[1]
Alison MR. Cancer In: Enclyclopedia of Life Sciences. Nature
Publishing Group 2001; 200, pp. 1-8.
[2]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[3]
Koblinski E, Ahram M, Sloane BF. Unraveling the role of proteases in cancer. Clin Chim Acta 2000; 291(2): 113-35.
[4]
Lee M, Fridman R, Mobashery S. Extracellular proteases as targets for treatment of cancer metastases. Chem Soc Rev 2004; 33(7): 401-9.
[5]
Sabotic J, Kos J. Microbial and fungal protease inhibitors-current and potential applications. Appl Microbiol Biotechnol 2012; 93(4): 1351-75.
[6]
Nakahata AM, Mayer B, Ries C, et al. The effects of a plant proteinase inhibitor from Enterolobium contortisiliquum on human tumor cell lines. Biol Chem 2011; 392(4): 327-36.
[7]
Soreide K, Janssen EA, Korner H, Baak JPA. Trypsin in colorectal cancer: molecular biological mechanisms of proliferation, invasion, and metastasis. J Pathol 2006; 209(2): 147-56.
[8]
Sharony R, Yu PJ, Park J, Galloway AC, Mignatti P, Pintucci G. Protein targets of inflammatory serine proteases and cardiovascular disease. J Inflamm (Lond) 2010; 7: 45.
[9]
Safavi F, Rostami A. Role of serine proteases in inflammation: Bowman-Birk protease Inhibitor (BBI) as a potential therapy for autoimmune diseases. Exp Mol Pathol 2012; 93(3): 428-33.
[10]
Rakashanda S, Rana F, Rafiq S, Masood A, Amin S. Role of proteases in cancer: A review. Biotechnol Mol Biol Rev 2012; 7(4): 90-101.
[11]
Gora J, Latajka R. Involvement of cysteine proteases in cancer. Curr Med Chem 2015; 22(8): 944-57.
[12]
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62(3): 597-635.
[13]
Kumar CG, Takagi H. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnol Adv 1999; 17(7): 561-94.
[14]
Guillen JLC, Gasca TG, Labra AB. Protease inhibitors as
anticancer agents. In: Ma Del Carmen Mejia Vazquez (UNAM,
Samuel Navarro) Eds. New approaches in the treatment of cancer.
Hauppauge, US: Nova Science Publishers 2010; pp. 91-124.
[15]
Bode W, Huber R. Natural protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem 1992; 204(2): 433-51.
[16]
Demuth HU. Recent developments in inhibiting cysteine and serine proteases. J Enzyme Inhib 1990; 3(4): 249-78.
[17]
Delston RB, Kothary MH, Shangraw KA, Tall BD. Isolation and characterization of a zinc-containing metalloprotease expressed by Vibrio tubiashii. Can J Microbiol 2003; 49(8): 525-9.
[18]
Mkaouar H, Akermi N, Mariaule V, et al. Siropins, novel serine protease inhibitors from gut microbiota acting on human proteases involved in inflammatory bowel diseases. Microb Cell Fact 2016; 15(1): 201.
[19]
Vergnolle N. Protease inhibition as new therapeutic strategy for GI diseases. Gut 2016; 65(7): 1215-24.
[20]
Harish BS, Uppuluri KB. Microbial serine protease inhibitors and
their therapeutic applications Int J Biol Macromol 2018; 107(Pt
B): 1373-87
[21]
Borg TK. It’s the matrix! ECM, proteases, and cancer. Am J Pathol 2004; 164(4): 1141-2.
[22]
Aneja KR. Cultivation techniques for isolation and enumeration of microorganisms.In: Experiments in microbiology, plant pathology and biotechnology. 4th ed. New Delhi: New Age International Publishers 2003; pp. 154-88.
[23]
Kunitz M. Crystalline soybean trypsin inhibitor: II. General properties. J Gen Physiol 1947; 30(4): 291-310.
[24]
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193(1): 265-75.
[25]
Negi S, Gupta S, Banerjee R. Extraction and purification of glucoamylase and protease produced by Aspergillus awamori in a single-stage fermentation. Food Technol Biotechnol 2011; 49(3): 310-5.
[26]
Karmen C, Mayne PD, Foo AY, Parbhoo S, Rosalki SB. Measurement of biliary alkaline phosphatase by mini-column chromatography and by electrophoresis and its application to the detection of liver metastases in patients with breast cancer. J Clin Pathol 1984; 37(2): 212-7.
[27]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
[28]
Felicioli R, Garzelli B, Vaccari L, Melfi D, Balestreri E. Activity staining of protein inhibitors of proteases on gelatin-containing polyacrylamide gel electrophoresis. Anal Biochem 1997; 244(1): 176-9.
[29]
Howard DR, Herr J, Hollister R. Using trypsin & soybean trypsin inhibitor to teach principles of enzyme kinetics. Am Biol Teach 2006; 68(2): 99-104.
[30]
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65(1-2): 55-63.
[31]
Aoyagi T, Takeuchi T, Matsuzaki A, et al. Leupeptins, new protease inhibitors from Actinomycetes. J Antibiot (Tokyo) 1969; 22(6): 283-6.
[32]
Umezawa H, Aoyagi T, Morishima H, et al. Pepstatin, a new pepsin inhibitor produced by Actinomycetes. J Antibiot (Tokyo) 1970; 23(5): 259-62.
[33]
Taguchi S, Kikuchi H, Suzuki M, et al. Streptomyces subtilisin inhibitor-like proteins are distributed widely in Streptomycetes. Appl Environ Microbiol 1993; 59(12): 4338-41.
[34]
Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Rao KVB. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 2014; 9(3): e90972.
[35]
McKeen CD, Reilly CC, Pusey PL. Production and partial characterization of antifungal substances antagonistic to Monilinia fructicola from Bacillus subtilis. Phytopathology 1986; 76: 136-9.
[36]
Al-Awadhi FH, Salvador LA, Law BK, Paul VJ, Luesch H. Kempopeptin C, a novel marine-derived serine protease inhibitor targeting invasive breast cancer. Mar Drugs 2017; 15(9): 290.
[37]
Bijina B, Chellappan S, Basheer SM, Elyas KK, Bahkali AH, Chandrasekaran M. Protease inhibitor from Moringa oleifera leaves: Isolation, purification, and characterization. Process Biochem 2011; 46(12): 2291-300.
[38]
Birk Y. Protein proteinase inhibitors in legume seeds-overview. Arch Latinoam Nutr 1994; 44(4)(Suppl. 1): 26-30.
[39]
Mello GC, Marangoni S, Oliva MLV, et al. Purification and characterization of a new trypsin inhibitor from Dimorphandra mollis seeds. J Protein Chem 2001; 20(8): 625-32.
[40]
Bacha AB, Jemel I, Moubayed NMS, Abdelmalek IB. Purification and characterization of a newly serine protease inhibitor from Rhamnus frangula with potential for use as therapeutic drug. Biotechnology 2017; 7(2): 148.
[41]
Kidric M, Fabian H, Brzin J, Popovic T, Pain RH. Folding, stability and secondary structure of a new cysteine dimeric proteinase inhibitor. Biochem Biophys Res Commun 2002; 297(4): 962-7.
[42]
Greenwood IA, Leblanc N, Gordienko DV, Large WA. Utilization of Avizyme 1502 in corn-soybean meal diets with and without antibiotics. Eur J Phys 2002; 443: 473-82.
[43]
Jack NL, Cate NM, Rishipal RB, Hiba AB. Inhibition of matrix metalloproteinase-I activity by the soybean Bowman–Birk inhibitor. Biotechnol Lett 2004; 26(11): 901-5.
[44]
Kuzmic P, Cregar L, Millis SZ, Goldman M. Mixed-type noncompetitive inhibition of anthrax lethal factor protease by aminoglycosides. FEBS J 2006; 273(13): 3054-62.