摘要
以下评论针对的是与阿尔茨海默氏病(AD)相关的微生物以及源自水生生物的化合物和提取物对特定细菌,真菌和病毒的抗菌作用,这些细菌先前在患有AD的患者中发现。与AD有关的微生物主要包括细菌:肺炎衣原体,幽门螺杆菌,牙龈卟啉单胞菌,核梭形杆菌,中间小球藻,内生放线菌,螺旋体组。真菌:念珠菌,隐球菌,酿酒酵母,马拉色菌,葡萄孢菌和病毒:单纯疱疹病毒1型(HSV-1),人巨细胞病毒(CMV),丙型肝炎病毒(HCV)。有鉴于此,本综述首次将水生生物的抗微生物潜力与这类微生物联系起来。这篇文献综述可能会为开发针对AD患者的新型支持疗法并可能预防已经具有AD发生高风险因素的患者的疾病升级提供一个起始平台。
关键词: 阿尔茨海默氏病,细菌,真菌,病毒,抗菌素,水生生物。
[1]
Alzheimer’s Disease International World Alzheimer report 2010. The global economic impact of dementia.,, 2010. Available from:http://www.alz.co.uk/research/files/WorldAlzheimerReport2010Executive
[3]
Selkoe, D.J. Alzheimer’s disease is a synaptic failure. Science, 2002, 298(5594), 789-791.
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[http://dx.doi.org/10.1126/science.1074069] [PMID: 12399581]
[4]
Davies, P.; Maloney, A.J. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet, 1976, 2(8000), 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[5]
Goate, A. Segregation of a missense mutation in the amyloid beta-protein precursor gene with familial Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(3)(Suppl.), 341-347.
[http://dx.doi.org/10.3233/JAD-2006-9S338] [PMID: 16914872]
[http://dx.doi.org/10.3233/JAD-2006-9S338] [PMID: 16914872]
[6]
Sherrington, R.; Rogaev, E.I.; Liang, Y.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Chi, H.; Lin, C.; Li, G.; Holman, K.; Tsuda, T; Mar, L; Foncin,, J.F.; Bruni,, A.C.; Bruni, M.P.; Sorbi, S.; Rainero, I.; Pinessi, L.; Nee, L.; Chumakov, I.; Pollen, D.; Brookes, A.; Sanseau, P; Polinsky, R.J.; Wasco, W; Da Silva, H.A.; Haines, J.S.; Perkicak-Vance, J.M.; Tanzi, R.E; Roses, A.D.; Fraser, P.E.; Rommens, J.M.; St George-Hyslop, P.H. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 1995, 375(6534), 754-760.
[http://dx.doi.org/10.1038/375754a0] [PMID: 7596406]
[http://dx.doi.org/10.1038/375754a0] [PMID: 7596406]
[7]
Levy-Lahad, E.; Wasco, W.; Poorkaj, P.; Romano, D.M.; Oshima, J.; Pettingell, W.H. Candidate gene for the chromosome familial Alzheimer's disease locusScience;, 1995, 269, 973-977.
[8]
Steiner, H.; Winkler, E.; Edbauer, D.; Prokop, S.; Basset, G.; Yamasaki, A.; Kostka, M.; Haass,, C. PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem., 2002, 277(42), 39062-39065.
[http://dx.doi.org/10.1074/jbc.C200469200] [PMID: 12198112]
[http://dx.doi.org/10.1074/jbc.C200469200] [PMID: 12198112]
[9]
Mahley, R.W.; Weisgraber, K.H.; Huang, Y. Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J. Lipid Res., 2009, 50(suppl), S183-S188.
[http://dx.doi.org/10.1194/jlr.R800069-JLR200] [PMID: 19106071]
[http://dx.doi.org/10.1194/jlr.R800069-JLR200] [PMID: 19106071]
[10]
Herz, J.; Chen, Y.; Masiulis, I.; Zhou, L. Expanding functions of lipoprotein receptors. J. Lipid Res., 2009, 50(suppl), S287-S292.
[http://dx.doi.org/10.1194/jlr.R800077-JLR200] [PMID: 19017612]
[http://dx.doi.org/10.1194/jlr.R800077-JLR200] [PMID: 19017612]
[11]
Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[12]
Saunders, A.M.; Strittmatter, W.J.; Schmechel, D.; George-Hyslop, P.H.; Pericak-Vance, M.A.; Joo, S.H. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 1993, 43(8), 1467-1472.
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[13]
Strittmatter, W.J.; Weisgraber, K.H.; Huang, D.Y.; Dong, L.M.; Salvesen, G.S.; Pericak-Vance, M. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 8098-8102.
[http://dx.doi.org/10.1073/pnas.90.17.8098] [PMID: 8367470]
[http://dx.doi.org/10.1073/pnas.90.17.8098] [PMID: 8367470]
[14]
Bartus, R.T.; Dean, R.L.; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science, 1982, 217(4)(4558), 408-414.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[15]
Mortamaisa, M.; Ashc, J.A.; Harrisond, J.; Kayef, J.; Kramerg, J.; Randolphh, C.; Posea, C.; Albalai, B.; Ropackij, M.; Ritchiek, C.W.; Ritchiea, K. Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimers Dement., 2017, 13(4), 468-492.
[http://dx.doi.org/10.1016/j.jalz.2016.06.2365] [PMID: 27702618]
[http://dx.doi.org/10.1016/j.jalz.2016.06.2365] [PMID: 27702618]
[16]
Hill, J.M.; Clement, C.; Pogue, A.I.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front. Aging Neurosci., 2014, 6(127), 127-5.
[PMID: 24982633]
[PMID: 24982633]
[17]
McManus, R.M.; Heneka, M.T. Role of neuroinflammation in neurodegeneration: new insights. Alzheimers Res. Ther., 2017, 9(1), 14.
[http://dx.doi.org/10.1186/s13195-017-0241-2] [PMID: 28259169]
[http://dx.doi.org/10.1186/s13195-017-0241-2] [PMID: 28259169]
[18]
Kountouras, J.; Boziki, M.; Gavalas, E.; Zavos, C.; Grigoriadis, N.; Deretzi, G.; Tzilves, D.; Katsinelos, P.; Tsolaki, M.; Chatzopoulos, D.; Venizelos, I. Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer’s disease. J. Neurol., 2009, 256(5), 758-767.
[http://dx.doi.org/10.1007/s00415-009-5011-z] [PMID: 19240960]
[http://dx.doi.org/10.1007/s00415-009-5011-z] [PMID: 19240960]
[19]
Chang, Y.P.; Chiu, G.F.; Kuo, F.C.; Lai, C.L.; Yang, Y.H.; Hu, H.M.; Chang, P.Y.; Chen, C.Y.; Wu, D.C.; Yu, F.J. 2013.
[20]
Poole, S.; Singhrao, S.K.; Chukkapalli, S.; Rivera, M.; Velsko, I.; Kesavalu, L.; Crean, S. Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains. J. Alzheimers Dis., 2015, 43(1), 67-80.
[http://dx.doi.org/10.3233/JAD-140315 ] [PMID: 25061055]
[http://dx.doi.org/10.3233/JAD-140315 ] [PMID: 25061055]
[21]
Sparks Stein, P.; Steffen, M.J.; Smith, C.; Jicha, G.; Ebersole, J.L.; Abner, E.; Dawson, D. Serum antibodies to periodontal pathogens are a risk factor for Alzheimer’s disease. Alzheimers Dement., 2012, 8(3), 196-203.
[http://dx.doi.org/10.1016/j.jalz.2011.04.006] [PMID: 22546352]
[http://dx.doi.org/10.1016/j.jalz.2011.04.006] [PMID: 22546352]
[22]
Noble, J.M.; Scarmeas, N.; Celenti, R.S.; Elkind, M.S.V.; Wright, C.B.; Schupf, N.; Papapanou, P.N. Serum IgG Antibody Levels to Periodontal Microbiota Are Associated with Incident Alzheimer Disease. PLoS One, 2014, 9(12) e114959
[http://dx.doi.org/10.1371/journal.pone.0114959] [PMID: 25522313]
[http://dx.doi.org/10.1371/journal.pone.0114959] [PMID: 25522313]
[23]
Miklossy, J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; Mihaly, L.; Khalili, K. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol. Aging, 2006, 27(2), 228-236.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.01.018] [PMID: 15894409]
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.01.018] [PMID: 15894409]
[24]
Prusiner, S.B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet., 2013, 47, 601-623.
[http://dx.doi.org/10.1146/annurev-genet-110711-155524] [PMID: 24274755]
[http://dx.doi.org/10.1146/annurev-genet-110711-155524] [PMID: 24274755]
[25]
Alonso, R.; Pisa, D.; Marina, A.I.; Morato, E.; Rábano, A.; Carrasco, L. Fungal infection in patients with Alzheimer’s disease. J. Alzheimers Dis., 2014, 41(1), 301-311.
[http://dx.doi.org/10.3233/JAD-132681] [PMID: 24614898]
[http://dx.doi.org/10.3233/JAD-132681] [PMID: 24614898]
[26]
Heintz, C.; Mair, W. You are what you host: microbiome modulation of the aging process. Cell, 2014, 156(3), 408-411.
[http://dx.doi.org/10.1016/j.cell.2014.01.025] [PMID: 24485451]
[http://dx.doi.org/10.1016/j.cell.2014.01.025] [PMID: 24485451]
[27]
Agostini, S.; Clerici, M.; Mancuso, R. How plausible is a link between HSV-1 and AD? Expert Rev. Anti Infect. Ther., 2014, 12, 275-278.
[http://dx.doi.org/10.1586/14787210.2014.887442] [PMID: 24502805]
[http://dx.doi.org/10.1586/14787210.2014.887442] [PMID: 24502805]
[28]
Lurain, N.S.; Hanson, B.A.; Martinson, J.; Leurgans, S.E.; Landay, A.L.; Bennett, D.A.; Schneider, J.A. Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J. Infect. Dis., 2013, 208(4), 564-572.
[http://dx.doi.org/10.1093/infdis/jit210] [PMID: 23661800]
[http://dx.doi.org/10.1093/infdis/jit210] [PMID: 23661800]
[29]
Chiu, W.C.; Tsan, Y.T.; Tsai, S.L.; Chang, C.J.; Wang, J.D.; Chen, P.C. Hepatitis C viral infection and the risk of dementia. Eur. J. Neurol., 2014, 21(8), 1068-e59.
[http://dx.doi.org/10.1111/ene.12317] [PMID: 24313931]
[http://dx.doi.org/10.1111/ene.12317] [PMID: 24313931]
[30]
Karim, S.; Mirza, Z.; Kamal, M.A.; Abuzenadah, A.M.; Azhar, E.I.; Al-Qahtani, M.H.; Sohrab, S.S. An association of virus infection with type 2 diabetes and Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 429-439.
[http://dx.doi.org/10.2174/18715273113126660164] [PMID: 24059298]
[http://dx.doi.org/10.2174/18715273113126660164] [PMID: 24059298]
[31]
Blasi, F.; Tarsia, P.; Aliberti, S. Chlamydophila pneumoniae. Clin. Microbiol. Infect., 2009, 15(1), 29-35.
[http://dx.doi.org/10.1111/j.1469-0691.2008.02130.x] [PMID: 19220337]
[http://dx.doi.org/10.1111/j.1469-0691.2008.02130.x] [PMID: 19220337]
[32]
Sandoz, K.M.; Rockey, D.D. Antibiotic resistance in Chlamydiae.. Future Microbiol, 2010, 5(9), 1427-1442.
[http://dx.doi.org/10.2217/fmb.10.96] [PMID: 20860486]
[http://dx.doi.org/10.2217/fmb.10.96] [PMID: 20860486]
[33]
Guo, D.; Cai, Y.; Chai, D.; Liang, B.; Bai, N.; Wang, R. The cardiotoxicity of macrolides: a systematic review. Pharmazie, 2010, 65(9), 631-640.
[PMID: 21038838]
[PMID: 21038838]
[34]
Salimi, A.; Eybagi, S.; Seydi, E.; Naserzadeh, P.; Kazerouni, N.P.; Pourahmad,, J. Toxicity of macrolide antibiotics on isolated heart mitochondria: a justification for their cardiotoxic adverse effect. Xenobiotica, 2016, 46(1), 82-93.
[http://dx.doi.org/10.3109/00498254.2015.1046975] [PMID: 26068526]
[http://dx.doi.org/10.3109/00498254.2015.1046975] [PMID: 26068526]
[35]
Malfertheiner, P.; Megraud, F.; O’Morain, C.; Bazzoli, F.; El-Omar, E.; Graham, D.; Hunt, R.; Rokkas, T.; Vakil, N.; Kuipers, E.J. Current concepts in the management of Helicobacter pylori infection: the Maastricht III Consensus Report. Gut, 2007, 56(6), 772-781.
[http://dx.doi.org/10.1136/gut.2006.101634] [PMID: 17170018]
[http://dx.doi.org/10.1136/gut.2006.101634] [PMID: 17170018]
[36]
Smith, S.M.; O’Morain, C.; McNamara, D. Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance. World J. Gastroenterol, 2014, 20(29), 9912-9921.
[http://dx.doi.org/10.3748/wjg.v20.i29.9912] [PMID: 25110421]
[http://dx.doi.org/10.3748/wjg.v20.i29.9912] [PMID: 25110421]
[37]
Kulik, E.M.; Lenkeit, K.; Chenaux, S.; Meyer, J. Antimicrobial susceptibility of periodontopathogenic bacteria. J. Antimicrob.Chemother., 2008, 61(5), 1087-1091.
[http://dx.doi.org/10.1093/jac/dkn079] [PMID: 18326855]
[http://dx.doi.org/10.1093/jac/dkn079] [PMID: 18326855]
[38]
Kulik, E.M.; Lenkeit, K.; Chenaux, S.; Meyer, J. Antimicrobial susceptibility of periodontopathogenic bacteria. J. Antimicrob. Chemother., 2008, 34(12), 1451-1456.
[http://dx.doi.org/10.1016/j.joen.2008.08.036] [PMID: 19026872]
[http://dx.doi.org/10.1016/j.joen.2008.08.036] [PMID: 19026872]
[39]
Jacinto, R.C.; Montagner, F.; Signoretti, F.G.; Almeida, G.C.; Gomes, B.P. Frequency, microbial interactions, and antimicrobial susceptibility of Fusobacterium nucleatum and Fusobacterium necrophorum isolated from primary endodontic infections. J. Endod., 2008, 34(12), 1451-1456.
[http://dx.doi.org/10.1093/jac/dkg022] [PMID: 12493794]
[http://dx.doi.org/10.1093/jac/dkg022] [PMID: 12493794]
[40]
Nyfors, S.; Könönen, E.; Syrjänen, R.; Komulainen, E.; Jousimies-Somer, H. Emergence of penicillin resistance among Fusobacterium nucleatum populations of commensal oral flora during early childhood. J. Antimicrob. Chemother., 2003, 51(1), 107-112.
[http://dx.doi.org/10.1093/jac/dkl052] [PMID: 16507560]
[http://dx.doi.org/10.1093/jac/dkl052] [PMID: 16507560]
[41]
Roberts, S.A.; Shore, K.P.; Paviour, S.D.; Holland, D.; Morris, A.J. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999-2003. J. Antimicrob. Chemother., 2006, 57(5), 992-998.
[PMID: 12886961]
[PMID: 12886961]
[42]
Chan, Y.; Chan, C.H. Antibiotic resistance of pathogenic bacteria from odontogenic infections in Taiwan. J. Microbiol. Immunol. Infect., 2003, 36, 105-110.
[http://dx.doi.org/10.1016/j.anaerobe.2010.07.004] [PMID: 20670687]
[http://dx.doi.org/10.1016/j.anaerobe.2010.07.004] [PMID: 20670687]
[43]
Boyanova, L.; Kolarov, R.; Gergova, G.; Dimitrova, L.; Mitov, I. Trends in antibiotic resistance in Prevotella species from patients of the University Hospital of Maxillofacial Surgery, Sofia, Bulgaria, in 2003-2009. Anaerobe, 2010, 16(5), 489-492.
[PMID: 25045274]
[PMID: 25045274]
[44]
Valour, F.; Sénéchal, A.; Dupieux, C.; Karsenty, J.; Lustig, S.; Breton, P. Actinomycosis: etiology, clinical features, diagnosis, treatment, and management. Infect. Drug Resist., 2014, 5(7), 183-197.
[http://dx.doi.org/10.1128/JCM.38.2.929-930.2000] [PMID: 10655420]
[http://dx.doi.org/10.1128/JCM.38.2.929-930.2000] [PMID: 10655420]
[45]
Wüst, J.; Steiger, U.; Vuong, H.; Zbinden, R. Infection of a Hip Prosthesis by Actinomyces naeslundii. J. Clin. Microbiol., 2000, 38(2), 929-930.
[http://dx.doi.org/10.1128/JCM.41.4.1791-1793.2003] [PMID: 12682190]
[http://dx.doi.org/10.1128/JCM.41.4.1791-1793.2003] [PMID: 12682190]
[46]
Sicklinger, M.; Wienecke, R.; Neubert, U. In Vitro Susceptibility Testing of Four Antibiotics against Borrelia burgdorferi: a Comparison of Results for the Three Genospecies Borrelia afzelii, Borrelia garinii, and Borrelia burgdorferi Sensu Stricto. J. Clin. Microbiol., 2003, 41(4), 1791-1793.
[http://dx.doi.org/10.1016/j.anaerobe.2017.10.005] [PMID: 29030100]
[http://dx.doi.org/10.1016/j.anaerobe.2017.10.005] [PMID: 29030100]
[47]
Okamoto-Shibayama, K.; Sekino, J.; Yoshikawa, K.; Saito, A.; Ishihara, K. Antimicrobial susceptibility profiles of oral Treponema species. Anaerobe, 2017, 48, 242-248.
[http://dx.doi.org/10.1093/cid/civ1194]
[http://dx.doi.org/10.1093/cid/civ1194]
[48]
Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis., 2016, 62, 1-50.
[49]
Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front. Microbiol., 2017, 7, 2173.
[50]
Smiljkovic, M.; Stanisavljevic, D.; Stojkovic, D.; Petrovic, I.; Marjanovic Vicentic, J.; Popovic, J. Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI J., 2017, 16, 795-807.
[51]
Oxman, D.A.; Chow, J.K.; Frendl, G.; Hadley, S.; Hershkovitz, S.; Ireland, P. Candidaemia associated with decreased in vitro fluconazole susceptibility: is Candida speciation predictive of the susceptibility pattern? J. Antimicrob. Chemother., 2010, 65, 1460-1465.
[52]
Kagan, S.; Ickowicz, D.; Shmuel, M.; Altschuler, Y.; Sionov, E.; Pitusi, M.; Weiss, A.; Farber, S.; Domb, A.J.; Polacheck, I. Toxicity mechanisms of amphotericin B and its neutralization by conjugation with arabinogalactan. Antimicrob. Agents Chemother., 2012, 56(11), 5603-5611.
[53]
Archibald, L.K.; Tuohy, M.J.; Wilson, D.A.; Nwanyanwu, O.; Kazembe, P.N.; Tansuphasawadikul, S.; Eampokalap, B.; Chaovavanich, A.; Reller, L.B.; Jarvis, W.R.; Hall, G.S.; Procop, G.W. Antifungal Susceptibilities of Cryptococcus neoformans. Emerg. Infect. Dis., 2004, 10(1), 143-145.
[54]
Bongomin, F.; Oladele, R.O.; Gago, S.; Moore, C.B.; Richardson, M.D. A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses, 2018, •••
[http://dx.doi.org/10.1111/myc.12747]
[http://dx.doi.org/10.1111/myc.12747]
[55]
Muñoz, P.; Bouza, E.; Cuenca-Estrella, M.; Eiros, J.M.; Pérez, M.J.; Sánchez-Somolinos, M.; Rincón, C.; Hortal, J.; Peláez, T. Saccharomyces cerevisiae Fungemia: An Emerging Infectious Disease. Clin. Infect. Dis., 2005, 40(11), 1625-1634.
[56]
Hennequin, C. Invasive Saccharomyces Infection: A Comprehensive Review. Clin. Infect. Dis., 2005, 41(11), 1559-1568.
[57]
Leong, C.; Buttafuoco, A.; Glatz, M.; Bosshard, P.P. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method. J. Clin. Microbiol., 2017, 55(6), 1883-1893.
[58]
Rabella, N.; Otegui, M.; Labeaga, R.; Rodríguez, P.; Margall, N.; Gurguí, M.; Prats, G. Antiviral Susceptibility of Herpes Simplex Viruses and Its Clinical Correlates: A Single Center’s Experience. Clin. Infect. Dis., 2002, 34(8), 1055-1060.
[60]
Wyles, D.L.; Patel, A.; Madinger, N.; Bessesen, M.; Krause, P.R.; Weinberg, A. Development of Herpes Simplex Virus Disease in Patients Who Are Receiving Cidofovir. Clin. Infect. Dis., 2005, 41(5), 676-680.
[61]
Göhring, K.; Hamprecht, K.; Jahn, G. Antiviral drug- and multidrug resistance in cytomegalovirus infected SCT patiens. Comput. Struct. Biotechnol. J., 2015, 13, 153-159.
[62]
Cherrington, J.M.; Miner, R.; Hitchcock, M.J.M.; Lalezari, J.P.; Drew, W.L. Susceptibility of Human Cytomegalovirus to Cidofovir Is Unchanged after Limited in vivo Exposure to Various Clinical Regimens of Drug. Source. J. Infect. Dis., 1996, 173(4), 987-992.
[64]
Vermehren, J.; Peiffer, K.H.; Welsch, C.; Grammatikos, G.; Welker, M.W.; Weiler, N.; Zeuzem, S.; Welzel, T.M.; Sarrazin, C. The effiacy and safety of direct acting antiviral treatment and clinical signifiance of drug drug interactions in elderly patients with chronic hepatitis C virus infection. Aliment. Pharmacol. Ther., 2016, 44(8), 856-865.
[65]
Balin, B.J.; Gérard, H.C.; Arking, E.J.; Appelt, D.M.; Branigan, P.J.; Abrams, J.T.; Whittum-Hudson, J.A.; Hudson, A.P. Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med. Microbiol. Immunol. (Berl.), 1998, 187, 23-42.
[66]
Ring, R.H.; Lyons, J.M. Failure To Detect Chlamydia pneumoniae in the Late-Onset Alzheimer’s Brain. J. Clin. Microbiol., 2000, 38(7), 2591-2594.
[67]
Roubaud-Baudrona, C.; Krolak-Salmond, P.; Quadriog, I.; Mégrauda, F.; Salles, N. Impact of chronic Helicobacter pylori infection on Alzheimer’s disease: preliminary results. Neurobiol. Aging, 2012, 33, 1009.e11-1009.e19.
[68]
Ayala, G.; Escobedo-Hinojosa, W.I.; de la Cruz-Herrera, C.F.; Romero, I. Exploring alternative treatments for Helicobacter pylori infection. World J. Gastroenterol., 2014, 20(6), 1450-1469.
[69]
Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: a review. Ann. Clin. Microb. Anti, 2014, 13(54), 1-10.
[70]
Machu, L.; Misurcova, L.; Ambrozova, J.V.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic Content and Antioxidant Capacity in Algal Food Products. Molecules, 2015, 20, 1118-1133.
[71]
Mabe, K.; Yamada, M.; Oguni, I.; Takahashi, T. In Vitro and In Vivo activities of tea catechins against Helicobacter pylori. Antimicrob. Agents Chemother., 1999, 43(7), 1788-1791.
[72]
Besednova, N.N.; Zaporozhets, T.S.; Somova, L.M.; Kuznetsova, T.A. Review: prospects for the use of extracts and polysaccharides from marine algae to prevent and treat the diseases caused by Helicobacter pylori. Helicobacter, 2015, 20(2), 89-97.
[73]
Dekker, K.A.; Inagaki, T.; Gootz, T.D.; Huang, L.H.; Kojima, Y.; Kohlbrenner, W.E.; Matsunaga, Y.; McGuirk, P.R.; Nomura, E.; Sakakibara, T.; Sakemi, S.; Suzuki, Y.; Yamauchi, Y. Kojima, N. New Quinolone Compounds from Pseudonocardia sp. with Selective and Potent Anti-Helicobacter pylori Activity: Taxonomy of Producing Strain, Fermentation, Isolation, Structural Elucidation and Biological Activities. J. Antibiot. (Tokyo), 1998, 51(2), 145-152.
[74]
Carroll, A.R.; Ngo, A.; Quinn, R.J.; Redburn, J.; Hooper, J.N.; Petrosamine, B. an inhibitor of the Helicobacter pylori enzyme aspartyl semialdehyde dehydrogenase from the Australian sponge Oceanapia sp. J. Nat. Prod., 2005, 68(5), 804-806.
[75]
de Almeida Leone, P.; Carroll, A.R.; Towerzey, L.; King, G.; McArdle, B.M.; Kern, G.; Fisher, S.; Hooper, J.N.; Quinn, R.J. Exiguaquinol: a novel pentacyclic hydroquinone from Neopetrosia exigua that inhibits Helicobacter pylori MurI. Org. Lett., 2008, 10(12), 2585-2588.
[76]
Jang, S.H.; Lim, J.W.; Kim, H. Beta-carotene inhibits Helicobacter pylori-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in human gastric epithelial AGS cells. J. Physiol. Pharmacol., 2009, 60(7), 131-137.
[77]
Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine Carotenoids: Biological Functions and Commercial Applications. Mar. Drugs, 2011, 9(3), 319-333.
[78]
Wang, X.; Willén, R.; Wadström, T. Astaxanthin-Rich Algal Meal and Vitamin C Inhibit Helicobacter pylori Infection in BALB/cA Mice. Antimicrob. Agents Ch., 2000, 44(9), 2452-2457.
[79]
Pereira, H.; Barreira, L.; Figueiredo, F.; Custódio, L.; Vizetto-Duarte, C.; Polo, C.; Rešek, E.; Engelen, A.; Varela, J. Polyunsaturated Fatty Acids of Marine Macroalgae: Potential for Nutritional and Pharmaceutical Applications. Mar. Drugs, 2012, 10(9), 1920-1935.
[80]
Monroig, O.; Tocher, D.R.; Navarro, J.C. Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms. Mar. Drugs, 2013, 11(10), 3998-4018.
[81]
Aziz, N.A.; Azlan, A.; Ismail, A.; Alinafiah, S.M.; Razman, M.R. Quantitative determination of fatty acids in marine fish and shellfish from warm water of straits of Malacca for nutraceutical purposes. BioMed Res. Int., 2013, 2013, 1-12.
[82]
Chang, H.W.; Jang, K.H.; Lee, D.; Kang, H.R.; Kim, T.Y.; Lee, B.H.; Choi, B.W.; Kim, S.; Shin, J. Monoglycerides from the brown alga Sargassum sagamianum: Isolation, synthesis, and biological activity. Bioorg. Med. Chem. Lett., 2008, 18(12), 3589-3592.
[83]
Zhao, Q.; Mansoor, T.A.; Hong, J.; Lee, C.O.; Im, K.S.; Lee, D.S.; Jung, J.H. New lysophosphatidylcholines and monoglycerides from the marine sponge Stelletta sp. J. Nat. Prod., 2003, 66(5), 725-728.
[84]
Sun, C.Q.; O’Connor, C.J.; Roberton, A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol., 2003, 36(1-2), 9-17.
[85]
Kamera, A.R.; Craiga, R.G.; Pirragliad, E.; Dasanayakec, A.P.; Normanc, R.G.; Boylanb, R.J.; Nehorayoff, A.; Glodzikd, L.; Brysd, M.; de Leond, M.J. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J. Neuroimmunol., 2009, 216(1-2), 92-97.
[86]
Olsen, I.; Taubman, M.A.; Singhrao, S.K. Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis, and Alzheimer’s disease. J. Oral Microbiol., 2016, 8(33029), 1-13.
[87]
Ide, M.; Harris, M.; Stevens, A.; Sussams, R.; Hopkins, V.; Culliford, D.; Fuller, J.; Ibbett, P.; Raybould, R.; Thomas, R.; Puenter, U.; Teeling, J.; Perry, V.H.; Holmes, C. Periodontitis and Cognitive Decline in Alzheimer’s Disease. PLoS One, 2016, 11(3)e0151081
[88]
Roberts, J.L.; Khan, S.; Emanuel, C.; Powell, L.C.; Pritchard, M.F.; Onsøyen, E.; Myrvold, R.; Thomas, D.W.; Hill, K.E. An in vitro study of alginate oligomer therapies on oral biofilms. J. Dent., 2013, 41(10), 892-899.
[89]
Costa, E.M.; Silva, S.; Pina, C.; Tavaria, F.K.; Pintado, M. Antimicrobial Effect of Chitosan against Periodontal Pathogens Biofilms. SOJ Microbiol. Infect. Dis., 2014, 2(1), 1-6.
[90]
Kim, Y.H.; Kim, S.M.; Lee, S.Y. Antimicrobial Activity of Protamine against Oral Microorganisms. Biocontrol Sci., 2015, 20(4), 275-280.
[91]
Cho, H.B.; Lee, H.H.; Lee, O.H.; Choi, H.S.; Choi, J.S.; Lee, B.Y. Clinical and Microbial Evaluation of the Effects on Gingivitis of a Mouth Rinse Containing an Enteromorpha linza Extract. J. Med. Food, 2011, 14(12), 1670-1676.
[92]
Park, N.H.; Choi, J.S.; Hwang, S.Y.; Kim, Y.C.; Hong, Y.K.; Cho, K.K.; Choi, I.S. Antimicrobial activities of stearidonic and gamma-linolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria. Bot. Stud. (Taipei, Taiwan), 2013, 54(39), 1-9.
[93]
Choi, J.S.; Ha, Y.M.; Joo, C.U.; Cho, K.K.; Kim, S.J.; Choi, I.S. Inhibition of oral pathogens and collagenase activity by seaweed extracts. J. Environ. Biol., 2012, 33(1), 115-121.
[94]
Kim, Y.H.; Kim, J.H.; Jin, H.J.; Lee, S.Y. Antimicrobial activity of ethanol extracts of Laminaria japonica against oral microorganisms. Anaerobe, 2013, 21, 34-38.
[95]
Fedders, H.; Podschun, R.; Leippe, M. The antimicrobial peptide Ci-MAM-A24 is highly active against multidrug-resistant and anaerobic bacteria pathogenic for humans. Int. J. Antimicrob. Agents, 2010, 36(3), 264-266.
[96]
Miklossy, J. Alzheimer’s disease - a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J. Neuroinflammation, 2011, 8(90), 1-16.
[97]
Alonso, R.; Pisa, D.; Aguado, B.; Carrasco, L. Identification of Fungal Species in Brain Tissue from Alzheimer’s Disease by Next-Generation Sequencing. J. Alzheimers Dis., 2017, 58, 55-67.
[98]
Pisa, D.; Alonso, R.; Rábano, A.; Rodal, I.; Carrasco, L. Different Brain Regions are Infected with Fungi in Alzheimer’s Disease. Sci. Rep., 2015, 5, 15015.
[99]
Xu, N.; Zhang, S. Identification, expression and bioactivity of a chitotriosidase-like homolog in amphioxus: dependence of enzymatic and antifungal activities on the chitin-binding domain. Mol. Immunol., 2012, 51, 57-65.
[100]
Kubanek, J.; Jensen, P.R.; Keifer, P.A.; Sullards, M.C.; Collins, D.O.; Fenical, W. Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6916-6921.
[101]
Guedes, E.A.; Dos Santos Araújo, M.A.; Souza, A.K.; de Souza, L.I.; de Barros, L.D.; de Albuquerque Maranhão, F.C.; Santana, A.E. Antifungal activities of different extracts of marine macroalgae against dermatophytes and Candida species. Mycopathologia, 2012, 174, 223-232.
[102]
Lopes, G.; Pinto, E.; Andrade, P.B.; Valentão, P. Antifungal activity of phlorotannins against dermatophytes and yeasts: approaches to the mechanism of action and influence on Candida albicans virulence factor. PLoS One, 2013, 8(8)e72203
[103]
Liu, A.H.; Liu, D.Q.; Liang, T.J.; Yu, X.Q.; Feng, M.T.; Yao, L.G.; Fang, Y.; Wang, B.; Feng, L.H.; Zhang, M.X.; Mao, S.C. Caulerprenylols Aand B, two rare antifungal prenylated para-xylenes from the green alga Caulerpa racemosa. Bioorg. Med. Chem. Lett., 2013, 23, 2491-2494.
[104]
Sionov, E.; Roth, D.; Sandovsky-Losica, H.; Kashman, Y.; Rudi, A.; Chill, L.; Berdicevsky, I.; Segal, E. Antifungal effect and possible mode of activity of a compound from the marine sponge Dysidea herbacea. J. Infect., 2005, 50, 453-460.
[105]
Kumar, R.; Subramani, R.; Feussner, K.D.; Aalbersberg, W. Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar. Drugs, 2012, 10, 200-208.
[106]
El-Amraoui, B.; Biard, J.F.; Fassouane, A. Haliscosamine: a new antifungal sphingosine derivative fromthe Moroccan marine sponge Haliclona viscosa. Springerplus, 2013, 2, 252.
[107]
Kon, Y.; Kubota, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J. Ceratinadins A-C, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg. Med. Chem. Lett., 2010, 20, 4569-4572.
[108]
Ravichandran, S.; Wahidullah, S.; D’Souza, L.; Anbuchezhian, R.M. Antimicrobial activity of marine sponge Clathria indica (Dendy, 1889). Bioorg. Khim., 2011, 37, 483-489.
[109]
Boonlarppradab, C.; Faulkner, D.J. Eurysterols A and B, cytotoxic and antifungal steroidal sulfates from a marine sponge of the genus Euryspongia. J. Nat. Prod., 2007, 70, 846-848.
[110]
Shilabin, A.G.; Hamann, M.T. In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities. Bioorg. Med. Chem., 2011, 19, 6628-6632.
[111]
Yuan, W.H.; Yi, Y.H.; Tang, H.F.; Liu, B.S.; Wang, Z.L.; Sun, G.Q.; Zhang, W.; Li, L.; Sun, P. Antifungal triterpene glycosides from the sea cucumber Bohadschia marmorata. Planta Med., 2009, 75, 168-173.
[112]
Wang, X.H.; Zou, Z.R.; Yi, Y.H.; Han, H.; Li, L.; Pan, M.X. Variegatusides: new nonsulphated triterpene glycosides from the sea cucumber Stichopus variegates semper. Mar. Drugs, 2014, 12(4), 2004-2018.
[113]
Han, H.; Yi, Y.H.; Li, L.; Liu, B.S.; La, M.P.; Zhang, H.W. Antifungal active triterpene glycosides from sea cucumber Holothuria scabra. Yao Xue Xue Bao, 2009, 44(6), 620-624.
[114]
Kossuga, M.H.; MacMillan, J.B.; Rogers, E.W.; Molinski, T.F.; Nascimento, G.G.; Rocha, R.M.; Berlinck, R.G. (2S,3R)-2-aminododecan-3-ol, a new antifungal agent from the ascidian Clavelina oblonga. J. Nat. Prod., 2004, 67(11), 1879-1881.
[115]
Han, Y.; Yang, B.; Zhang, F.; Miao, X.; Li, Z. Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar. Biotechnol. (NY), 2009, 11, 132-140.
[116]
Xu, L.Y.; Quan, X.S.; Wang, C.; Sheng, H.F.; Zhou, G.X.; Lin, B.R.; Jiang, R.W.; Yao, X.S. Antimycins A(19) and A(20), two new antimycins produced by marine actinomycete Streptomyces antibioticus H74-18. J. Antibiot. (Tokyo), 2011, 64, 661-665.
[117]
Gao, X.; Lu, Y.; Xing, Y.; Ma, Y.; Lu, J.; Bao, W.; Wang, Y.; Xi, T. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol. Res., 2012, 167, 616-622.
[118]
Haga, A.; Tamoto, H.; Ishino, M.; Kimura, E.; Sugita, T.; Kinoshita, K.; Takahashi, K.; Shiro, M.; Koyama, K. Pyridone alkaloids from a marine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J. Nat. Prod., 2013, 76(4), 750-754.
[119]
Singh, A.J.; Dattelbaum, J.D.; Field, J.J.; Smart, Z.; Woolly, E.F.; Barber, J.M.; Heathcott, R.; Miller, J.H.; Northcote, P.T. Structurally diverse hamigerans from the New Zealand marine sponge Hamigera tarangaensis: NMR-directed isolation, structure elucidation and antifungal activity. Org. Biomol. Chem., 2013, 11(46), 8041-8051.
[120]
Vuong, D.; Capon, R.J.; Lacey, E.; Gill, J.H.; Heiland, K.; Friedel, T. Onnamide F: a new nematocide from a southern Australian marine sponge, Trachycladus laevispirulifer. J. Nat. Prod., 2001, 64(5), 640-642.
[121]
Bao, L.; Xu, Z.; Niu, S.B.; Namikoshi, M.; Kobayashi, H.; Liu, H.W. (-)- Sclerotiorin from an unidentified marine fungus as an anti-meiotic and anti-fungal agent. Nat. Prod. Commun., 2010, 5, 1789-1792.
[122]
Choi, J.S.; Lee, B.B.; Joo, C.U.; Shin, S.H.; Ha, Y.M.; Bae, H.J.; Choi, I.S. Inhibitory Effects of Seaweed Extracts on Growth of Malassezia furfur and Malassezia restricta. J. Fish. Sci. Technol., 2009, 12(1), 29-34.
[123]
Liu, M.; Wang, G.; Xiao, L.; Xu, X.; Liu, X.; Xu, P.; Lin, X. Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of Botrytis cinerea and interacts with DNA molecules. Mar. Drugs, 2014, 12, 3838-3851.
[124]
Jiménez, E.; Dorta, F.; Medina, C.; Ramírez, A.; Ramírez, I.; Peña-Cortés, H. Anti-Phytopathogenic Activities of Macro-Algae Extracts. Mar. Drugs, 2011, 9, 739-756.
[125]
El Amraoui, B.; El Wahidi, M.; Fassouane, A. In vitro screening of antifungal activity of marine sponge extracts against five phytopathogenic fungi. Springerplus, 2014, 3, 629.
[126]
El-Hossary, E.M.; Cheng, C.; Hamed, M.M.; El-Sayed Hamed, A.N.; Ohlsen, K.; Hentschel, U.; Abdelmohsen, U.R. Antifungal potential of marine natural products. Eur. J. Med. Chem., 2017, 126, 631-651.
[127]
Hill, J.M.; Clement, C.; Pogue, A.I.; Bhattacharjee, S.; Zhao, Y.; Lukiw, W.J. Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front. Aging Neurosci., 2014, 6, 127.
[http://dx.doi.org/10.3389/fnagi.2014.00127]
[http://dx.doi.org/10.3389/fnagi.2014.00127]
[128]
Piacentini, R.; De Chiara, G.; Li, P. D.D.; Ripoli, C.; Marcocci, M.E.; Garaci, E.; Palamara, A.T.; Grassi, C. HSV-1 and Alzheimer’s disease: more than a hypothesis. Front. Pharmacol., 2014, 5, 97.
[http://dx.doi.org/10.3389/fphar.2014.00097]
[http://dx.doi.org/10.3389/fphar.2014.00097]
[129]
Lukiw, W.J.; Cui, J.G.; Yuan, L.Y.; Bhattacharjee, P.S.; Corkern, M.; Clement, C.; Kammerman, E.M.; Ball, M.J.; Zhao, Y.; Sullivan, P.M.; Hill, J.M. Acycloviror Aβ42 peptides attenuate HSV-1- induced miRNA-146a levels in human primary brain cells. Neuroreport, 2010, 21, 922-927.
[130]
Honjo, K.; van Reekum, R.; Verhoeff, N.P. Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement., 2009, 5(4), 348-360.
[131]
Ball, M.J. Limbic predilection in Alzheimer dementia: is reactivated herpes virus involved? Can. J. Neurol. Sci., 1982, 9, 303-306.
[132]
Harden, E.A.; Falshaw, R.; Carnachan, S.M.; Kern, E.R.; Prichard, M.N. Virucidal activity of polysaccharide extracts from four algal species against herpes simplex virus. Antiviral Res., 2009, 83, 282-289.
[133]
Serkedjieva, J. Antiherpes virus effect of the red marine alga Polysiphonia denudata. Z. Naturforsch. C, 2000, 55, 830-835.
[134]
Park, H.J.; Kurokawa, M.; Shiraki, K.; Nakamura, N.; Choi, J.S.; Hattori, M. Antiviral activity of the marine alga Symphyocladia latiuscula against herpes simplex virus (HSV-1) in vitro and its therapeutic efficacy against HSV-1 infection in mice. Biol. Pharm. Bull., 2005, 28, 2258-2262.
[135]
Vo, T.S.; Ngo, D.H.; Ta, Q.V.; Kim, S.K. Marine organisms as a therapeutic source against herpes simplex virus infection. Eur. J. Pharm. Sci., 2011, 44, 11-20.
[136]
Damonte, E.B.; Neyts, J.; Pujol, C.A.; Snoeck, R.; Andrei, G.; Ikeda, S.; Witvrouw, M.; Reymen, D.; Haines, H.; Matulewicz, M.C. Antiviral activity of a sulfated polysaccharide from the red seaweed Nothogenia fastigiata. Biochem. Pharmacol., 1994, 47, 2187-2192.
[137]
Pujol, C.A.; Coto, C.E.; Damonte, E.B. Determination of the antiviral activity of a naturally occurring sulfated xylomannan under various experimental conditions. Rev. Argent. Microbiol., 1995, 27, 91-98.
[138]
Mandal, P.; Pujol, C.A.; Carlucci, M.J.; Chattopadhyay, K.; Damonte, E.B.; Ray, B. Anti-herpetic activity of a sulfated xylomannan from Scinaia hatei. Phytochemistry, 2008, 69, 2193-2199.
[139]
Ghosh, T.; Pujol, C.A.; Damonte, E.B.; Sinha, S.; Ray, B. Sulfated xylomannans from the red seaweed Sebdenia polydactyla: structural features, chemical modification and antiviral activity. Antivir. Chem. Chemother., 2009, 19, 235-242.
[140]
Talarico, L.B.; Zibetti, R.G.; Faria, P.C.; Scolaro, L.A.; Duarte, M.E.; Noseda, M.D.; Pujol, C.A.; Damonte, E.B. Anti-herpes simplex virus activity of sulfated galactans from the red seaweeds Gymnogongrus griffithsiae and Cryptonemia crenulata. Int. J. Biol. Macromol., 2004, 34, 63-71.
[141]
Chattopadhyay, K.; Mateu, C.G.; Mandal, P.; Pujol, C.A.; Damonte, E.B.; Ray, B. Galactan sulfate of Grateloupia indica: isolation, structural features and antiviral activity. Phytochemistry, 2007, 68, 1428-1435.
[142]
Mattos, B.B.; Romanos, M.T.V.; de Souza, L.M.; Sassaki, G.; Barreto-Bergter, E. Glycolipids from macroalgae: potential biomolecules for marine biotechnology? Rev. Bras. Farmacogn. Braz. J. Pharmacogn, 2011, 21(2), 244-247.
[143]
de Souza, L.M.; Sassaki, G.L.; Romanos, M.T.; Barreto-Bergter, E. Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian coast. Mar. Drugs, 2012, 10, 918-931.
[144]
Zhu, W.; Chiu, L.C.; Ooi, V.E.; Chan, P.K.; Ang, P.O., Jr Antiviral property and mode of action of a sulphated polysaccharide from Sargassum patens against herpes simplex virus type 2. Int. J. Antimicrob. Agents, 2004, 24, 279-283.
[145]
Zhu, W.; Chiu, L.C.; Ooi, V.E.; Chan, P.K.; Ang, P.O., Jr Antiviral property and mechanisms of a sulphated polysaccharide from the brown alga Sargassum patens against Herpes simplex virus type 1. Phytomedicine, 2006, 13, 695-701.
[146]
Asker, M.S.; Mohamed, S.M.; Ali, F.M.; El-Sayed, O.H. Chemical structure and antiviral activity of water-soluble sulfated polysaccharides from Sargassum latifolium. J. Appl. Sci. Res., 2007, 3, 1178-1185.
[147]
Zandi, K.; Fouladvand, M.; Pakdel, P.; Sartavi, K. Evaluation of in vitro antiviral activity of a brown agae (Cystoseira myrica) from the Persian Gulf against the Herpes simplex virus type 1. Afr. J. Biotechnol., 2007, 6, 2511-2514.
[148]
Hoshino, T.; Hayashi, T.; Hayashi, K.; Hamada, J.; Lee, J.B.; Sankawa, U. An antivirally active sulfated polysaccharide from Sargassum horneri (TURNER) C. AGARDH. Biol. Pharm. Bull., 1998, 21, 730-734.
[149]
Feldman, S.C.; Reynaldi, S.; Stortz, C.A.; Cerezo, A.S.; Damont, E.B. Antiviral properties of fucoidan fractions from Leathesia difformis. Phytomedicine, 1999, 6, 335-340.
[150]
Ponce, N.M.; Pujol, C.A.; Damonte, E.B.; Flores, M.L.; Stortz, C.A. Fucoidans from the brown seaweed Adenocystis utricularis: extraction methods, antiviral activity and structural studies. Carbohydr. Res., 2003, 338, 153-165.
[151]
Preeprame, S.; Hayashi, K.; Lee, J.B.; Sankawa, U.; Hayashi, T. A novel antivirally active fucan sulfate derived from an edible brown alga, Sargassum horneri. Chem. Pharm. Bull. (Tokyo), 2001, 49, 484-485.
[152]
Mandal, P.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structural features and antiviral activity of sulphated fucans from the brown seaweed Cystoseira indica. Antivir. Chem. Chemother., 2007, 18, 153-162.
[153]
Adhikari, U.; Mateu, C.G.; Chattopadhyay, K.; Pujol, C.A.; Damonte, E.B.; Ray, B. Structure and antiviral activity of sulfated fucans from Stoechospermum marginatum. Phytochemistry, 2006, 67, 2474-2482.
[154]
Sinha, S.; Astani, A.; Ghosh, T.; Schnitzler, P.; Ray, B. Polysaccharides from Sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry, 2010, 71, 235-242.
[155]
Thompson, K.D.; Dragar, C. Antiviral activity of Undaria pinnatifida against herpes simplex virus. Phytother. Res., 2004, 18, 551-555.
[156]
Bandyopadhyay, S.S.; Navid, M.H.; Ghosh, T.; Schnitzler, P.; Ray, B. Structural features and in vitro antiviral activities of sulfated polysaccharides from Sphacelaria indica. Phytochemistry, 2011, 72, 276-283.
[157]
Abrantes, J.L.; Barbosa, J.; Cavalcanti, D.; Pereira, R.C.; Frederico Fontes, C.L.; Teixeira, V.L.; Moreno Souza, T.L.; Paixão, I.C. The effects of the diterpenes isolated from the Brazilian brown algae Dictyota pfaffii and Dictyota menstrualis against the herpes simplex type-1 replicative cycle. Planta Med., 2009, 76, 339-344.
[158]
Vallim, M.A.; Barbosa, J.E.; Cavalcanti, D.N.; De-Paula, J.C.; da Silva, V.A.G.G.; Teixeira, V.L.; de Palmer Paixão, I.C.N. In vitro antiviral activity of diterpenes isolated from the Brazilian brown alga Canistrocarpus cervicornis. J. Med. Plants Res., 2010, 4, 2379-2382.
[159]
El-Baroty, G.S.; El-Baz, F.K.; Abd-Elmoein, A.; Abd El Baky, H.H.; Ali, M.M.; Ibrahim, A.E. Evaluation of glycolipids of some egyptian marine algae as a source of bioactive substances. EJEAFChe, 2011, 10, 2114-2128.
[160]
Lee, J.B.; Hayashi, K.; Maeda, M.; Hayashi, T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med., 2004, 70, 813-817.
[161]
Tiwari, V.; Shukla, S.Y.; Shukla, D. A sugar binding protein cyanovirin-N blocks herpes simplex virus type-1 entry and cell fusion. Antiviral Res., 2009, 84, 67-75.
[162]
Aswell, J.F.; Allen, G.P.; Jamieson, A.T.; Campbell, D.E.; Gentry, G.A. Antiviral activity of arabinosylthyrnine in herpesviral replication: mechanism of action in vivo and in vitro. Antimicrob. Agents Chemother., 1977, 12, 243-254.
[163]
Miller, R.L.; Iltis, J.P.; Rapp, F. Differential effect of arabinofuranosylthymine of the replication of human herpesviruses. J. Virol., 1977, 23, 679-684.
[164]
Gao, C.H.; Wang, Y.F.; Li, S.; Qian, P.Y.; Qi, S.H. Alkaloids and sesquiterpenes from the South China Sea gorgonian Echinogorgia pseudossapo. Mar. Drugs, 2011, 9, 2479-2487.
[165]
Genova-Kalou, P.; Dundarova, D.; Idakieva, K.; Mohmmed, A.; Dundarov, S.; Argirova, R. Anti-herpes effect of hemocyanin derived from the mollusk Rapana thomasiana. Z. Naturforsch. C, 2008, 63, 429-434.
[166]
Peng, Y.; Zheng, J.; Huang, R.; Wang, Y.; Xu, T.; Zhou, X.; Liu, Q.; Zeng, F.; Ju, H.; Yang, X.; Liu, Y. Polyhydroxy steroids and saponins from China sea starfish Asterina pectinifera and their biological activities. Chem. Pharm. Bull. (Tokyo), 2010, 58, 856-858.
[167]
Maier, M.S.; Roccatagliata, A.J.; Kuriss, A.; Chludil, H.; Seldes, A.M.; Pujol, C.A.; Damonte, E.B. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. J. Nat. Prod., 2001, 64, 732-736.
[168]
Carriel-Gomes, M.C.; Kratz, J.M.; Müller, V.D.M.; Barardi, C.R.M.; Simões, C.M.O. Evaluation of antiviral activity in hemolymph from oysters Crassostrea rhizophorae and Crassostrea gigas. Aquat. Living Resour., 2006, 19, 189-193.
[169]
Gustafson, K.R.; Roman, M.; Fenical, W. The macrolactins, a novel class of antiviral and cytotoxic macrolides from a deep-sea marine bacterium. J. Am. Chem. Soc., 1989, 111, 7519-7524.
[170]
Rowley, D.C.; Kelly, S.; Kauffman, C.A.; Jensen, P.R.; Fenical, W. Halovirs A-E, new antiviral agents from a marine-derived fungus of the genus Scytalidium. Bioorg. Med. Chem., 2003, 11, 4263-4274.
[171]
Shushni, M.A.M.; Mentel, R.; Lindequist, U.; Jansen, R. Balticols A–F, naphthalenone derivatives with antiviral activity, from an Ascomycetous fungus. Chem. Biodivers., 2009, 6, 127-137.
[172]
Westman, G.; Berglund, D.; Widén, J.; Ingelsson, M.; Korsgren, O.; Lannfelt, L.; Sehlin, D.; Lidehall, A.K.; Eriksson, B.M. Increased inflammatory response in cytomegalovirus seropositive patients with Alzheimer’s disease. PLoS One, 2014, 9(5)e96779
[173]
Cheng, S.Y.; Chuang, C.T.; Wen, Z.H.; Wang, S.K.; Chiou, S.F.; Hsu, C.H.; Dai, C.F.; Duh, C.Y. Bioactive norditerpenoids from the soft coral Sinularia gyrosa. Bioorg. Med. Chem., 2010, 18, 3379-3386.
[174]
Cheng, S.Y.; Huang, K.J.; Wang, S.K.; Duh, C.Y. Capilloquinol: a novel farnesyl quinol from the Dongsha atoll soft coral Sinularia capillosa. Mar. Drugs, 2011, 9, 1469-1476.
[175]
Kanekiyo, K.; Hayashi, K.; Takenaka, H.; Lee, J.B.; Hayashi, T. Anti-herpes simplex virus target of an acidic polysaccharide, nostoflan, from the edible blue-green alga Nostoc flagelliforme. Biol. Pharm. Bull., 2007, 30(8), 1573-1575.
[176]
Hidari, K.I.P.J.; Takahashi, N.; Arihara, M.; Nagaoka, M.; Morita, K.; Suzuki, T. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga. Biochem. Biophys. Res. Commun., 2008, 376(1), 91-95.
[177]
Monaco, S.; Ferrari, S.; Gajofatto, A.; Zanusso, G.; Mariotto, S. HCV-related nervous system disorders. Clin. Dev. Immunol., 2012, 236148
[http://dx.doi.org/10.1155/2012/236148]
[http://dx.doi.org/10.1155/2012/236148]
[178]
Yamashita, A.; Salam, K.A.; Furuta, A. Matsuda, Y.; Fujita, O.;Tani, H.;Fujita, Y.; Fujimoto, Y.; Ikeda, M.; Kato, N.; Sakamoto, N.; Maekawa, S.; Enomoto, N.; Nakakoshi, M.; Tsubuki, M.; Sekiguchi, Y.; Tsuneda, S.; Akimitsu, N.; Noda, N.; Tanaka, J.; Moriishi, K. Inhibition of Hepatitis C Virus Replication and Viral Helicase by Ethyl Acetate Extract of the Marine Feather Star Alloeocomatella polycladia. Mar. Drugs, 2012, 10(4), 744-761.
[179]
Takebe, Y.; Saucedo, C.J.; Lund, G.; Uenishi, R.; Hase, S.; Tsuchiura, T.; Kneteman, N.; Ramessar, K.; Tyrrell, D.L.; Shirakura, M.; Wakita, T.; McMahon, J.B.; O’Keefe, B.R. Antiviral Lectins from Red and Blue-Green Algae Show Potent In Vitro and In Vivo Activity against Hepatitis C Virus. PLoS One, 2013, 8(5)e64449
[http://dx.doi.org/10.1371/ journal.pone.0064449]
[http://dx.doi.org/10.1371/ journal.pone.0064449]