinase-9 inhibitor for potential treatment of dry eye syndrome. Basic Clin. Pharmacol. Toxicol., 2012, 111(5), 289-295.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00896.x] [PMID: 22520332]
[214]
Wang, X.; Choe, Y.; Craik, C.S.; Ellman, J.A. Design and synthesis of novel inhibitors of gelatinase B. Bioorg. Med. Chem. Lett., 2002, 12(16), 2201-2204.
[http://dx.doi.org/10.1016/S0960-894X(02)00365-7] [PMID: 12127537]
[215]
Wu, J.; Rush, T.S., III; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.; Xu, Z.B.; Skotnicki, J.; Levin, J.I.; Lovering, F.E. Identification of potent and selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(18), 4105-4109.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.019] [PMID: 16005220]
[216]
Pikul, S.; Ohler, N.E.; Ciszewski, G.; Laufersweiler, M.C.; Almstead, N.G.; De, B.; Natchus, M.G.; Hsieh, L.C.; Janusz, M.J.; Peng, S.X.; Branch, T.M.; King, S.L.; Taiwo, Y.O.; Mieling, G.E. Potent and selective carboxylic acid-based inhibitors of matrix metalloproteinases. J. Med. Chem., 2001, 44(16), 2499-2502.
[http://dx.doi.org/10.1021/jm015531s] [PMID: 11472202]
[217]
Li, J.; Rush, T.S., III; Li, W.; DeVincentis, D.; Du, X.; Hu, Y.; Thomason, J.R.; Xiang, J.S.; Skotnicki, J.S.; Tam, S.; Cunningham, K.M.; Chockalingam, P.S.; Morris, E.A.; Levin, J.I. Synthesis and SAR of highly selective MMP-13 inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(22), 4961-4966.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.001] [PMID: 16153831]
[218]
Hu, Y.; Xiang, J.S.; DiGrandi, M.J.; Du, X.; Ipek, M.; Laakso, L.M.; Li, J.; Li, W.; Rush, T.S.; Schmid, J.; Skotnicki, J.S.; Tam, S.; Thomason, J.R.; Wang, Q.; Levin, J.I. Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Bioorg. Med. Chem., 2005, 13(24), 6629-6644.
[http://dx.doi.org/10.1016/j.bmc.2005.07.076] [PMID: 16216515]
[219]
Augé, F.; Hornebeck, W.; Decarme, M.; Laronze, J.Y. Improved gelatinase a selectivity by novel zinc binding groups containing galardin derivatives. Bioorg. Med. Chem. Lett., 2003, 13(10), 1783-1786.
[http://dx.doi.org/10.1016/S0960-894X(03)00214-2] [PMID: 12729664]
[220]
Gall, A.L.; Ruff, M.; Kannan, R.; Cuniasse, P.; Yiotakis, A.; Dive, V.; Rio, M.C.; Basset, P.; Moras, D. Crystal structure of the stromelysin-3 (MMP-11) catalytic domain complexed with a phosphinic inhibitor mimicking the transition-state. J. Mol. Biol., 2001, 307(2), 577-586.
[http://dx.doi.org/10.1006/jmbi.2001.4493] [PMID: 11254383]
[221]
Gavuzzo, E.; Pochetti, G.; Mazza, F.; Gallina, C.; Gorini, B.; D’Alessio, S.; Pieper, M.; Tschesche, H.; Tucker, P.A. Two crystal structures of human neutrophil collagenase, one complexed with a primed- and the other with an unprimed-side inhibitor: implications for drug design. J. Med. Chem., 2000, 43(18), 3377-3385.
[http://dx.doi.org/10.1021/jm9909589] [PMID: 10978185]
[222]
Reiter, L.A.; Mitchell, P.G.; Martinelli, G.J.; Lopresti-Morrow, L.L.; Yocum, S.A.; Eskra, J.D. Phosphinic acid-based MMP-13 inhibitors that spare MMP-1 and MMP-3. Bioorg. Med. Chem. Lett., 2003, 13(14), 2331-2336.
[http://dx.doi.org/10.1016/S0960-894X(03)00413-X] [PMID: 12824028]
[223]
Dive, V.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Beau, F.; Cuniasse, P.; Yiotakis, A. Phosphinic peptides as zinc metalloproteinase inhibitors. Cell. Mol. Life Sci., 2004, 61(16), 2010-2019.
[http://dx.doi.org/10.1007/s00018-004-4050-y] [PMID: 15316651]
[224]
Dive, V.; Andarawewa, K.L.; Boulay, A.; Matziari, M.; Beau, F.; Guerin, E.; Rousseau, B.; Yiotakis, A.; Rio, M.C. Dosing and scheduling influence the antitumor efficacy of a phosphinic peptide inhibitor of matrix metalloproteinases. Int. J. Cancer, 2005, 113(5), 775-781.
[http://dx.doi.org/10.1002/ijc.20459] [PMID: 15499617]
[225]
Lauer-Fields, J.; Brew, K.; Whitehead, J.K.; Li, S.; Hammer, R.P.; Fields, G.B. Triple-helical transition state analogues: a new class of selective matrix metalloproteinase inhibitors. J. Am. Chem. Soc., 2007, 129(34), 10408-10417.
[http://dx.doi.org/10.1021/ja0715849] [PMID: 17672455]
[226]
Matziari, M.; Beau, F.; Cuniasse, P.; Dive, V.; Yiotakis, A. Evaluation of P1′-diversified phosphinic peptides leads to the development of highly selective inhibitors of MMP-11. J. Med. Chem., 2004, 47(2), 325-336.
[http://dx.doi.org/10.1021/jm0308491] [PMID: 14711305]
[227]
Campbell, D.A.; Xiao, X.Y.; Harris, D.; Ida, S.; Mortezaei, R.; Ngu, K.; Shi, L.; Tien, D.; Wang, Y.; Navre, M.; Patel, D.V.; Sharr, M.A.; DiJoseph, J.F.; Killar, L.M.; Leone, C.L.; Levin, J.I.; Skotnicki, J.S. Malonyl alpha-mercaptoketones and alpha-mercaptoalcohols, a new class of matrix metalloproteinase inhibitors. Bioorg. Med. Chem. Lett., 1998, 8(10), 1157-1162.
[http://dx.doi.org/10.1016/S0960-894X(98)00185-1] [PMID: 9871727]
[228]
Brown, M.; Bernardo, M.M.; Li, Z.; Kotra, L.P.; Tanaka, Y.; Mobashery, S. Potent and Selective Mechanism-Based Inhibition of Gelatinases. J. Am. Chem. Soc., 2000, 122(28), 6799-6800.
[http://dx.doi.org/10.1021/ja001461n]
[229]
Bernardo, M.M.; Brown, S.; Li, Z.H.; Fridman, R.; Mobashery, S. Design, synthesis, and characterization of potent, slow-binding inhibitors that are selective for gelatinases. J. Biol. Chem., 2002, 277(13), 11201-11207.
[http://dx.doi.org/10.1074/jbc.M111021200] [PMID: 11790786]
[230]
Lee, M.; Bernardo, M.M.; Meroueh, S.O.; Brown, S.; Fridman, R.; Mobashery, S. Synthesis of chiral 2-(4-phenoxyphenylsulfonylmethyl) thiiranes as selective gelatinase inhibitors. Org. Lett., 2005, 7(20), 4463-4465.
[http://dx.doi.org/10.1021/ol0517269] [PMID: 16178559]
[231]
Ikejiri, M.; Bernardo, M.M.; Meroueh, S.O.; Brown, S.; Chang, M.; Fridman, R.; Mobashery, S. Design, synthesis, and evaluation of a mechanism-based inhibitor for gelatinase A. J. Org. Chem., 2005, 70(14), 5709-5712.
[http://dx.doi.org/10.1021/jo050339+] [PMID: 15989356]
[232]
Ikejiri, M.; Bernardo, M.M.; Bonfil, R.D.; Toth, M.; Chang, M.; Fridman, R.; Mobashery, S. Potent mechanism-based inhibitors for matrix metalloproteinases. J. Biol. Chem., 2005, 280(40), 33992-34002.
[http://dx.doi.org/10.1074/jbc.M504303200] [PMID: 16046398]
[233]
Lutz, J.; Yao, Y.; Song, E.; Antus, B.; Hamar, P.; Liu, S.; Heemann, U. Inhibition of matrix metalloproteinases during chronic allograft nephropathy in rats. Transplantation, 2005, 79(6), 655-661.
[http://dx.doi.org/10.1097/01.TP.0000151644.85832.B5] [PMID: 15785371]
[234]
Naglich, J.G.; Jure-Kunkel, M.; Gupta, E.; Fargnoli, J.; Henderson, A.J.; Lewin, A.C.; Talbott, R.; Baxter, A.; Bird, J.; Savopoulos, R.; Wills, R.; Kramer, R.A.; Trail, P.A. Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291. Cancer Res., 2001, 61(23), 8480-8485.
[PMID: 11731431]
[235]
Miller, K.D.; Saphner, T.J.; Waterhouse, D.M.; Chen, T.T.; Rush-Taylor, A.; Sparano, J.A.; Wolff, A.C.; Cobleigh, M.A.; Galbraith, S.; Sledge, G.W. A randomized phase II feasibility trial of BMS-275291 in patients with early stage breast cancer. Clin. Cancer Res., 2004, 10(6), 1971-1975.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0968] [PMID: 15041714]
[236]
Puerta, D.T.; Lewis, J.A.; Cohen, S.M. New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups. J. Am. Chem. Soc., 2004, 126(27), 8388-8389.
[http://dx.doi.org/10.1021/ja0485513] [PMID: 15237990]
[237]
Agrawal, A.; Romero-Perez, D.; Jacobsen, J.A.; Villarreal, F.J.; Cohen, S.M. Zinc-binding groups modulate selective inhibition of MMPs. ChemMedChem, 2008, 3(5), 812-820.
[http://dx.doi.org/10.1002/cmdc.200700290] [PMID: 18181119]
[238]
Grams, F.; Brandstetter, H.; D’Alò, S.; Geppert, D.; Krell, H.W.; Leinert, H.; Livi, V.; Menta, E.; Oliva, A.; Zimmermann, G.; Gram, F.; Brandstetter, H.; D’Alò, S.; Geppert, D.; Krell, H.W.; Leinert, H. Livi VMenta, E.; Oliva, A.; Zimmermann, G. Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors. Biol. Chem., 2001, 382(8), 1277-1285.
[http://dx.doi.org/10.1515/BC.2001.159] [PMID: 11592410]
[239]
Mannino, C.; Nievo, M.; Machetti, F.; Papakyriakou, A.; Fragai, M.; Guarna, A. Synthesis of byciclic molecular scaffolds (BTAa) for the development of new matrix metalloproteinases inhibitors. Bioorg. Med. Chem., 2006, 14, 7392-7403.
[http://dx.doi.org/10.1016/j.bmc.2006.07.028] [PMID: 16899369]
[240]
Lein, M.; Jung, K.; Ortel, B.; Stephan, C.; Rothaug, W.; Juchem, R.; Johannsen, M.; Deger, S.; Schnorr, D.; Loening, S.; Krell, H.W. The new synthetic matrix metalloproteinase inhibitor (Roche 28-2653) reduces tumor growth and prolongs survival in a prostate cancer standard rat model. Oncogene, 2002, 21(13), 2089-2096.
[http://dx.doi.org/10.1038/sj.onc.1205267] [PMID: 11960381]
[241]
Maquoi, E.; Sounni, N.E.; Devy, L.; Olivier, F.; Frankenne, F.; Krell, H.W.; Grams, F.; Foidart, J.M.; Noël, A. Anti-invasive, antitumoral, and antiangiogenic efficacy of a pyrimidine-2,4,6-trione derivative, an orally active and selective matrix metalloproteinases inhibitor. Clin. Cancer Res., 2004, 10(12 Pt 1), 4038-4047.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0125] [PMID: 15217936]
[242]
Sorsa, T.; Ding, Y.; Salo, T.; Lauhio, A.; Teronen, O.; Ingman, T.; Ohtani, H.; Andoh, N.; Takeha, S.; Konttinen, Y.T. Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and western-blot assessment with special reference to their cellular sources in periodontal diseases. Ann. N. Y. Acad. Sci., 1994, 732, 112-131.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb24729.x] [PMID: 7978785]
[243]
Sorsa, T.; Tjäderhane, L.; Konttinen, Y.T.; Lauhio, A.; Salo, T.; Lee, H.M.; Golub, L.M.; Brown, D.L.; Mäntylä, P. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med., 2006, 38(5), 306-3.
[http://dx.doi.org/10.1080/07853890600800103] [PMID: 16938801]
[244]
Rudek, M.A.; Figg, W.D.; Dyer, V.; Dahut, W.; Turner, M.L.; Steinberg, S.M.; Liewehr, D.J.; Kohler, D.R.; Pluda, J.M.; Reed, E. Phase I clinical trial of oral COL-3, a matrix metalloproteinase inhibitor, in patients with refractory metastatic cancer. J. Clin. Oncol., 2001, 19(2), 584-592.
[http://dx.doi.org/10.1200/JCO.2001.19.2.584] [PMID: 11208854]
[245]
Overall, C.M. Matrix metalloproteinase substrate binding domains, modules and exosites. Overview and experimental strategies. Methods Mol. Biol., 2001, 151, 79-120.
[PMID: 11217327]
[246]
Overall, C.M.; López-Otín, C. Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat. Rev. Cancer, 2002, 2(9), 657-672.
[http://dx.doi.org/10.1038/nrc884] [PMID: 12209155]
[247]
Udi, Y.; Fragai, M.; Grossman, M.; Mitternacht, S.; Arad-Yellin, R.; Calderone, V.; Melikian, M.; Toccafondi, M.; Berezovsky, I.N.; Luchinat, C.; Sagi, I. Unraveling hidden regulatory sites in structurally homologous metalloproteases. J. Mol. Biol., 2013, 425(13), 2330-2346.
[http://dx.doi.org/10.1016/j.jmb.2013.04.009] [PMID: 23583775]
[248]
Mohan, V.; Talmi-Frank, D.; Arkadash, V.; Papo, V. Matrix metalloproteinase protein inhibitors: highlighting a new beginning for metalloproteinases in medicine. Metalloproteinases In Medicine., 2016, 3, 31-47.
[http://dx.doi.org/10.2147/MNM.S65143]
[249]
Dufour, A.; Sampson, N.S.; Li, J.; Kuscu, C.; Rizzo, R.C.; Deleon, J.L.; Zhi, J.; Jaber, N.; Liu, E.; Zucker, S.; Cao, J. Small-molecule anticancer compounds selectively target the hemopexin domain of matrix metalloproteinase-9. Cancer Res., 2011, 71(14), 4977-4988.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4552] [PMID: 21646471]
[250]
Remacle, A.G.; Golubkov, V.S.; Shiryaev, S.A.; Dahl, R.; Stebbins, J.L.; Chernov, A.V.; Cheltsov, A.V.; Pellecchia, M.; Strongin, A.Y. Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res., 2012, 72(9), 2339-2349.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-4149] [PMID: 22406620]
[251]
Suojanen, J.; Salo, T.; Koivunen, E.; Sorsa, T.; Pirilä, E. A novel and selective membrane type-1 matrix metalloproteinase (MT1-MMP) inhibitor reduces cancer cell motility and tumor growth. Cancer Biol. Ther., 2009, 8(24), 2362-2370.
[http://dx.doi.org/10.4161/cbt.8.24.10139] [PMID: 19855192]
[252]
Heikkilä, P.; Suojanen, J.; Pirilä, E.; Väänänen, A.; Koivunen, E.; Sorsa, T.; Salo, T. Human tongue carcinoma growth is inhibited by selective antigelatinolytic peptides. Int. J. Cancer, 2006, 118(9), 2202-2209.
[http://dx.doi.org/10.1002/ijc.21540] [PMID: 16331606]
[253]
Higashi, S.; Hirose, T.; Takeuchi, T.; Miyazaki, K. Molecular design of a highly selective and strong protein inhibitor against matrix metalloproteinase-2 (MMP-2). J. Biol. Chem., 2013, 288(13), 9066-9076.
[http://dx.doi.org/10.1074/jbc.M112.441758] [PMID: 23395821]
[254]
Hashimoto, H.; Takeuchi, T.; Komatsu, K.; Miyazaki, K.; Sato, M.; Higashi, S. Structural basis for matrix metalloproteinase-2 (MMP-2)-selective inhibitory action of β-amyloid precursor protein-derived inhibitor. J. Biol. Chem., 2011, 286(38), 33236-33243.
[http://dx.doi.org/10.1074/jbc.M111.264176] [PMID: 21813640]
[255]
Burg-Roderfeld, M.; Roderfeld, M.; Wagner, S.; Henkel, C.; Grötzinger, J.; Roeb, E. MMP-9-hemopexin domain hampers adhesion and migration of colorectal cancer cells. Int. J. Oncol., 2007, 30(4), 985-992.
[PMID: 17332939]
[256]
Botkjaer, K.A.; Kwok, H.F.; Terp, M.G.; Karatt-Vellatt, A.; Santamaria, S.; McCafferty, J.; Andreasen, P.A.; Itoh, Y.; Ditzel, H.J.; Murphy, G. Development of a specific affinity-matured exosite inhibitor to MT1-MMP that efficiently inhibits tumor cell invasion in vitro and metastasis in vivo. Oncotarget, 2016, 7(13), 16773-16792.
[http://dx.doi.org/10.18632/oncotarget.7780] [PMID: 26934448]
[257]
Kaneko, K.; Williams, R.O.; Dransfield, D.T.; Nixon, A.E.; Sandison, A.; Itoh, Y. Selective inhibition of membrane type 1 matrix metalloproteinase abrogates progression of experimental inflammatory arthritis: synergy with tumor necrosis factor blockade. Arthritis Rheumatol., 2016, 68(2), 521-531.
[http://dx.doi.org/10.1002/art.39414] [PMID: 26315469]
[258]
Udi, Y.; Grossman, M.; Solomonov, I.; Dym, O.; Rozenberg, H.; Moreno, V.; Cuniasse, P.; Dive, V.; Arroyo, A.G.; Sagi, I. Inhibition mechanism of membrane metalloprotease by an exosite-swiveling conformational antibody. Structure, 2015, 23(1), 104-115.
[http://dx.doi.org/10.1016/j.str.2014.10.012]] [PMID: 25482542]
[259]
Devy, L.; Huang, L.; Naa, L.; Yanamandra, N.; Pieters, H.; Frans, N.; Chang, E.; Tao, Q.; Vanhove, M.; Lejeune, A.; van Gool, R.; Sexton, D.J.; Kuang, G.; Rank, D.; Hogan, S.; Pazmany, C.; Ma, Y.L.; Schoonbroodt, S.; Nixon, A.E.; Ladner, R.C.; Hoet, R.; Henderikx, P.; Tenhoor, C.; Rabbani, S.A.; Valentino, M.L.; Wood, C.R.; Dransfield, D.T. Selective inhibition of matrix metalloproteinase-14 blocks tumor growth, invasion, and angiogenesis. Cancer Res., 2009, 69(4), 1517-1526.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3255] [PMID: 19208838]
[260]
Marshall, D.C.; Lyman, S.K.; McCauley, S.; Kovalenko, M.; Spangler, R.; Liu, C.; Lee, M.; O’Sullivan, C.; Barry-Hamilton, V.; Ghermazien, H.; Mikels-Vigdal, A.; Garcia, C.A.; Jorgensen, B.; Velayo, A.C.; Wang, R.; Adamkewicz, J.I.; Smith, V. Selective allosteric inhibition of MMP9 is efficacious in preclinical models of ulcerative colitis and colorectal cancer. PLoS One, 2015, 10(5)e0127063
[http://dx.doi.org/10.1371/journal.pone.0127063] [PMID: 25961845]
[261]
Paemen, L.; Martens, E.; Masure, S.; Opdenakker, G. Monoclonal antibodies specific for natural human neutrophil gelatinase B used for affinity purification, quantitation by two-site ELISA and inhibition of enzymatic activity. Eur. J. Biochem., 1995, 234(3), 759-765.
[http://dx.doi.org/10.1111/j.1432-1033.1995.759_a.x] [PMID: 8575432]
[262]
Gálvez, B.G.; Matías-Román, S.; Albar, J.P.; Sánchez-Madrid, F.; Arroyo, A.G. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells and modulates endothelial motility and matrix remodeling. J. Biol. Chem., 2001, 276(40), 37491-37500.
[http://dx.doi.org/10.1074/jbc.M104094200] [PMID: 11448964]
[263]
Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol., 2009, 157(2), 220-233.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[264]
Chung, C.H. Managing premedications and the risk for reactions to infusional monoclonal antibody therapy. Oncologist, 2008, 13(6), 725-732.
[http://dx.doi.org/10.1634/theoncologist.2008-0012] [PMID: 18586928]
[265]
Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther., 2008, 84(5), 548-558.
[http://dx.doi.org/10.1038/clpt.2008.170] [PMID: 18784655]
[266]
Romer, T.; Leonhardt, H.; Rothbauer, U. Engineering antibodies and proteins for molecular in vivo imaging. Curr. Opin. Biotechnol., 2011, 22(6), 882-887.
[http://dx.doi.org/10.1016/j.copbio.2011.06.007] [PMID: 21708456]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy