Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Linking Antimicrobial Potential of Natural Products Derived from Aquatic Organisms and Microbes Involved in Alzheimer’s Disease - A Review

Author(s): Dejan Stojković, Marina Kostić, Marija Smiljković, Milena Aleksić, Perica Vasiljević, Miloš Nikolić and Marina Soković*

Volume 27, Issue 26, 2020

Page: [4372 - 4391] Pages: 20

DOI: 10.2174/0929867325666180309103645

Price: $65

Abstract

The following review is oriented towards microbes linked to Alzheimer’s disease (AD) and antimicrobial effect of compounds and extracts derived from aquatic organisms against specific bacteria, fungi and viruses which were found previously in patients suffering from AD. Major group of microbes linked to AD include bacteria: Chlamydia pneumoniae, Helicobacter pylori, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Actinomyces naeslundii, spirochete group; fungi: Candida sp., Cryptococcus sp., Saccharomyces sp., Malassezia sp., Botrytis sp., and viruses: herpes simplex virus type 1 (HSV-1), Human cytomegalovirus (CMV), hepatitis C virus (HCV). In the light of that fact, this review is the first to link antimicrobial potential of aquatic organisms against these sorts of microbes. This literature review might serve as a starting platform to develop novel supportive therapy for patients suffering from AD and to possibly prevent escalation of the disease in patients already having high-risk factors for AD occurrence.

Keywords: Alzheimer's disease, bacteria, fungi, viruses, antimicrobial, aquatic organisms.

[1]
Alzheimer’s Disease International World Alzheimer report 2010. The global economic impact of dementia.,, 2010. Available from:http://www.alz.co.uk/research/files/WorldAlzheimerReport2010Executive
[2]
Pavlović, D.M. Dementia-clinical diagnostics; Belgrade:Serbian, 2002.
[3]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[4]
Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 2(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[5]
Goate, A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(3)(Suppl.), 341-347.
[http://dx.doi.org/10.3233/JAD-2006-9S338] [PMID: 16914872]
[6]
Sherrington, R.; Rogaev, E.I.; Liang, Y.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Chi, H.; Lin, C.; Li, G.; Holman, K.; Tsuda, T; Mar, L; Foncin,, J.F.; Bruni,, A.C.; Bruni, M.P.; Sorbi, S.; Rainero, I.; Pinessi, L.; Nee, L.; Chumakov, I.; Pollen, D.; Brookes, A.; Sanseau, P; Polinsky, R.J.; Wasco, W; Da Silva, H.A.; Haines, J.S.; Perkicak-Vance, J.M.; Tanzi, R.E; Roses, A.D.; Fraser, P.E.; Rommens, J.M.; St George-Hyslop, P.H. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 1995, 375(6534), 754-760.
[http://dx.doi.org/10.1038/375754a0] [PMID: 7596406]
[7]
Levy-Lahad, E.; Wasco, W.; Poorkaj, P.; Romano, D.M.; Oshima, J.; Pettingell, W.H. Candidate gene for the chromosome familial Alzheimer's disease locusScience;, 1995, 269, 973-977.
[8]
Steiner, H.; Winkler, E.; Edbauer, D.; Prokop, S.; Basset, G.; Yamasaki, A.; Kostka, M.; Haass,, C. PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem., 2002, 277(42), 39062-39065.
[http://dx.doi.org/10.1074/jbc.C200469200] [PMID: 12198112]
[9]
Mahley, R.W.; Weisgraber, K.H.; Huang, Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J. Lipid Res., 2009, 50(suppl), S183-S188.
[http://dx.doi.org/10.1194/jlr.R800069-JLR200] [PMID: 19106071]
[10]
Herz, J.; Chen, Y.; Masiulis, I.; Zhou, L. Expanding functions of lipoprotein receptors. J. Lipid Res., 2009, 50(suppl), S287-S292.
[http://dx.doi.org/10.1194/jlr.R800077-JLR200] [PMID: 19017612]
[11]
Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[12]
Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.; Pericak-Vance, M.A.; Joo, S.H. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 1993, 43(8), 1467-1472.
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[13]
Strittmatter, W.J.; Weisgraber, K.H.; Huang, D.Y.; Dong, L.M.; Salvesen, G.S.; Pericak-Vance, M. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 8098-8102.
[http://dx.doi.org/10.1073/pnas.90.17.8098] [PMID: 8367470]
[14]
Bartus, R.T.; Dean, R.L.; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(4)(4558), 408-414.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[15]
Mortamaisa, M.; Ashc, J.A.; Harrisond, J.; Kayef, J.; Kramerg, J.; Randolphh, C.; Posea, C.; Albalai, B.; Ropackij, M.; Ritchiek, C.W.; Ritchiea, K. Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimers Dement., 2017, 13(4), 468-492.
[http://dx.doi.org/10.1016/j.jalz.2016.06.2365] [PMID: 27702618]
[16]
Hill, J.M.; Clement, C.; Pogue, A.I.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front. Aging Neurosci., 2014, 6(127), 127-5.
[PMID: 24982633]
[17]
McManus, R.M.; Heneka, M.T. Role of neuroinflammation in neurodegeneration: new insights. Alzheimers Res. Ther., 2017, 9(1), 14.
[http://dx.doi.org/10.1186/s13195-017-0241-2] [PMID: 28259169]
[18]
Kountouras, J.; Boziki, M.; Gavalas, E.; Zavos, C.; Grigoriadis, N.; Deretzi, G.; Tzilves, D.; Katsinelos, P.; Tsolaki, M.; Chatzopoulos, D.; Venizelos, I. Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J. Neurol., 2009, 256(5), 758-767.
[http://dx.doi.org/10.1007/s00415-009-5011-z] [PMID: 19240960]
[19]
Chang, Y.P.; Chiu, G.F.; Kuo, F.C.; Lai, C.L.; Yang, Y.H.; Hu, H.M.; Chang, P.Y.; Chen, C.Y.; Wu, D.C.; Yu, F.J. 2013.
[20]
Poole, S.; Singhrao, S.K.; Chukkapalli, S.; Rivera, M.; Velsko, I.; Kesavalu, L.; Crean, S. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains. J. Alzheimers Dis., 2015, 43(1), 67-80.
[http://dx.doi.org/10.3233/JAD-140315 ] [PMID: 25061055]
[21]
Sparks Stein, P.; Steffen, M.J.; Smith, C.; Jicha, G.; Ebersole, J.L.; Abner, E.; Dawson, D. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimers Dement., 2012, 8(3), 196-203.
[http://dx.doi.org/10.1016/j.jalz.2011.04.006] [PMID: 22546352]
[22]
Noble, J.M.; Scarmeas, N.; Celenti, R.S.; Elkind, M.S.V.; Wright, C.B.; Schupf, N.; Papapanou, P.N. Serum IgG Antibody Levels to Periodontal Microbiota Are Associated with Incident Alzheimer Disease. PLoS One, 2014, 9(12) e114959
[http://dx.doi.org/10.1371/journal.pone.0114959] [PMID: 25522313]
[23]
Miklossy, J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; Mihaly, L.; Khalili, K. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol. Aging, 2006, 27(2), 228-236.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.01.018] [PMID: 15894409]
[24]
Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet., 2013, 47, 601-623.
[http://dx.doi.org/10.1146/annurev-genet-110711-155524] [PMID: 24274755]
[25]
Alonso, R.; Pisa, D.; Marina, A.I.; Morato, E.; Rábano, A.; Carrasco, L. Fungal infection in patients with Alzheimer’s disease. J. Alzheimers Dis., 2014, 41(1), 301-311.
[http://dx.doi.org/10.3233/JAD-132681] [PMID: 24614898]
[26]
Heintz, C.; Mair, W. You are what you host: microbiome modulation of the aging process. Cell, 2014, 156(3), 408-411.
[http://dx.doi.org/10.1016/j.cell.2014.01.025] [PMID: 24485451]
[27]
Agostini, S.; Clerici, M.; Mancuso, R. How plausible is a link between HSV-1 and AD? Expert Rev. Anti Infect. Ther., 2014, 12, 275-278.
[http://dx.doi.org/10.1586/14787210.2014.887442] [PMID: 24502805]
[28]
Lurain, N.S.; Hanson, B.A.; Martinson, J.; Leurgans, S.E.; Landay, A.L.; Bennett, D.A.; Schneider, J.A. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J. Infect. Dis., 2013, 208(4), 564-572.
[http://dx.doi.org/10.1093/infdis/jit210] [PMID: 23661800]
[29]
Chiu, W.C.; Tsan, Y.T.; Tsai, S.L.; Chang, C.J.; Wang, J.D.; Chen, P.C. Hepatitis C viral infection and the risk of dementia. Eur. J. Neurol., 2014, 21(8), 1068-e59.
[http://dx.doi.org/10.1111/ene.12317] [PMID: 24313931]
[30]
Karim, S.; Mirza, Z.; Kamal, M.A.; Abuzenadah, A.M.; Azhar, E.I.; Al-Qahtani, M.H.; Sohrab, S.S. An association of virus infection with type 2 diabetes and Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 429-439.
[http://dx.doi.org/10.2174/18715273113126660164] [PMID: 24059298]
[31]
Blasi, F.; Tarsia, P.; Aliberti, S. Chlamydophila pneumoniae. Clin. Microbiol. Infect., 2009, 15(1), 29-35.
[http://dx.doi.org/10.1111/j.1469-0691.2008.02130.x] [PMID: 19220337]
[32]
Sandoz, K.M.; Rockey, D.D. Antibiotic resistance in Chlamydiae.. Future Microbiol, 2010, 5(9), 1427-1442.
[http://dx.doi.org/10.2217/fmb.10.96] [PMID: 20860486]
[33]
Guo, D.; Cai, Y.; Chai, D.; Liang, B.; Bai, N.; Wang, R. The cardiotoxicity of macrolides: a systematic review. Pharmazie, 2010, 65(9), 631-640.
[PMID: 21038838]
[34]
Salimi, A.; Eybagi, S.; Seydi, E.; Naserzadeh, P.; Kazerouni, N.P.; Pourahmad,, J. Toxicity of macrolide antibiotics on isolated heart mitochondria: a justification for their cardiotoxic adverse effect. Xenobiotica, 2016, 46(1), 82-93.
[http://dx.doi.org/10.3109/00498254.2015.1046975] [PMID: 26068526]
[35]
Malfertheiner, P.; Megraud, F.; O’Morain, C.; Bazzoli, F.; El-Omar, E.; Graham, D.; Hunt, R.; Rokkas, T.; Vakil, N.; Kuipers, E.J. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut, 2007, 56(6), 772-781.
[http://dx.doi.org/10.1136/gut.2006.101634] [PMID: 17170018]
[36]
Smith, S.M.; O’Morain, C.; McNamara, D. Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance. World J. Gastroenterol, 2014, 20(29), 9912-9921.
[http://dx.doi.org/10.3748/wjg.v20.i29.9912] [PMID: 25110421]
[37]
Kulik, E.M.; Lenkeit, K.; Chenaux, S.; Meyer, J. Antimicrobial susceptibility of periodontopathogenic bacteria. J. Antimicrob.Chemother., 2008, 61(5), 1087-1091.
[http://dx.doi.org/10.1093/jac/dkn079] [PMID: 18326855]
[38]
Kulik, E.M.; Lenkeit, K.; Chenaux, S.; Meyer, J. Antimicrobial susceptibility of periodontopathogenic bacteria. J. Antimicrob. Chemother., 2008, 34(12), 1451-1456.
[http://dx.doi.org/10.1016/j.joen.2008.08.036] [PMID: 19026872]
[39]
Jacinto, R.C.; Montagner, F.; Signoretti, F.G.; Almeida, G.C.; Gomes, B.P. Frequency, microbial interactions, and antimicrobial susceptibility of Fusobacterium nucleatum and Fusobacterium necrophorum isolated from primary endodontic infections. J. Endod., 2008, 34(12), 1451-1456.
[http://dx.doi.org/10.1093/jac/dkg022] [PMID: 12493794]
[40]
Nyfors, S.; Könönen, E.; Syrjänen, R.; Komulainen, E.; Jousimies-Somer, H. Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J. Antimicrob. Chemother., 2003, 51(1), 107-112.
[http://dx.doi.org/10.1093/jac/dkl052] [PMID: 16507560]
[41]
Roberts, S.A.; Shore, K.P.; Paviour, S.D.; Holland, D.; Morris, A.J. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999-2003. J. Antimicrob. Chemother., 2006, 57(5), 992-998.
[PMID: 12886961]
[42]
Chan, Y.; Chan, C.H. Antibiotic resistance of pathogenic bacteria from odontogenic infections in Taiwan. J. Microbiol. Immunol. Infect., 2003, 36, 105-110.
[http://dx.doi.org/10.1016/j.anaerobe.2010.07.004] [PMID: 20670687]
[43]
Boyanova, L.; Kolarov, R.; Gergova, G.; Dimitrova, L.; Mitov, I. Trends in antibiotic resistance in Prevotella species from patients of the University Hospital of Maxillofacial Surgery, Sofia, Bulgaria, in 2003-2009. Anaerobe, 2010, 16(5), 489-492.
[PMID: 25045274]
[44]
Valour, F.; Sénéchal, A.; Dupieux, C.; Karsenty, J.; Lustig, S.; Breton, P. Actinomycosis: etiology, clinical features, diagnosis, treatment, and management. Infect. Drug Resist., 2014, 5(7), 183-197.
[http://dx.doi.org/10.1128/JCM.38.2.929-930.2000] [PMID: 10655420]
[45]
Wüst, J.; Steiger, U.; Vuong, H.; Zbinden, R. Infection of a Hip Prosthesis by Actinomyces naeslundii. J. Clin. Microbiol., 2000, 38(2), 929-930.
[http://dx.doi.org/10.1128/JCM.41.4.1791-1793.2003] [PMID: 12682190]
[46]
Sicklinger, M.; Wienecke, R.; Neubert, U. In Vitro Susceptibility Testing of Four Antibiotics against Borrelia burgdorferi: a Comparison of Results for the Three Genospecies Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto. J. Clin. Microbiol., 2003, 41(4), 1791-1793.
[http://dx.doi.org/10.1016/j.anaerobe.2017.10.005] [PMID: 29030100]
[47]
Okamoto-Shibayama, K.; Sekino, J.; Yoshikawa, K.; Saito, A.; Ishihara, K. Antimicrobial susceptibility profiles of oral Treponema species. Anaerobe, 2017, 48, 242-248.
[http://dx.doi.org/10.1093/cid/civ1194]
[48]
Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2016, 62, 1-50.
[49]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front. Microbiol., 2017, 7, 2173.
[50]
Smiljkovic, M.; Stanisavljevic, D.; Stojkovic, D.; Petrovic, I.; Marjanovic Vicentic, J.; Popovic, J. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J., 2017, 16, 795-807.
[51]
Oxman, D.A.; Chow, J.K.; Frendl, G.; Hadley, S.; Hershkovitz, S.; Ireland, P. Candidaemia associated with decreased in vitro fluconazole susceptibility: is Candida speciation predictive of the susceptibility pattern? J. Antimicrob. Chemother., 2010, 65, 1460-1465.
[52]
Kagan, S.; Ickowicz, D.; Shmuel, M.; Altschuler, Y.; Sionov, E.; Pitusi, M.; Weiss, A.; Farber, S.; Domb, A.J.; Polacheck, I. Toxicity mechanisms of amphotericin B and its neutralization by conjugation with arabinogalactan. Antimicrob. Agents Chemother., 2012, 56(11), 5603-5611.
[53]
Archibald, L.K.; Tuohy, M.J.; Wilson, D.A.; Nwanyanwu, O.; Kazembe, P.N.; Tansuphasawadikul, S.; Eampokalap, B.; Chaovavanich, A.; Reller, L.B.; Jarvis, W.R.; Hall, G.S.; Procop, G.W. Antifungal Susceptibilities of Cryptococcus neoformans. Emerg. Infect. Dis., 2004, 10(1), 143-145.
[54]
Bongomin, F.; Oladele, R.O.; Gago, S.; Moore, C.B.; Richardson, M.D. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses, 2018, •••
[http://dx.doi.org/10.1111/myc.12747]
[55]
Muñoz, P.; Bouza, E.; Cuenca-Estrella, M.; Eiros, J.M.; Pérez, M.J.; Sánchez-Somolinos, M.; Rincón, C.; Hortal, J.; Peláez, T. Saccharomyces cerevisiae Fungemia: An Emerging Infectious Disease. Clin. Infect. Dis., 2005, 40(11), 1625-1634.
[56]
Hennequin, C. Invasive Saccharomyces Infection: A Comprehensive Review. Clin. Infect. Dis., 2005, 41(11), 1559-1568.
[57]
Leong, C.; Buttafuoco, A.; Glatz, M.; Bosshard, P.P. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method. J. Clin. Microbiol., 2017, 55(6), 1883-1893.
[58]
Rabella, N.; Otegui, M.; Labeaga, R.; Rodríguez, P.; Margall, N.; Gurguí, M.; Prats, G. Antiviral Susceptibility of Herpes Simplex Viruses and Its Clinical Correlates: A Single Center’s Experience. Clin. Infect. Dis., 2002, 34(8), 1055-1060.
[59]
Kimberlin, D.W.; Whitley, R.J. 2007.https://www.ncbi.nlm.nih.gov/books/NBK47444/
[60]
Wyles, D.L.; Patel, A.; Madinger, N.; Bessesen, M.; Krause, P.R.; Weinberg, A. Development of Herpes Simplex Virus Disease in Patients Who Are Receiving Cidofovir. Clin. Infect. Dis., 2005, 41(5), 676-680.
[61]
Göhring, K.; Hamprecht, K.; Jahn, G. Antiviral drug- and multidrug resistance in cytomegalovirus infected SCT patiens. Comput. Struct. Biotechnol. J., 2015, 13, 153-159.
[62]
Cherrington, J.M.; Miner, R.; Hitchcock, M.J.M.; Lalezari, J.P.; Drew, W.L. Susceptibility of Human Cytomegalovirus to Cidofovir Is Unchanged after Limited in vivo Exposure to Various Clinical Regimens of Drug. Source. J. Infect. Dis., 1996, 173(4), 987-992.
[63]
Heathcote, E.J. Antiviral therapy: chronic hepatitis C. J. Viral Hepat., 2014, 1, 82-88.
[64]
Vermehren, J.; Peiffer, K.H.; Welsch, C.; Grammatikos, G.; Welker, M.W.; Weiler, N.; Zeuzem, S.; Welzel, T.M.; Sarrazin, C. The effiacy and safety of direct acting antiviral treatment and clinical signifiance of drug drug interactions in elderly patients with chronic hepatitis C virus infection. Aliment. Pharmacol. Ther., 2016, 44(8), 856-865.
[65]
Balin, B.J.; Gérard, H.C.; Arking, E.J.; Appelt, D.M.; Branigan, P.J.; Abrams, J.T.; Whittum-Hudson, J.A.; Hudson, A.P. Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med. Microbiol. Immunol. (Berl.), 1998, 187, 23-42.
[66]
Ring, R.H.; Lyons, J.M. Failure To Detect Chlamydia pneumoniae in the Late-Onset Alzheimer’s Brain. J. Clin. Microbiol., 2000, 38(7), 2591-2594.
[67]
Roubaud-Baudrona, C.; Krolak-Salmond, P.; Quadriog, I.; Mégrauda, F.; Salles, N. Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol. Aging, 2012, 33, 1009.e11-1009.e19.
[68]
Ayala, G.; Escobedo-Hinojosa, W.I.; de la Cruz-Herrera, C.F.; Romero, I. Exploring alternative treatments for Helicobacter pylori infection. World J. Gastroenterol., 2014, 20(6), 1450-1469.
[69]
Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: a review. Ann. Clin. Microb. Anti, 2014, 13(54), 1-10.
[70]
Machu, L.; Misurcova, L.; Ambrozova, J.V.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic Content and Antioxidant Capacity in Algal Food Products. Molecules, 2015, 20, 1118-1133.
[71]
Mabe, K.; Yamada, M.; Oguni, I.; Takahashi, T. In Vitro and In Vivo activities of tea catechins against Helicobacter pylori. Antimicrob. Agents Chemother., 1999, 43(7), 1788-1791.
[72]
Besednova, N.N.; Zaporozhets, T.S.; Somova, L.M.; Kuznetsova, T.A. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter, 2015, 20(2), 89-97.
[73]
Dekker, K.A.; Inagaki, T.; Gootz, T.D.; Huang, L.H.; Kojima, Y.; Kohlbrenner, W.E.; Matsunaga, Y.; McGuirk, P.R.; Nomura, E.; Sakakibara, T.; Sakemi, S.; Suzuki, Y.; Yamauchi, Y. Kojima, N. New Quinolone Compounds from Pseudonocardia sp. with Selective and Potent Anti-Helicobacter pylori Activity: Taxonomy of Producing Strain, Fermentation, Isolation, Structural Elucidation and Biological Activities. J. Antibiot. (Tokyo), 1998, 51(2), 145-152.
[74]
Carroll, A.R.; Ngo, A.; Quinn, R.J.; Redburn, J.; Hooper, J.N.; Petrosamine, B. an inhibitor of the Helicobacter pylori enzyme aspartyl semialdehyde dehydrogenase from the Australian sponge Oceanapia sp. J. Nat. Prod., 2005, 68(5), 804-806.
[75]
de Almeida Leone, P.; Carroll, A.R.; Towerzey, L.; King, G.; McArdle, B.M.; Kern, G.; Fisher, S.; Hooper, J.N.; Quinn, R.J. Exiguaquinol: a novel pentacyclic hydroquinone from Neopetrosia exigua that inhibits Helicobacter pylori MurI. Org. Lett., 2008, 10(12), 2585-2588.
[76]
Jang, S.H.; Lim, J.W.; Kim, H. Beta-carotene inhibits Helicobacter pylori-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in human gastric epithelial AGS cells. J. Physiol. Pharmacol., 2009, 60(7), 131-137.
[77]
Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine Carotenoids: Biological Functions and Commercial Applications. Mar. Drugs, 2011, 9(3), 319-333.
[78]
Wang, X.; Willén, R.; Wadström, T. Astaxanthin-Rich Algal Meal and Vitamin C Inhibit Helicobacter pylori Infection in BALB/cA Mice. Antimicrob. Agents Ch., 2000, 44(9), 2452-2457.
[79]
Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs, 2012, 10(9), 1920-1935.
[80]
Monroig, O.; Tocher, D.R.; Navarro, J.C. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms. Mar. Drugs, 2013, 11(10), 3998-4018.
[81]
Aziz, N.A.; Azlan, A.; Ismail, A.; Alinafiah, S.M.; Razman, M.R. Quantitative determination of fatty acids in marine fish and shellfish from warm water of straits of Malacca for nutraceutical purposes. BioMed Res. Int., 2013, 2013, 1-12.
[82]
Chang, H.W.; Jang, K.H.; Lee, D.; Kang, H.R.; Kim, T.Y.; Lee, B.H.; Choi, B.W.; Kim, S.; Shin, J. Monoglycerides from the brown alga Sargassum sagamianum: Isolation, synthesis, and biological activity. Bioorg. Med. Chem. Lett., 2008, 18(12), 3589-3592.
[83]
Zhao, Q.; Mansoor, T.A.; Hong, J.; Lee, C.O.; Im, K.S.; Lee, D.S.; Jung, J.H. New lysophosphatidylcholines and monoglycerides from the marine sponge Stelletta sp. J. Nat. Prod., 2003, 66(5), 725-728.
[84]
Sun, C.Q.; O’Connor, C.J.; Roberton, A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol., 2003, 36(1-2), 9-17.
[85]
Kamera, A.R.; Craiga, R.G.; Pirragliad, E.; Dasanayakec, A.P.; Normanc, R.G.; Boylanb, R.J.; Nehorayoff, A.; Glodzikd, L.; Brysd, M.; de Leond, M.J. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J. Neuroimmunol., 2009, 216(1-2), 92-97.
[86]
Olsen, I.; Taubman, M.A.; Singhrao, S.K. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease. J. Oral Microbiol., 2016, 8(33029), 1-13.
[87]
Ide, M.; Harris, M.; Stevens, A.; Sussams, R.; Hopkins, V.; Culliford, D.; Fuller, J.; Ibbett, P.; Raybould, R.; Thomas, R.; Puenter, U.; Teeling, J.; Perry, V.H.; Holmes, C. Periodontitis and Cognitive Decline in Alzheimer’s Disease. PLoS One, 2016, 11(3)e0151081
[88]
Roberts, J.L.; Khan, S.; Emanuel, C.; Powell, L.C.; Pritchard, M.F.; Onsøyen, E.; Myrvold, R.; Thomas, D.W.; Hill, K.E. An in vitro study of alginate oligomer therapies on oral biofilms. J. Dent., 2013, 41(10), 892-899.
[89]
Costa, E.M.; Silva, S.; Pina, C.; Tavaria, F.K.; Pintado, M. Antimicrobial Effect of Chitosan against Periodontal Pathogens Biofilms. SOJ Microbiol. Infect. Dis., 2014, 2(1), 1-6.
[90]
Kim, Y.H.; Kim, S.M.; Lee, S.Y. Antimicrobial Activity of Protamine against Oral Microorganisms. Biocontrol Sci., 2015, 20(4), 275-280.
[91]
Cho, H.B.; Lee, H.H.; Lee, O.H.; Choi, H.S.; Choi, J.S.; Lee, B.Y. Clinical and Microbial Evaluation of the Effects on Gingivitis of a Mouth Rinse Containing an Enteromorpha linza Extract. J. Med. Food, 2011, 14(12), 1670-1676.
[92]
Park, N.H.; Choi, J.S.; Hwang, S.Y.; Kim, Y.C.; Hong, Y.K.; Cho, K.K.; Choi, I.S. Antimicrobial activities of stearidonic and gamma-linolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria. Bot. Stud. (Taipei, Taiwan), 2013, 54(39), 1-9.
[93]
Choi, J.S.; Ha, Y.M.; Joo, C.U.; Cho, K.K.; Kim, S.J.; Choi, I.S. Inhibition of oral pathogens and collagenase activity by seaweed extracts. J. Environ. Biol., 2012, 33(1), 115-121.
[94]
Kim, Y.H.; Kim, J.H.; Jin, H.J.; Lee, S.Y. Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms. Anaerobe, 2013, 21, 34-38.
[95]
Fedders, H.; Podschun, R.; Leippe, M. The antimicrobial peptide Ci-MAM-A24 is highly active against multidrug-resistant and anaerobic bacteria pathogenic for humans. Int. J. Antimicrob. Agents, 2010, 36(3), 264-266.
[96]
Miklossy, J. Alzheimer’s disease - a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J. Neuroinflammation, 2011, 8(90), 1-16.
[97]
Alonso, R.; Pisa, D.; Aguado, B.; Carrasco, L. Identification of Fungal Species in Brain Tissue from Alzheimer’s Disease by Next-Generation Sequencing. J. Alzheimers Dis., 2017, 58, 55-67.
[98]
Pisa, D.; Alonso, R.; Rábano, A.; Rodal, I.; Carrasco, L. Different Brain Regions are Infected with Fungi in Alzheimer’s Disease. Sci. Rep., 2015, 5, 15015.
[99]
Xu, N.; Zhang, S. Identification, expression and bioactivity of a chitotriosidase-like homolog in amphioxus: dependence of enzymatic and antifungal activities on the chitin-binding domain. Mol. Immunol., 2012, 51, 57-65.
[100]
Kubanek, J.; Jensen, P.R.; Keifer, P.A.; Sullards, M.C.; Collins, D.O.; Fenical, W. Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6916-6921.
[101]
Guedes, E.A.; Dos Santos Araújo, M.A.; Souza, A.K.; de Souza, L.I.; de Barros, L.D.; de Albuquerque Maranhão, F.C.; Santana, A.E. Antifungal activities of different extracts of marine macroalgae against dermatophytes and Candida species. Mycopathologia, 2012, 174, 223-232.
[102]
Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS One, 2013, 8(8)e72203
[103]
Liu, A.H.; Liu, D.Q.; Liang, T.J.; Yu, X.Q.; Feng, M.T.; Yao, L.G.; Fang, Y.; Wang, B.; Feng, L.H.; Zhang, M.X.; Mao, S.C. Caulerprenylols Aand B, two rare antifungal prenylated para-xylenes from the green alga Caulerpa racemosa. Bioorg. Med. Chem. Lett., 2013, 23, 2491-2494.
[104]
Sionov, E.; Roth, D.; Sandovsky-Losica, H.; Kashman, Y.; Rudi, A.; Chill, L.; Berdicevsky, I.; Segal, E. Antifungal effect and possible mode of activity of a compound from the marine sponge Dysidea herbacea. J. Infect., 2005, 50, 453-460.
[105]
Kumar, R.; Subramani, R.; Feussner, K.D.; Aalbersberg, W. Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar. Drugs, 2012, 10, 200-208.
[106]
El-Amraoui, B.; Biard, J.F.; Fassouane, A. Haliscosamine: a new antifungal sphingosine derivative fromthe Moroccan marine sponge Haliclona viscosa. Springerplus, 2013, 2, 252.
[107]
Kon, Y.; Kubota, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J. Ceratinadins A-C, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg. Med. Chem. Lett., 2010, 20, 4569-4572.
[108]
Ravichandran, S.; Wahidullah, S.; D’Souza, L.; Anbuchezhian, R.M. Antimicrobial activity of marine sponge Clathria indica (Dendy, 1889). Bioorg. Khim., 2011, 37, 483-489.
[109]
Boonlarppradab, C.; Faulkner, D.J. Eurysterols A and B, cytotoxic and antifungal steroidal sulfates from a marine sponge of the genus Euryspongia. J. Nat. Prod., 2007, 70, 846-848.
[110]
Shilabin, A.G.; Hamann, M.T. In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities. Bioorg. Med. Chem., 2011, 19, 6628-6632.
[111]
Yuan, W.H.; Yi, Y.H.; Tang, H.F.; Liu, B.S.; Wang, Z.L.; Sun, G.Q.; Zhang, W.; Li, L.; Sun, P. Antifungal triterpene glycosides from the sea cucumber Bohadschia marmorata. Planta Med., 2009, 75, 168-173.
[112]
Wang, X.H.; Zou, Z.R.; Yi, Y.H.; Han, H.; Li, L.; Pan, M.X. Variegatusides: new nonsulphated triterpene glycosides from the sea cucumber Stichopus variegates semper. Mar. Drugs, 2014, 12(4), 2004-2018.
[113]
Han, H.; Yi, Y.H.; Li, L.; Liu, B.S.; La, M.P.; Zhang, H.W. Antifungal active triterpene glycosides from sea cucumber Holothuria scabra. Yao Xue Xue Bao, 2009, 44(6), 620-624.
[114]
Kossuga, M.H.; MacMillan, J.B.; Rogers, E.W.; Molinski, T.F.; Nascimento, G.G.; Rocha, R.M.; Berlinck, R.G. (2S,3R)-2-aminododecan-3-ol, a new antifungal agent from the ascidian Clavelina oblonga. J. Nat. Prod., 2004, 67(11), 1879-1881.
[115]
Han, Y.; Yang, B.; Zhang, F.; Miao, X.; Li, Z. Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar. Biotechnol. (NY), 2009, 11, 132-140.
[116]
Xu, L.Y.; Quan, X.S.; Wang, C.; Sheng, H.F.; Zhou, G.X.; Lin, B.R.; Jiang, R.W.; Yao, X.S. Antimycins A(19) and A(20), two new antimycins produced by marine actinomycete Streptomyces antibioticus H74-18. J. Antibiot. (Tokyo), 2011, 64, 661-665.
[117]
Gao, X.; Lu, Y.; Xing, Y.; Ma, Y.; Lu, J.; Bao, W.; Wang, Y.; Xi, T. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res., 2012, 167, 616-622.
[118]
Haga, A.; Tamoto, H.; Ishino, M.; Kimura, E.; Sugita, T.; Kinoshita, K.; Takahashi, K.; Shiro, M.; Koyama, K. Pyridone alkaloids from a marine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J. Nat. Prod., 2013, 76(4), 750-754.
[119]
Singh, A.J.; Dattelbaum, J.D.; Field, J.J.; Smart, Z.; Woolly, E.F.; Barber, J.M.; Heathcott, R.; Miller, J.H.; Northcote, P.T. Structurally diverse hamigerans from the New Zealand marine sponge Hamigera tarangaensis: NMR-directed isolation, structure elucidation and antifungal activity. Org. Biomol. Chem., 2013, 11(46), 8041-8051.
[120]
Vuong, D.; Capon, R.J.; Lacey, E.; Gill, J.H.; Heiland, K.; Friedel, T. Onnamide F: a new nematocide from a southern Australian marine sponge, Trachycladus laevispirulifer. J. Nat. Prod., 2001, 64(5), 640-642.
[121]
Bao, L.; Xu, Z.; Niu, S.B.; Namikoshi, M.; Kobayashi, H.; Liu, H.W. (-)- Sclerotiorin from an unidentified marine fungus as an anti-meiotic and anti-fungal agent. Nat. Prod. Commun., 2010, 5, 1789-1792.
[122]
Choi, J.S.; Lee, B.B.; Joo, C.U.; Shin, S.H.; Ha, Y.M.; Bae, H.J.; Choi, I.S. Inhibitory Effects of Seaweed Extracts on Growth of Malassezia furfur and Malassezia restricta. J. Fish. Sci. Technol., 2009, 12(1), 29-34.
[123]
Liu, M.; Wang, G.; Xiao, L.; Xu, X.; Liu, X.; Xu, P.; Lin, X. Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar. Drugs, 2014, 12, 3838-3851.
[124]
Jiménez, E.; Dorta, F.; Medina, C.; Ramírez, A.; Ramírez, I.; Peña-Cortés, H. Anti-Phytopathogenic Activities of Macro-Algae Extracts. Mar. Drugs, 2011, 9, 739-756.
[125]
El Amraoui, B.; El Wahidi, M.; Fassouane, A. In vitro screening of antifungal activity of marine sponge extracts against five phytopathogenic fungi. Springerplus, 2014, 3, 629.
[126]
El-Hossary, E.M.; Cheng, C.; Hamed, M.M.; El-Sayed Hamed, A.N.; Ohlsen, K.; Hentschel, U.; Abdelmohsen, U.R. Antifungal potential of marine natural products. Eur. J. Med. Chem., 2017, 126, 631-651.
[127]
Hill, J.M.; Clement, C.; Pogue, A.I.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front. Aging Neurosci., 2014, 6, 127.
[http://dx.doi.org/10.3389/fnagi.2014.00127]
[128]
Piacentini, R.; De Chiara, G.; Li, P. D.D.; Ripoli, C.; Marcocci, M.E.; Garaci, E.; Palamara, A.T.; Grassi, C. HSV-1 and Alzheimer’s disease: more than a hypothesis. Front. Pharmacol., 2014, 5, 97.
[http://dx.doi.org/10.3389/fphar.2014.00097]
[129]
Lukiw, W.J.; Cui, J.G.; Yuan, L.Y.; Bhattacharjee, P.S.; Corkern, M.; Clement, C.; Kammerman, E.M.; Ball, M.J.; Zhao, Y.; Sullivan, P.M.; Hill, J.M. Acycloviror Aβ42 peptides attenuate HSV-1- induced miRNA-146a levels in human primary brain cells. Neuroreport, 2010, 21, 922-927.
[130]
Honjo, K.; van Reekum, R.; Verhoeff, N.P. Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement., 2009, 5(4), 348-360.
[131]
Ball, M.J. Limbic predilection in Alzheimer dementia: is reactivated herpes virus involved? Can. J. Neurol. Sci., 1982, 9, 303-306.
[132]
Harden, E.A.; Falshaw, R.; Carnachan, S.M.; Kern, E.R.; Prichard, M.N. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res., 2009, 83, 282-289.
[133]
Serkedjieva, J. Antiherpes virus effect of the red marine alga Polysiphonia denudata. Z. Naturforsch. C, 2000, 55, 830-835.
[134]
Park, H.J.; Kurokawa, M.; Shiraki, K.; Nakamura, N.; Choi, J.S.; Hattori, M. Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice. Biol. Pharm. Bull., 2005, 28, 2258-2262.
[135]
Vo, T.S.; Ngo, D.H.; Ta, Q.V.; Kim, S.K. Marine organisms as a therapeutic source against herpes simplex virus infection. Eur. J. Pharm. Sci., 2011, 44, 11-20.
[136]
Damonte, E.B.; Neyts, J.; Pujol, C.A.; Snoeck, R.; Andrei, G.; Ikeda, S.; Witvrouw, M.; Reymen, D.; Haines, H.; Matulewicz, M.C. Antiviral activity of a sulfated polysaccharide from the red seaweed Nothogenia fastigiata. Biochem. Pharmacol., 1994, 47, 2187-2192.
[137]
Pujol, C.A.; Coto, C.E.; Damonte, E.B. Determination of the antiviral activity of a naturally occurring sulfated xylomannan under various experimental conditions. Rev. Argent. Microbiol., 1995, 27, 91-98.
[138]
Mandal, P.; Pujol, C.A.; Carlucci, M.J.; Chattopadhyay, K.; Damonte, E.B.; Ray, B. Anti-herpetic activity of a sulfated xylomannan from Scinaia hatei. Phytochemistry, 2008, 69, 2193-2199.
[139]
Ghosh, T.; Pujol, C.A.; Damonte, E.B.; Sinha, S.; Ray, B. Sulfated xylomannans from the red seaweed Sebdenia polydactyla: structural features, chemical modification and antiviral activity. Antivir. Chem. Chemother., 2009, 19, 235-242.
[140]
Talarico, L.B.; Zibetti, R.G.; Faria, P.C.; Scolaro, L.A.; Duarte, M.E.; Noseda, M.D.; Pujol, C.A.; Damonte, E.B. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol., 2004, 34, 63-71.
[141]
Chattopadhyay, K.; Mateu, C.G.; Mandal, P.; Pujol, C.A.; Damonte, E.B.; Ray, B. Galactan sulfate of Grateloupia indica: isolation, structural features and antiviral activity. Phytochemistry, 2007, 68, 1428-1435.
[142]
Mattos, B.B.; Romanos, M.T.V.; de Souza, L.M.; Sassaki, G.; Barreto-Bergter, E. Glycolipids from macroalgae: potential biomolecules for marine biotechnology? Rev. Bras. Farmacogn. Braz. J. Pharmacogn, 2011, 21(2), 244-247.
[143]
de Souza, L.M.; Sassaki, G.L.; Romanos, M.T.; Barreto-Bergter, E. Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian coast. Mar. Drugs, 2012, 10, 918-931.
[144]
Zhu, W.; Chiu, L.C.; Ooi, V.E.; Chan, P.K.; Ang, P.O., Jr Antiviral property and mode of action of a sulphated polysaccharide from Sargassum patens against herpes simplex virus type 2. Int. J. Antimicrob. Agents, 2004, 24, 279-283.
[145]
Zhu, W.; Chiu, L.C.; Ooi, V.E.; Chan, P.K.; Ang, P.O., Jr Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. Phytomedicine, 2006, 13, 695-701.
[146]
Asker, M.S.; Mohamed, S.M.; Ali, F.M.; El-Sayed, O.H. Chemical structure and antiviral activity of water-soluble sulfated polysaccharides from Sargassum latifolium. J. Appl. Sci. Res., 2007, 3, 1178-1185.
[147]
Zandi, K.; Fouladvand, M.; Pakdel, P.; Sartavi, K. Evaluation of in vitro antiviral activity of a brown agae (Cystoseira myrica) from the Persian Gulf against the Herpes simplex virus type 1. Afr. J. Biotechnol., 2007, 6, 2511-2514.
[148]
Hoshino, T.; Hayashi, T.; Hayashi, K.; Hamada, J.; Lee, J.B.; Sankawa, U. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. Biol. Pharm. Bull., 1998, 21, 730-734.
[149]
Feldman, S.C.; Reynaldi, S.; Stortz, C.A.; Cerezo, A.S.; Damont, E.B. Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine, 1999, 6, 335-340.
[150]
Ponce, N.M.; Pujol, C.A.; Damonte, E.B.; Flores, M.L.; Stortz, C.A. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr. Res., 2003, 338, 153-165.
[151]
Preeprame, S.; Hayashi, K.; Lee, J.B.; Sankawa, U.; Hayashi, T. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem. Pharm. Bull. (Tokyo), 2001, 49, 484-485.
[152]
Mandal, P.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir. Chem. Chemother., 2007, 18, 153-162.
[153]
Adhikari, U.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry, 2006, 67, 2474-2482.
[154]
Sinha, S.; Astani, A.; Ghosh, T.; Schnitzler, P.; Ray, B. Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry, 2010, 71, 235-242.
[155]
Thompson, K.D.; Dragar, C. Antiviral activity of Undaria pinnatifida against herpes simplex virus. Phytother. Res., 2004, 18, 551-555.
[156]
Bandyopadhyay, S.S.; Navid, M.H.; Ghosh, T.; Schnitzler, P.; Ray, B. Structural features and in vitro antiviral activities of sulfated polysaccharides from Sphacelaria indica. Phytochemistry, 2011, 72, 276-283.
[157]
Abrantes, J.L.; Barbosa, J.; Cavalcanti, D.; Pereira, R.C.; Frederico Fontes, C.L.; Teixeira, V.L.; Moreno Souza, T.L.; Paixão, I.C. The effects of the diterpenes isolated from the Brazilian brown algae Dictyota pfaffii and Dictyota menstrualis against the herpes simplex type-1 replicative cycle. Planta Med., 2009, 76, 339-344.
[158]
Vallim, M.A.; Barbosa, J.E.; Cavalcanti, D.N.; De-Paula, J.C.; da Silva, V.A.G.G.; Teixeira, V.L.; de Palmer Paixão, I.C.N. In vitro antiviral activity of diterpenes isolated from the Brazilian brown alga Canistrocarpus cervicornis. J. Med. Plants Res., 2010, 4, 2379-2382.
[159]
El-Baroty, G.S.; El-Baz, F.K.; Abd-Elmoein, A.; Abd El Baky, H.H.; Ali, M.M.; Ibrahim, A.E. Evaluation of glycolipids of some egyptian marine algae as a source of bioactive substances. EJEAFChe, 2011, 10, 2114-2128.
[160]
Lee, J.B.; Hayashi, K.; Maeda, M.; Hayashi, T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med., 2004, 70, 813-817.
[161]
Tiwari, V.; Shukla, S.Y.; Shukla, D. A sugar binding protein cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion. Antiviral Res., 2009, 84, 67-75.
[162]
Aswell, J.F.; Allen, G.P.; Jamieson, A.T.; Campbell, D.E.; Gentry, G.A. Antiviral activity of arabinosylthyrnine in herpesviral replication: mechanism of action in vivo and in vitro. Antimicrob. Agents Chemother., 1977, 12, 243-254.
[163]
Miller, R.L.; Iltis, J.P.; Rapp, F. Differential effect of arabinofuranosylthymine of the replication of human herpesviruses. J. Virol., 1977, 23, 679-684.
[164]
Gao, C.H.; Wang, Y.F.; Li, S.; Qian, P.Y.; Qi, S.H. Alkaloids and sesquiterpenes from the South China Sea gorgonian Echinogorgia pseudossapo. Mar. Drugs, 2011, 9, 2479-2487.
[165]
Genova-Kalou, P.; Dundarova, D.; Idakieva, K.; Mohmmed, A.; Dundarov, S.; Argirova, R. Anti-herpes effect of hemocyanin derived from the mollusk Rapana thomasiana. Z. Naturforsch. C, 2008, 63, 429-434.
[166]
Peng, Y.; Zheng, J.; Huang, R.; Wang, Y.; Xu, T.; Zhou, X.; Liu, Q.; Zeng, F.; Ju, H.; Yang, X.; Liu, Y. Polyhydroxy steroids and saponins from China sea starfish Asterina pectinifera and their biological activities. Chem. Pharm. Bull. (Tokyo), 2010, 58, 856-858.
[167]
Maier, M.S.; Roccatagliata, A.J.; Kuriss, A.; Chludil, H.; Seldes, A.M.; Pujol, C.A.; Damonte, E.B. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. J. Nat. Prod., 2001, 64, 732-736.
[168]
Carriel-Gomes, M.C.; Kratz, J.M.; Müller, V.D.M.; Barardi, C.R.M.; Simões, C.M.O. Evaluation of antiviral activity in hemolymph from oysters Crassostrea rhizophorae and Crassostrea gigas. Aquat. Living Resour., 2006, 19, 189-193.
[169]
Gustafson, K.R.; Roman, M.; Fenical, W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc., 1989, 111, 7519-7524.
[170]
Rowley, D.C.; Kelly, S.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg. Med. Chem., 2003, 11, 4263-4274.
[171]
Shushni, M.A.M.; Mentel, R.; Lindequist, U.; Jansen, R. Balticols A–F, naphthalenone derivatives with antiviral activity, from an Ascomycetous fungus. Chem. Biodivers., 2009, 6, 127-137.
[172]
Westman, G.; Berglund, D.; Widén, J.; Ingelsson, M.; Korsgren, O.; Lannfelt, L.; Sehlin, D.; Lidehall, A.K.; Eriksson, B.M. Increased inflammatory response in cytomegalovirus seropositive patients with Alzheimer’s disease. PLoS One, 2014, 9(5)e96779
[173]
Cheng, S.Y.; Chuang, C.T.; Wen, Z.H.; Wang, S.K.; Chiou, S.F.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Bioactive norditerpenoids from the soft coral Sinularia gyrosa. Bioorg. Med. Chem., 2010, 18, 3379-3386.
[174]
Cheng, S.Y.; Huang, K.J.; Wang, S.K.; Duh, C.Y. Capilloquinol: a novel farnesyl quinol from the Dongsha atoll soft coral Sinularia capillosa. Mar. Drugs, 2011, 9, 1469-1476.
[175]
Kanekiyo, K.; Hayashi, K.; Takenaka, H.; Lee, J.B.; Hayashi, T. Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol. Pharm. Bull., 2007, 30(8), 1573-1575.
[176]
Hidari, K.I.P.J.; Takahashi, N.; Arihara, M.; Nagaoka, M.; Morita, K.; Suzuki, T. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun., 2008, 376(1), 91-95.
[177]
Monaco, S.; Ferrari, S.; Gajofatto, A.; Zanusso, G.; Mariotto, S. HCV-related nervous system disorders. Clin. Dev. Immunol., 2012, 236148
[http://dx.doi.org/10.1155/2012/236148]
[178]
Yamashita, A.; Salam, K.A.; Furuta, A. Matsuda, Y.; Fujita, O.;Tani, H.;Fujita, Y.; Fujimoto, Y.; Ikeda, M.; Kato, N.; Sakamoto, N.; Maekawa, S.; Enomoto, N.; Nakakoshi, M.; Tsubuki, M.; Sekiguchi, Y.; Tsuneda, S.; Akimitsu, N.; Noda, N.; Tanaka, J.; Moriishi, K. Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia. Mar. Drugs, 2012, 10(4), 744-761.
[179]
Takebe, Y.; Saucedo, C.J.; Lund, G.; Uenishi, R.; Hase, S.; Tsuchiura, T.; Kneteman, N.; Ramessar, K.; Tyrrell, D.L.; Shirakura, M.; Wakita, T.; McMahon, J.B.; O’Keefe, B.R. Antiviral Lectins from Red and Blue-Green Algae Show Potent In Vitro and In Vivo Activity against Hepatitis C Virus. PLoS One, 2013, 8(5)e64449
[http://dx.doi.org/10.1371/ journal.pone.0064449]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy