Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Current Trends and Future Directions of Fluoroquinolones

Author(s): Hamada H.H. Mohammed, Gamal El-Din A.A. Abuo-Rahma*, Samar H. Abbas and El-Shimaa M.N. Abdelhafez

Volume 26, Issue 17, 2019

Page: [3132 - 3149] Pages: 18

DOI: 10.2174/0929867325666180214122944

Price: $65

Abstract

Fluoroquinolones represent an interesting synthetic class of antimicrobial agents with broad spectrum and potent activity. Since the discovery of nalidixic acid, the prototype of quinolones, several structural modifications to the quinolone nucleus have been carried out for improvement of potency, spectrum of activity, and to understand their structure activity relationship (SAR). The C-7 substituent was reported to have a major impact on the activity. Accordingly, Substitution at C-7 or its N-4-piperazinyl moiety was found to affect potency, bioavailability, and physicochemical properties. Also, it can increase the affinity towards mammalian topoisomerases that may shift quinolones from antibacterial to anticancer candidates. Moreover, the presence of DNA topoisomerases in both eukaryotic and prokaryotic cells makes them excellent targets for chemotherapeutic intervention in antibacterial and anticancer therapies. Based on this concept, several fluoroquionolones derivatives have been synthesized and biologically evaluated as antibacterial, antituberculosis, antiproliferative, antiviral and antifungal agents. This review is an attempt to focus on the therapeutic prospects of fluoroquinolones with an updated account on their atypical applications such as antitubercular and anticancer activities.

Keywords: Fluoroquinolones, ciprofloxacin, antibacterial, antitubercular, antiproliferative, SAR, antibiotic trends.

[1]
Sharma, P.C.; Jain, A.; Jain, S. Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol. Pharm., 2009, 66(6), 587-604.
[PMID: 20050522]
[2]
Hooper, D.C. Clinical applications of quinolones. Biochim. Biophys. Acta, 1998, 1400(1-3), 45-61.
[http://dx.doi.org/10.1016/S0167-4781(98)00127-4] [PMID: 9748496]
[3]
Bisacchi, G.S. Origins of the quinolone class of antibacterials: an expanded “Discovery Story”. J. Med. Chem., 2015, 58(12), 4874-4882.
[http://dx.doi.org/10.1021/jm501881c] [PMID: 25738967]
[4]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[5]
Slater, A.F.; Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature, 1992, 355(6356), 167-169.
[http://dx.doi.org/10.1038/355167a0] [PMID: 1729651]
[6]
Slater, A.F. Chloroquine: mechanism of drug action and resistance in Plasmodium falciparum. Pharmacol. Ther., 1993, 57(2-3), 203-235.
[http://dx.doi.org/10.1016/0163-7258(93)90056-J] [PMID: 8361993]
[7]
Shen, L.L.; Baranowski, J.; Pernet, A.G. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: specificity and cooperativity of drug binding to DNA. Biochemistry, 1989, 28(9), 3879-3885.
[http://dx.doi.org/10.1021/bi00435a038] [PMID: 2546584]
[8]
Ahmed, A.; Daneshtalab, M. Nonclassical biological activities of quinolone derivatives. J. Pharm. Pharm. Sci., 2012, 15(1), 52-72.
[PMID: 22365088]
[9]
Soni, K. Fluoroquinolones: Chemistry & action—a review. Indo Glob J Pharm Sci, 2012, 2, 43-53.
[10]
Deeba, F.; Khan, M.N.; Abbas, N.; Khan, M.A.; Khan, R.A. Synthesis and biological evaluation of N′-(2-hydroxybenzylidene)-1-ethyl-1, 4-dihydro-7-methyl-4-oxo-1, 8-naphthyridine-3-carbohydrazide and its complexes with Cu (II), Ni (II), Zn (II) and Fe (III). Asian J. Chem., 2013, 25, 8351.
[http://dx.doi.org/10.14233/ajchem.2013.14738]
[11]
Domagala, J.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother., 1994, 33(4), 685-706.
[http://dx.doi.org/10.1093/jac/33.4.685] [PMID: 8056688]
[12]
Gootz, T.D.; Brighty, K.E. Fluoroquinolone antibacterials: SAR mechanism of action, resistance, and clinical aspects. Med. Res. Rev., 1996, 16(5), 433-486.
[http://dx.doi.org/10.1002/(SICI)1098-1128(199609)16:5<433:AID-MED3>3.0.CO;2-W] [PMID: 8865150]
[13]
DNA topoisomerase targets of the fluoroquinolones: A strategy for avoiding bacterial resistance, 2016.Available at. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC28420/ (Accessed Jun 6, 2016).
[14]
Tillotson, G.S. Quinolones: structure-activity relationships and future predictions. J. Med. Microbiol., 1996, 44(5), 320-324.
[http://dx.doi.org/10.1099/00222615-44-5-320] [PMID: 8636945]
[15]
Chu, D.T.W.; Fernandes, P.B.; Claiborne, A.K.; Pihuleac, E.; Nordeen, C.W.; Maleczka, R.E., Jr; Pernet, A.G. Synthesis and structure-activity relationships of novel arylfluoroquinolone antibacterial agents. J. Med. Chem., 1985, 28(11), 1558-1564.
[http://dx.doi.org/10.1021/jm00149a003] [PMID: 3934382]
[16]
Asif, M. A Review on potent antitubercular agent isoniazid and its analogues. Int. J. Pharm. Chem., 2013, 2, 110-120.
[http://dx.doi.org/10.7439/ijpc.v2i4.755]
[17]
Drobac, P.C.; del Castillo, H.; Sweetland, A.; Anca, G.; Joseph, J.K.; Furin, J.; Shin, S. Treatment of multidrug-resistant tuberculosis during pregnancy: long-term follow-up of 6 children with intrauterine exposure to second-line agents. Clin. Infect. Dis., 2005, 40(11), 1689-1692.
[http://dx.doi.org/10.1086/430066] [PMID: 15889370]
[18]
O’Brien, R.J.; Nunn, P.P. The need for new drugs against tuberculosis. Obstacles, opportunities, and next steps. Am. J. Respir. Crit. Care Med., 2001, 163(5), 1055-1058.
[http://dx.doi.org/10.1164/ajrccm.163.5.2007122] [PMID: 11316634]
[19]
O’Brien, R.J. Development of fluoroquinolones as first-line drugs for tuberculosis--at long last! Am. J. Respir. Crit. Care Med., 2003, 168(11), 1266-1268.
[http://dx.doi.org/10.1164/rccm.2309011] [PMID: 14644920]
[20]
Cui, S-F.; Peng, L-P.; Zhang, H-Z.; Rasheed, S.; Vijaya Kumar, K.; Zhou, C-H. Novel hybrids of metronidazole and quinolones: synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur. J. Med. Chem., 2014, 86, 318-334.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.063] [PMID: 25173851]
[21]
Zhang, L.; Addla, D.; Ponmani, J.; Wang, A.; Xie, D.; Wang, Y-N.; Zhang, S-L.; Geng, R-X.; Cai, G-X.; Li, S.; Zhou, C-H. Discovery of membrane active benzimidazole quinolones-based topoisomerase inhibitors as potential DNA-binding antimicrobial agents. Eur. J. Med. Chem., 2016, 111, 160-182.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.052] [PMID: 26871658]
[22]
Cui, S-F.; Ren, Y.; Zhang, S-L.; Peng, X-M.; Damu, G.L.V.; Geng, R-X.; Zhou, C-H. Synthesis and biological evaluation of a class of quinolone triazoles as potential antimicrobial agents and their interactions with calf thymus DNA. Bioorg. Med. Chem. Lett., 2013, 23(11), 3267-3272.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.118] [PMID: 23602443]
[23]
Ozdek, S.C.; Miller, D.; Flynn, P.M.; Flynn, H.W. In vitro antifungal activity of the fourth generation fluoroquinolones against Candida isolates from human ocular infections. Ocul. Immunol. Inflamm., 2006, 14(6), 347-351.
[http://dx.doi.org/10.1080/09273940600976953] [PMID: 17162605]
[24]
Srinivasan, S.; Beema Shafreen, R.M.; Nithyanand, P.; Manisankar, P.; Pandian, S.K. Synthesis and in vitro antimicrobial evaluation of novel fluoroquinolone derivatives. Eur. J. Med. Chem., 2010, 45(12), 6101-6105.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.036] [PMID: 20933306]
[25]
Khan, K.M.; Siddiqui, R.; Ambreen, N.; Sultana, N.; Tauseef, S.; Ahmad, A.; Perveen, S. Synthesis, antibacterial, and antifungal evaluation of norfloxacin derivatives. J. Pharm. Res. Vol, 2012, 5, 666-671.
[26]
de Almeida, M.V.; Saraiva, M.F.; de Souza, M.V.N.; da Costa, C.F.; Vicente, F.R.C.; Lourenço, M.C.S. Synthesis and antitubercular activity of lipophilic moxifloxacin and gatifloxacin derivatives. Bioorg. Med. Chem. Lett., 2007, 17(20), 5661-5664.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.073] [PMID: 17804222]
[27]
Hu, G.; Wang, G.; Duan, N.; Wen, X.; Cao, T.; Xie, S.; Huang, W. Design, synthesis and antitumor activities of fluoroquinolone C-3 heterocycles (IV): S-Triazole Schiff-Mannich bases derived from ofloxacin. Acta Pharm. Sin. B, 2012, 2, 312-317.
[http://dx.doi.org/10.1016/j.apsb.2011.11.003]
[28]
Advani, R.H.; Hurwitz, H.I.; Gordon, M.S.; Ebbinghaus, S.W.; Mendelson, D.S.; Wakelee, H.A.; Hoch, U.; Silverman, J.A.; Havrilla, N.A.; Berman, C.J.; Fox, J.A.; Allen, R.S.; Adelman, D.C. Voreloxin, a first-in-class anticancer quinolone derivative, in relapsed/refractory solid tumors: a report on two dosing schedules. Clin. Cancer Res., 2010, 16(7), 2167-2175.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2236] [PMID: 20233886]
[29]
Li, J.; Li, S.; Bai, C.; Liu, H.; Gramatica, P. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis. J. Mol. Graph. Model., 2013, 44, 266-277.
[http://dx.doi.org/10.1016/j.jmgm.2013.07.004] [PMID: 23911994]
[30]
Pudlo, M.; Luzet, V.; Ismaïli, L.; Tomassoli, I.; Iutzeler, A.; Refouvelet, B. Quinolone-benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer disease. Bioorg. Med. Chem., 2014, 22(8), 2496-2507.
[http://dx.doi.org/10.1016/j.bmc.2014.02.046] [PMID: 24657052]
[31]
Van Bambeke, F.; Michot, J-M.; Van Eldere, J.; Tulkens, P.M. Quinolones in 2005: an update. Clin. Microbiol. Infect., 2005, 11(4), 256-280.
[http://dx.doi.org/10.1111/j.1469-0691.2005.01131.x] [PMID: 15760423]
[32]
Ball, P. Moxifloxacin (Avelox): an 8-methoxyquinolone antibacterial with enhanced potency. Int. J. Clin. Pract., 2000, 54(5), 329-332.
[PMID: 10954961]
[33]
Blondeau, J.M. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv. Ophthalmol., 2004, 49(Suppl. 2), S73-S78.
[http://dx.doi.org/10.1016/j.survophthal.2004.01.005] [PMID: 15028482]
[34]
Naber, K.G.; Adam, D. Classification of fluoroquinolones. Int. J. Antimicrob. Agents, 1998, 10(4), 255-257.
[http://dx.doi.org/10.1016/S0924-8579(98)00059-4] [PMID: 9916897]
[35]
Choi, S-H.; Kim, E.Y.; Kim, Y-J. Systemic use of fluoroquinolone in children. Korean J. Pediatr., 2013, 56(5), 196-201.
[http://dx.doi.org/10.3345/kjp.2013.56.5.196] [PMID: 23741232]
[36]
Pallo-Zimmerman, L.M.; Byron, J.K.; Graves, T.K. Fluoroquinolones: then and now. Compend. Contin. Educ. Vet., 2010, 32(7), E1-E9.
[PMID: 20957609]
[37]
Greenwood, D.; Finch, R.; Davey, P.; Wilcox, M. Antimicrobial Chemotherapy, 5th ed; OUP Oxford: Oxford, New York, 2007.
[38]
Morrow, B.J.; He, W.; Amsler, K.M.; Foleno, B.D.; Macielag, M.J.; Lynch, A.S.; Bush, K. In vitro antibacterial activities of JNJ-Q2, a new broad-spectrum fluoroquinolone. Antimicrob. Agents Chemother., 2010, 54(5), 1955-1964.
[http://dx.doi.org/10.1128/AAC.01374-09] [PMID: 20176911]
[39]
Lemaire, S.; Tulkens, P.M.; Van Bambeke, F. Contrasting effects of acidic pH on the extracellular and intracellular activities of the anti-gram-positive fluoroquinolones moxifloxacin and delafloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2011, 55(2), 649-658.
[http://dx.doi.org/10.1128/AAC.01201-10] [PMID: 21135179]
[40]
Guo, B.; Wu, X.; Zhang, Y.; Shi, Y.; Yu, J.; Cao, G.; Zhang, J. Safety and clinical pharmacokinetics of nemonoxacin, a novel non-fluorinated quinolone, in healthy Chinese volunteers following single and multiple oral doses. Clin. Drug Investig., 2012, 32(7), 475-486.
[http://dx.doi.org/10.2165/11632780-000000000-00000] [PMID: 22650326]
[41]
Itoh, K.; Kuramoto, Y.; Amano, H.; Kazamori, D.; Yazaki, A. Discovery of WQ-3810: Design, synthesis, and evaluation of 7-(3-alkylaminoazetidin-1-yl) fluoro-quinolones as orally active antibacterial agents. Eur. J. Med. Chem., 2015, 103, 354-360.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.015] [PMID: 26363871]
[42]
Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J.V. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol., 2014, 22(8), 438-445.
[http://dx.doi.org/10.1016/j.tim.2014.04.007] [PMID: 24842194]
[43]
Anderson, V.E.; Osheroff, N.; Type, I.I. Type II topoisomerases as targets for quinolone antibacterials: turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des., 2001, 7(5), 337-353.
[http://dx.doi.org/10.2174/1381612013398013] [PMID: 11254893]
[44]
Champoux, J.J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70, 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[45]
Hooper, D.C. Emerging mechanisms of fluoroquinolone resistance. Emerg. Infect. Dis., 2001, 7(2), 337-341.
[http://dx.doi.org/10.3201/eid0702.010239] [PMID: 11294736]
[46]
Drlica, K.; Malik, M.; Kerns, R.J.; Zhao, X. Quinolone-mediated bacterial death. Antimicrob. Agents Chemother., 2008, 52(2), 385-392.
[http://dx.doi.org/10.1128/AAC.01617-06] [PMID: 17724149]
[47]
Aldred, K.J.; McPherson, S.A.; Turnbough, C.L., Jr; Kerns, R.J.; Osheroff, N. Topoisomerase IV-quinolone interactions are mediated through a water-metal ion bridge: mechanistic basis of quinolone resistance. Nucleic Acids Res., 2013, 41(8), 4628-4639.
[http://dx.doi.org/10.1093/nar/gkt124] [PMID: 23460203]
[48]
Sissi, C.; Cheng, B.; Lombardo, V.; Tse-Dinh, Y-C.; Palumbo, M. Metal ion and inter-domain interactions as functional networks in E. coli topoisomerase I. Gene, 2013, 524(2), 253-260.
[http://dx.doi.org/10.1016/j.gene.2013.04.008] [PMID: 23612251]
[49]
Sissi, C.; Perdonà, E.; Domenici, E.; Feriani, A.; Howells, A.J.; Maxwell, A.; Palumbo, M. Ciprofloxacin affects conformational equilibria of DNA gyrase A in the presence of magnesium ions. J. Mol. Biol., 2001, 311(1), 195-203.
[http://dx.doi.org/10.1006/jmbi.2001.4838] [PMID: 11469868]
[50]
Drlica, K.; Hiasa, H.; Kerns, R.; Malik, M.; Mustaev, A.; Zhao, X. Quinolones: action and resistance updated. Curr. Top. Med. Chem., 2009, 9(11), 981-998.
[http://dx.doi.org/10.2174/156802609789630947] [PMID: 19747119]
[51]
Heddle, J.G.; Barnard, F.M.; Wentzell, L.M.; Maxwell, A. The interaction of drugs with DNA gyrase: a model for the molecular basis of quinolone action. Nucleosides Nucleotides Nucleic Acids, 2000, 19(8), 1249-1264.
[http://dx.doi.org/10.1080/15257770008033048] [PMID: 11097055]
[52]
Drlica, K. Mechanism of fluoroquinolone action. Curr. Opin. Microbiol., 1999, 2(5), 504-508.
[http://dx.doi.org/10.1016/S1369-5274(99)00008-9] [PMID: 10508721]
[53]
Asif, M. Study of antimicrobial quinolones and structure activity relationship of anti-tubercular compounds. Res. Rev. J. Chem., 2015, 4, 28-70.
[54]
Llorente, B.; Leclerc, F.; Cedergren, R. Using SAR and QSAR analysis to model the activity and structure of the quinolone-DNA complex. Bioorg. Med. Chem., 1996, 4(1), 61-71.
[http://dx.doi.org/10.1016/0968-0896(96)83749-7] [PMID: 8689241]
[55]
Fang, K-C.; Chen, Y-L.; Sheu, J-Y.; Wang, T-C.; Tzeng, C-C. Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives. J. Med. Chem., 2000, 43(20), 3809-3812.
[http://dx.doi.org/10.1021/jm000153x] [PMID: 11020298]
[56]
Peterson, L.R. Quinolone molecular structure-activity relationships: what we have learned about improving antimicrobial activity. Clin. Infect. Dis., 2001, 33(Suppl. 3), S180-S186.
[http://dx.doi.org/10.1086/321846] [PMID: 11524717]
[57]
Emami, S.; Shafiee, A.; Foroumadi, A. Quinolones: recent structural and clinical developments. Iran. J. Pharm. Res., 2010, 0, 123-136.
[58]
Chu, D.T.; Fernandes, P.B.; Claiborne, A.K.; Shen, L.; Pernet, A.G. Structure-activity relationships in quinolone antibacterials: design, synthesis and biological activities of novel isothiazoloquinolones. Drugs Exp. Clin. Res., 1988, 14(6), 379-383.
[PMID: 2850902]
[59]
Domagala, J.M. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J. Antimicrob. Chemother., 1994, 33(4), 685-706.
[http://dx.doi.org/10.1093/jac/33.4.685] [PMID: 8056688]
[60]
Yoshida, T.; Yamamoto, Y.; Orita, H.; Kakiuchi, M.; Takahashi, Y.; Itakura, M.; Kado, N.; Mitani, K.; Yasuda, S.; Kato, H.; Itoh, Y. Studies on quinolone antibacterials. IV. Structure-activity relationships of antibacterial activity and side effects for 5- or 8-substituted and 5,8-disubstituted-7-(3-amino-1-pyrrolidinyl)-1-cyclopropyl-1, 4-dihydro-4-oxo-quinoline-3-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1996, 44(5), 1074-1085.
[http://dx.doi.org/10.1248/cpb.44.1074] [PMID: 8689718]
[61]
Lawrence, L.E.; Wu, P.; Fan, L.; Gouveia, K.E.; Card, A.; Casperson, M.; Denbleyker, K.; Barrett, J.F. The inhibition and selectivity of bacterial topoisomerases by BMS-284756 and its analogues. J. Antimicrob. Chemother., 2001, 48(2), 195-201.
[http://dx.doi.org/10.1093/jac/48.2.195] [PMID: 11481288]
[62]
Abuo-Rahma. Gel-D.; Sarhan, H.A.; Gad, G.F.M. Design, synthesis, antibacterial activity and physicochemical parameters of novel N-4-piperazinyl derivatives of norfloxacin. Bioorg. Med. Chem., 2009, 17(11), 3879-3886.
[http://dx.doi.org/10.1016/j.bmc.2009.04.027] [PMID: 19419875]
[63]
De Sarro, A.; De Sarro, G. Adverse reactions to fluoroquinolones. an overview on mechanistic aspects. Curr. Med. Chem., 2001, 8(4), 371-384.
[http://dx.doi.org/10.2174/0929867013373435] [PMID: 11172695]
[64]
Brighty, K.E.; Gootz, T.D. The chemistry and biological profile of trovafloxacin. J. Antimicrob. Chemother., 1997, 39(Suppl. B), 1-14.
[http://dx.doi.org/10.1093/jac/39.suppl_2.1]
[65]
Dong, Y.; Xu, C.; Zhao, X.; Domagala, J.; Drlica, K. Fluoroquinolone action against mycobacteria: effects of C-8 substituents on growth, survival, and resistance. Antimicrob. Agents Chemother., 1998, 42(11), 2978-2984.
[http://dx.doi.org/10.1128/AAC.42.11.2978] [PMID: 9797236]
[66]
Lu, T.; Zhao, X.; Drlica, K. Gatifloxacin activity against quinolone-resistant gyrase: allele-specific enhancement of bacteriostatic and bactericidal activities by the C-8-methoxy group. Antimicrob. Agents Chemother., 1999, 43(12), 2969-2974.
[http://dx.doi.org/10.1128/AAC.43.12.2969] [PMID: 10582891]
[67]
Cecchetti, V.; Fravolini, A.; Lorenzini, M.C.; Tabarrini, O.; Terni, P.; Xin, T. Studies on 6-aminoquinolones: synthesis and antibacterial evaluation of 6-amino-8-methyl-quinolones. J. Med. Chem., 1996, 39(2), 436-445.
[http://dx.doi.org/10.1021/jm950558v] [PMID: 8558512]
[68]
Ma, Z.; Chu, D.T.; Cooper, C.S.; Li, Q.; Fung, A.K.; Wang, S.; Shen, L.L.; Flamm, R.K.; Nilius, A.M.; Alder, J.D.; Meulbroek, J.A.; Or, Y.S. Synthesis and antimicrobial activity of 4H-4-oxoquinolizine derivatives: consequences of structural modification at the C-8 position. J. Med. Chem., 1999, 42(20), 4202-4213.
[http://dx.doi.org/10.1021/jm990191k] [PMID: 10514290]
[69]
de Almeida, C.G.; Diniz, C.G.; Silva, V.L.; Saraiva, M.F.; Le Hyaric, M.; de Almeida, M.V. Antibacterial activity of lipophilic fluoroquinolone derivatives. Med. Chem., 2009, 5(5), 419-421.
[http://dx.doi.org/10.2174/157340609789117859] [PMID: 19534679]
[70]
Alam, M.A.; Arora, K.; Gurrapu, S.; Jonnalagadda, S.K.; Nelson, G.L.; Kiprof, P.; Jonnalagadda, S.C.; Mereddy, V.R. Synthesis and evaluation of functionalized benzoboroxoles as potential anti-tuberculosis agents. Tetrahedron, 2016, 72(26), 3795-3801.
[http://dx.doi.org/10.1016/j.tet.2016.03.038] [PMID: 27642196]
[71]
Saraiva, M.F.; de Souza, M.V.N.; Tran Huu Dau, M.E.; Araújo, D.P.; de Carvalho, G.S.G.; de Almeida, M.V. Synthesis and antitubercular evaluation of new fluoroquinolone derivatives coupled with carbohydrates. Carbohydr. Res., 2010, 345(6), 761-767.
[http://dx.doi.org/10.1016/j.carres.2010.01.016] [PMID: 20167309]
[72]
Bryskier, A.; Lowther, J. Fluoroquinolones and tuberculosis. Expert Opin. Investig. Drugs, 2002, 11(2), 233-258.
[http://dx.doi.org/10.1517/13543784.11.2.233] [PMID: 11829714]
[73]
Smith, I. Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev., 2003, 16(3), 463-496.
[http://dx.doi.org/10.1128/CMR.16.3.463-496.2003] [PMID: 12857778]
[74]
Velezheva, V.; Brennan, P.; Ivanov, P.; Kornienko, A.; Lyubimov, S.; Kazarian, K.; Nikonenko, B.; Majorov, K.; Apt, A. Synthesis and antituberculosis activity of indole-pyridine derived hydrazides, hydrazide-hydrazones, and thiosemicarbazones. Bioorg. Med. Chem. Lett., 2016, 26(3), 978-985.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.049] [PMID: 26725953]
[75]
Dos Santos Fernandes, G.F.; Jornada, D.H.; de Souza, P.C.; Chin, C.M.; Pavan, F.R.; Dos Santos, J.L. Current advances in antitubercular drug discovery: potent prototypes and new targets. Curr. Med. Chem., 2015, 22(27), 3133-3161.
[http://dx.doi.org/10.2174/0929867322666150818103836] [PMID: 26282941]
[76]
Rodrigues, F.A.R.; Oliveira, A.C.A.; Cavalcanti, B.C.; Pessoa, C.; Pinheiro, A.C.; de Souza, M.V.N. Biological evaluation of isoniazid derivatives as an anticancer class. Sci. Pharm., 2013, 82(1), 21-28.
[http://dx.doi.org/10.3797/scipharm.1307-25] [PMID: 24634839]
[77]
Treatment of Tuberculosis: Guidelines; WHO Guidelines Approved by the Guidelines Review Committee, 4th ed; World Health Organization: Geneva, 2010.
[78]
Guerrini, V.; De Rosa, M.; Pasquini, S.; Mugnaini, C.; Brizzi, A.; Cuppone, A.M.; Pozzi, G.; Corelli, F. New fluoroquinolones active against fluoroquinolones-resistant Mycobacterium tuberculosis strains. Tuberculosis (Edinb.), 2013, 93(4), 405-411.
[http://dx.doi.org/10.1016/j.tube.2013.02.017] [PMID: 23523640]
[79]
Multidrug and Extensively Drug-Resistant TB (M/XDR-TB) 2010 Global Report on Surveillance and Response; World Health Organization: Geneva, Switzerland, 2010.
[80]
Sotgiu, G.; Migliori, G.B. Facing multi-drug resistant tuberculosis. Pulm. Pharmacol. Ther., 2015, 32, 144-148.
[http://dx.doi.org/10.1016/j.pupt.2014.04.006] [PMID: 24792579]
[81]
Ng, P.S.; Manjunatha, U.H.; Rao, S.P.S.; Camacho, L.R.; Ma, N.L.; Herve, M.; Noble, C.G.; Goh, A.; Peukert, S.; Diagana, T.T.; Smith, P.W.; Kondreddi, R.R. Structure activity relationships of 4-hydroxy-2-pyridones: A novel class of antituberculosis agents. Eur. J. Med. Chem., 2015, 106, 144-156.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.008] [PMID: 26544629]
[82]
Beena; Rawat, D.S. Antituberculosis drug research: a critical overview. Med. Res. Rev., 2013, 33(4), 693-764.
[http://dx.doi.org/10.1002/med.21262] [PMID: 22622957]
[83]
Foroumadi, A.; Emami, S.; Mansouri, S.; Javidnia, A.; Saeid-Adeli, N.; Shirazi, F.H.; Shafiee, A. Synthesis and antibacterial activity of levofloxacin derivatives with certain bulky residues on piperazine ring. Eur. J. Med. Chem., 2007, 42(7), 985-992.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.034] [PMID: 17316916]
[84]
Foroumadi, A.; Emami, S.; Mehni, M.; Moshafi, M.H.; Shafiee, A. Synthesis and antibacterial activity of N-[2-(5-bromothiophen-2-yl)-2-oxoethyl] and N-[(2-5-bromo-thiop-hen-2-yl)-2-oximinoethyl] derivatives of piperazinyl quinolones. Bioorg. Med. Chem. Lett., 2005, 15(20), 4536-4539.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.005] [PMID: 16115766]
[85]
Mitscher, L.A. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105(2), 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
[86]
Jazayeri, S.; Moshafi, M.H.; Firoozpour, L.; Emami, S.; Rajabalian, S.; Haddad, M.; Pahlavanzadeh, F.; Esnaashari, M.; Shafiee, A.; Foroumadi, A. Synthesis and antibacterial activity of nitroaryl thiadiazole-gatifloxacin hybrids. Eur. J. Med. Chem., 2009, 44(3), 1205-1209.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.012] [PMID: 18950903]
[87]
Foroumadi, A.; Emami, S.; Rajabalian, S.; Badinloo, M.; Mohammadhosseini, N.; Shafiee, A. N-Substituted piperazinyl quinolones as potential cytotoxic agents: structure-activity relationships study. Biomed. Pharmacother., 2009, 63(3), 216-220.
[http://dx.doi.org/10.1016/j.biopha.2008.01.016] [PMID: 18328669]
[88]
Feng, L-S.; Liu, M-L.; Wang, B.; Chai, Y.; Hao, X-Q.; Meng, S.; Guo, H-Y. Synthesis and in vitro antimycobacterial activity of balofloxacin ethylene isatin derivatives. Eur. J. Med. Chem., 2010, 45(8), 3407-3412.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.027] [PMID: 20493593]
[89]
Letafat, B.; Emami, S.; Mohammadhosseini, N.; Faramarzi, M.A.; Samadi, N.; Shafiee, A.; Foroumadi, A. Synthesis and antibacterial activity of new N-[2-(thiophen-3-yl) ethyl] piperazinyl quinolones. Chem. Pharm. Bull. (Tokyo), 2007, 55(6), 894-898.
[http://dx.doi.org/10.1248/cpb.55.894] [PMID: 17541188]
[90]
German, N.; Wei, P.; Kaatz, G.W.; Kerns, R.J. Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. Eur. J. Med. Chem., 2008, 43(11), 2453-2463.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.042] [PMID: 18358571]
[91]
Brennan, P.J.; Nikaido, H. The envelope of mycobacteria. Annu. Rev. Biochem., 1995, 64, 29-63.
[http://dx.doi.org/10.1146/annurev.bi.64.070195.000333] [PMID: 7574484]
[92]
Zhao, G.; Miller, M.J.; Franzblau, S.; Wan, B.; Möllmann, U. Syntheses and studies of quinolone-cephalosporins as potential anti-tuberculosis agents. Bioorg. Med. Chem. Lett., 2006, 16(21), 5534-5537.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.045] [PMID: 16945530]
[93]
Zhao, Y-L.; Chen, Y-L.; Sheu, J-Y.; Chen, I-L.; Wang, T-C.; Tzeng, C-C. Synthesis and antimycobacterial evaluation of certain fluoroquinolone derivatives. Bioorg. Med. Chem., 2005, 13(12), 3921-3926.
[http://dx.doi.org/10.1016/j.bmc.2005.04.005] [PMID: 15911308]
[94]
Suresh, N.; Nagesh, H.N.; Renuka, J.; Rajput, V.; Sharma, R.; Khan, I.A.; Kondapalli Venkata Gowri, C.S. Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin-1-yl) acetyl) piperazin-1-yl) quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents. Eur. J. Med. Chem., 2014, 71, 324-332.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.055] [PMID: 24333580]
[95]
Zhou, F-W.; Lei, H-S.; Fan, L.; Jiang, L.; Liu, J.; Peng, X-M.; Xu, X-R.; Chen, L.; Zhou, C-H.; Zou, Y-Y.; Liu, C-P.; He, Z-Q.; Yang, D-C. Design, synthesis, and biological evaluation of dihydroartemisinin-fluoroquinolone conjugates as a novel type of potential antitubercular agents. Bioorg. Med. Chem. Lett., 2014, 24(8), 1912-1917.
[http://dx.doi.org/10.1016/j.bmcl.2014.03.010] [PMID: 24684842]
[96]
Huang, J.; Wang, M.; Wang, B.; Wu, Z.; Liu, M.; Feng, L.; Zhang, J.; Li, X.; Yang, Y.; Lu, Y. Synthesis, antimycobacterial and antibacterial activity of 1-(6-amino-3,5-difluoropyridin-2-yl)fluoroquinolone derivatives containing an oxime functional moiety. Bioorg. Med. Chem. Lett., 2016, 26(9), 2262-2267.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.050] [PMID: 27020299]
[97]
Zhang, T.; Shen, W.; Liu, M.; Zhang, R.; Wang, M.; Li, L.; Wang, B.; Guo, H.; Lu, Y. Synthesis, antimycobacterial and antibacterial activity of fluoroquinolone derivatives containing an 3-alkoxyimino-4-(cyclopropylanimo)methylpyrro-lidine moiety. Eur. J. Med. Chem., 2015, 104, 73-85.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.030] [PMID: 26435513]
[98]
Vieira, L.M.M.; de Almeida, M.V.; Lourenço, M.C.S.; Bezerra, F.A.F.M.; Fontes, A.P.S. Synthesis and antitubercular activity of palladium and platinum complexes with fluoroquinolones. Eur. J. Med. Chem., 2009, 44(10), 4107-4111.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.001] [PMID: 19482387]
[99]
Wang, S.; Jia, X-D.; Liu, M-L.; Lu, Y.; Guo, H-Y. Synthesis, antimycobacterial and antibacterial activity of ciprofloxacin derivatives containing a N-substituted benzyl moiety. Bioorg. Med. Chem. Lett., 2012, 22(18), 5971-5975.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.040] [PMID: 22884110]
[100]
Senthilkumar, P.; Dinakaran, M.; Yogeeswari, P.; China, A.; Nagaraja, V.; Sriram, D. Antimycobacterial activities of novel fluoroquinolones. Biomed. Pharmacother., 2009, 63(1), 27-35.
[http://dx.doi.org/10.1016/j.biopha.2007.10.004] [PMID: 18031974]
[101]
Wang, J.C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[102]
Abdel-Aziz, M.; Park, S-E. Abuo-Rahma, Gel-D.; Sayed, M.A.; Kwon, Y. Novel N-4-piperazinyl-ciprofloxacin-chalcone hybrids: synthesis, physicochemical properties, anticancer and topoisomerase I and II inhibitory activity. Eur. J. Med. Chem., 2013, 69, 427-438.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.040] [PMID: 24090914]
[103]
Nagarajan, M.; Morrell, A.; Fort, B.C.; Meckley, M.R.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. Synthesis and anticancer activity of simplified indenoisoquinoline topoisomerase I inhibitors lacking substituents on the aromatic rings. J. Med. Chem., 2004, 47(23), 5651-5661.
[http://dx.doi.org/10.1021/jm040025z] [PMID: 15509164]
[104]
Burden, D.A.; Osheroff, N. Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochim. Biophys. Acta, 1998, 1400(1-3), 139-154.
[http://dx.doi.org/10.1016/S0167-4781(98)00132-8] [PMID: 9748545]
[105]
Spicer, J.A.; Finlay, G.J.; Baguley, B.C.; Velea, L.; Graves, D.E.; Denny, W.A. 5,7-Disubstituted analogues of the mixed topoisomerase I/II poison N-[2-(dimethyl-amino)ethyl]acridine-4-carboxamide (DACA): DNA binding and patterns of cytotoxicity. Anticancer Drug Des., 1999, 14(1), 37-45.
[PMID: 10363026]
[106]
Hentze, H.; Latta, M.; Künstle, G.; Dhakshinamoorthy, S.; Ng, P.Y.; Porter, A.G.; Wendel, A. Topoisomerase inhibitor camptothecin sensitizes mouse hepatocytes in vitro and in vivo to TNF-mediated apoptosis. Hepatology, 2004, 39(5), 1311-1320.
[http://dx.doi.org/10.1002/hep.20174] [PMID: 15122760]
[107]
Lebedeva, N.; Rechkunova, N.; Boiteux, S.; Lavrik, O. Trapping of human DNA topoisomerase I by DNA structures mimicking intermediates of DNA repair. IUBMB Life, 2008, 60(2), 130-134.
[http://dx.doi.org/10.1002/iub.5] [PMID: 18380002]
[108]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[109]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
[110]
Sørensen, B.S.; Sinding, J.; Andersen, A.H.; Alsner, J.; Jensen, P.B.; Westergaard, O. Mode of action of topoisomerase II-targeting agents at a specific DNA sequence. Uncoupling the DNA binding, cleavage and religation events. J. Mol. Biol., 1992, 228(3), 778-786.
[http://dx.doi.org/10.1016/0022-2836(92)90863-F] [PMID: 1335085]
[111]
Chu, D.T.; Hallas, R.; Tanaka, S.K.; Alder, J.; Balli, D.; Plattner, J.J. Synthesis and antitumour activities of tetracyclic quinolone antineoplastic agents. Drugs Exp. Clin. Res., 1993, 20, 177-183.
[PMID: 7875053]
[112]
Azéma, J.; Guidetti, B.; Dewelle, J.; Le Calve, B.; Mijatovic, T.; Korolyov, A.; Vaysse, J.; Malet-Martino, M.; Martino, R.; Kiss, R. 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: synthesis and in vitro biological evaluation as potential antitumor agents. Bioorg. Med. Chem., 2009, 17(15), 5396-5407.
[http://dx.doi.org/10.1016/j.bmc.2009.06.053] [PMID: 19595598]
[113]
Sissi, C.; Palumbo, M. The quinolone family: from antibacterial to anticancer agents. Curr. Med. Chem. Anticancer Agents, 2003, 3(6), 439-450.
[http://dx.doi.org/10.2174/1568011033482279] [PMID: 14529452]
[114]
Drlica, K. Mechanism of fluoroquinolone action. Curr. Opin. Microbiol., 1999, 2(5), 504-508.
[http://dx.doi.org/10.1016/S1369-5274(99)00008-9] [PMID: 10508721]
[115]
Emami, S.; Shafiee, A.; Foroumadi, A. Structural features of new quinolones and relationship to antibacterial activity against Gram-positive bacteria. Mini Rev. Med. Chem., 2006, 6(4), 375-386.
[http://dx.doi.org/10.2174/138955706776361493] [PMID: 16613574]
[116]
Anderson, V.E.; Zaniewski, R.P.; Kaczmarek, F.S.; Gootz, T.D.; Osheroff, N. Quinolones inhibit DNA religation mediated by Staphylococcus aureus topoisomerase IV. Changes in drug mechanism across evolutionary boundaries. J. Biol. Chem., 1999, 274(50), 35927-35932.
[http://dx.doi.org/10.1074/jbc.274.50.35927] [PMID: 10585479]
[117]
Reuveni, D.; Halperin, D.; Shalit, I.; Priel, E.; Fabian, I. Quinolones as enhancers of camptothecin-induced cytotoxic and anti-topoisomerase I effects. Biochem. Pharmacol., 2008, 75(6), 1272-1281.
[http://dx.doi.org/10.1016/j.bcp.2007.11.014] [PMID: 18191106]
[118]
Yadav, V.; Varshney, P.; Sultana, S.; Yadav, J.; Saini, N. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer, 2015, 15, 581.
[http://dx.doi.org/10.1186/s12885-015-1560-y] [PMID: 26260159]
[119]
Koziel, R.; Szczepanowska, J.; Magalska, A.; Piwocka, K.; Duszynski, J.; Zablocki, K. Ciprofloxacin inhibits proliferation and promotes generation of aneuploidy in Jurkat cells. J. Physiol. Pharmacol., 2010, 61(2), 233-239.
[PMID: 20436225]
[120]
Smart, D.J.; Halicka, H.D.; Traganos, F.; Darzynkiewicz, Z.; Williams, G.M. Ciprofloxacin-induced G2 arrest and apoptosis in TK6 lymphoblastoid cells is not dependent on DNA double-strand break formation. Cancer Biol. Ther., 2008, 7(1), 113-119.
[http://dx.doi.org/10.4161/cbt.7.1.5136] [PMID: 18059176]
[121]
Herold, C.; Ocker, M.; Ganslmayer, M.; Gerauer, H.; Hahn, E.G.; Schuppan, D. Ciprofloxacin induces apoptosis and inhibits proliferation of human colorectal carcinoma cells. Br. J. Cancer, 2002, 86(3), 443-448.
[http://dx.doi.org/10.1038/sj.bjc.6600079] [PMID: 11875713]
[122]
Tsai, W-C.; Hsu, C-C.; Tang, F-T.; Wong, A.M.K.; Chen, Y-C.; Pang, J-H.S. Ciprofloxacin-mediated cell proliferation inhibition and G2/M cell cycle arrest in rat tendon cells. Arthritis Rheum., 2008, 58(6), 1657-1663.
[http://dx.doi.org/10.1002/art.23518] [PMID: 18512786]
[123]
Fabian, I.; Reuveni, D.; Levitov, A.; Halperin, D.; Priel, E.; Shalit, I. Moxifloxacin enhances antiproliferative and apoptotic effects of etoposide but inhibits its proinflammatory effects in THP-1 and Jurkat cells. Br. J. Cancer, 2006, 95(8), 1038-1046.
[http://dx.doi.org/10.1038/sj.bjc.6603355] [PMID: 17047652]
[124]
Yadav, V.; Sultana, S.; Yadav, J.; Saini, N. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One, 2012, 7(10), e47796.
[http://dx.doi.org/10.1371/journal.pone.0047796] [PMID: 23133524]
[125]
Thomé, S.; Bizarro, C.R.; Lehmann, M.; de Abreu, B.R.; de Andrade, H.H.; Cunha, K.S.; Dihl, R.R. Recombinagenic and mutagenic activities of fluoroquinolones in Drosophila melanogaster. Mutat. Res., 2012, 742(1-2), 43-47.
[http://dx.doi.org/10.1016/j.mrgentox.2011.11.012] [PMID: 22142834]
[126]
Williams, G.M.; Brunnemann, K.D.; Smart, D.J.; Molina, D.; Jeffrey, A.M.; Duan, J-D.; Krebsfaenger, N.; Kampkoetter, A.; Schmuck, G. Relationship of cellular topoisomerase IIα inhibition to cytotoxicity and published genotoxicity of fluoroquinolone antibiotics in V79 cells. Chem. Biol. Interact., 2013, 203(2), 386-390.
[http://dx.doi.org/10.1016/j.cbi.2013.01.003] [PMID: 23340199]
[127]
Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 34.
[http://dx.doi.org/10.1186/s12941-016-0150-4] [PMID: 27215369]
[128]
Eissenstat, M.A.; Kuo, G-H.; Weaver, J.D.; Wentland, M.P.; Robinson, R.G.; Klingbeil, K.M.; Danz, D.W.; Corbett, T.H.; Coughlin, S.A. 3-Benzyl-quinolones: Novel, potent inhibitors of mammalian topoisomerase II. Bioorg. Med. Chem. Lett., 1995, 5, 1021-1026.
[http://dx.doi.org/10.1016/0960-894X(95)00160-U]
[129]
Atanasova, M.; Ilieva, S.; Galabov, B. QSAR analysis of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines with anticancer activity. Eur. J. Med. Chem., 2007, 42(9), 1184-1192.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.029] [PMID: 17408810]
[130]
Kohlbrenner, W.E.; Wideburg, N.; Weigl, D.; Saldivar, A.; Chu, D.T. Induction of calf thymus topoisomerase II-mediated DNA breakage by the antibacterial isothiazoloquinolones A-65281 and A-65282. Antimicrob. Agents Chemother., 1992, 36(1), 81-86.
[http://dx.doi.org/10.1128/AAC.36.1.81] [PMID: 1317151]
[131]
Shi, Q.; Chen, K.; Morris-Natschke, S.L.; Lee, K-H. Recent progress in the development of tubulin inhibitors as antimitotic antitumor agents. Curr. Pharm. Des., 1998, 4(3), 219-248.
[PMID: 10197041]
[132]
Gootz, T.D.; McGuirk, P.R.; Moynihan, M.S.; Haskell, S.L. Placement of alkyl substituents on the C-7 piperazine ring of fluoroquinolones: dramatic differential effects on mammalian topoisomerase II and DNA gyrase. Antimicrob. Agents Chemother., 1994, 38(1), 130-133.
[http://dx.doi.org/10.1128/AAC.38.1.130] [PMID: 8141566]
[133]
Alovero, F.L.; Pan, X-S.; Morris, J.E.; Manzo, R.H.; Fisher, L.M. Engineering the specificity of antibacterial fluoroquinolones: benzenesulfonamide modifications at C-7 of ciprofloxacin change its primary target in Streptococcus pneumoniae from topoisomerase IV to gyrase. Antimicrob. Agents Chemother., 2000, 44(2), 320-325.
[http://dx.doi.org/10.1128/AAC.44.2.320-325.2000] [PMID: 10639357]
[134]
Freudenreich, C.H.; Kreuzer, K.N. Localization of an aminoacridine antitumor agent in a type II topoisomerase-DNA complex. Proc. Natl. Acad. Sci. USA, 1994, 91(23), 11007-11011.
[http://dx.doi.org/10.1073/pnas.91.23.11007] [PMID: 7971998]
[135]
Robinson, M.J.; Martin, B.A.; Gootz, T.D.; McGuirk, P.R.; Osheroff, N. Effects of novel fluoroquinolones on the catalytic activities of eukaryotic topoisomerase II: Influence of the C-8 fluorine group. Antimicrob. Agents Chemother., 1992, 36(4), 751-756.
[http://dx.doi.org/10.1128/AAC.36.4.751] [PMID: 1323952]
[136]
Yogeeswari, P.; Sriram, D.; Kavya, R.; Tiwari, S. Synthesis and in-vitro cytotoxicity evaluation of gatifloxacin Mannich bases. Biomed. Pharmacother., 2005, 59(9), 501-510.
[http://dx.doi.org/10.1016/j.biopha.2005.06.006] [PMID: 16263236]
[137]
Nieto, M.J.; Alovero, F.L.; Manzo, R.H.; Mazzieri, M.R. Benzenesulfonamide analogs of fluoroquinolones. Antibacterial activity and QSAR studies. Eur. J. Med. Chem., 2005, 40(4), 361-369.
[http://dx.doi.org/10.1016/j.ejmech.2004.11.008] [PMID: 15804535]
[138]
Mohammed, H.H.H.; Abd El-Hafeez, A.A.; Abbas, S.H.; Abdelhafez, E.M.N.; Abuo-Rahma, G.E.A. New antiproliferative 7-(4-(N-substituted carbamoylmethyl)piperazin-1-yl) derivatives of ciprofloxacin induce cell cycle arrest at G2/M phase. Bioorg. Med. Chem., 2016, 24(19), 4636-4646.
[http://dx.doi.org/10.1016/j.bmc.2016.07.070] [PMID: 27555286]
[139]
Rajabalian, S.; Foroumadi, A.; Shafiee, A.; Emami, S. Functionalized N(2-oxyiminoethyl) piperazinyl quinolones as new cytotoxic agents. J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Société Can. Sci. Pharm., 2007, 10, 153-158.
[140]
Hu, G.Q.; Wu, X.K.; Wang, G.Q.; Duan, N.N.; Wen, X.Y.; Cao, T.Y.; Jun, Y.; Wei, W.; Xie, S.Q.; Huang, W.L. Synthesis and antitumor and antibacterial evaluation of fluoro-quinolone derivatives (III): Mono- and bis-schiff-bases. Chin. Chem. Lett., 2012, 23, 515-517.
[http://dx.doi.org/10.1016/j.cclet.2012.01.029]
[141]
Suresh, N.; Nagesh, H.N.; Sekhar, K.V.G.; Kumar, A.; Shirazi, A.N.; Parang, K. Synthesis of novel ciprofloxacin analogues and evaluation of their anti-proliferative effect on human cancer cell lines. Bioorg. Med. Chem. Lett., 2013, 23(23), 6292-6295.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.077] [PMID: 24138941]
[142]
Patitungkho, S.; Adsule, S.; Dandawate, P.; Padhye, S.; Ahmad, A.; Sarkar, F.H. Synthesis, characterization and anti-tumor activity of moxifloxacin-copper complexes against breast cancer cell lines. Bioorg. Med. Chem. Lett., 2011, 21(6), 1802-1806.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.061] [PMID: 21316236]
[143]
Hawtin, R.E.; Stockett, D.E.; Byl, J.A.W.; McDowell, R.S.; Nguyen, T.; Arkin, M.R.; Conroy, A.; Yang, W.; Osheroff, N.; Fox, J.A. Voreloxin is an anticancer quinolone derivative that intercalates DNA and poisons topoisomerase II. PLoS One, 2010, 5(4), e10186.
[http://dx.doi.org/10.1371/journal.pone.0010186] [PMID: 20419121]
[144]
Krug, L.M.; Crawford, J.; Ettinger, D.S.; Shapiro, G.I.; Spigel, D.; Reiman, T.; Temel, J.S.; Michelson, G.C.; Young, D.Y.; Hoch, U.; Adelman, D.C.; Phase, I.I. Phase II multicenter trial of voreloxin as second-line therapy in chemotherapy-sensitive or refractory small cell lung cancer. J. Thorac. Oncol., 2011, 6(2), 384-386.
[http://dx.doi.org/10.1097/JTO.0b013e318200e509] [PMID: 21252718]
[145]
Stergiopoulou, T.; Meletiadis, J.; Sein, T.; Papaioannidou, P.; Tsiouris, I.; Roilides, E.; Walsh, T.J. Comparative pharmacodynamic interaction analysis between ciprofloxacin, moxifloxacin and levofloxacin and antifungal agents against Candida albicans and Aspergillus fumigatus. J. Antimicrob. Chemother., 2009, 63(2), 343-348.
[http://dx.doi.org/10.1093/jac/dkn473] [PMID: 19109335]
[146]
Baba, M.; Okamoto, M.; Kawamura, M.; Makino, M.; Higashida, T.; Takashi, T.; Kimura, Y.; Ikeuchi, T.; Tetsuka, T.; Okamoto, T. Inhibition of human immunodeficiency virus type 1 replication and cytokine production by fluoroquinoline derivatives. Mol. Pharmacol., 1998, 53(6), 1097-1103.
[PMID: 9614214]
[147]
Baba, M.; Okamoto, M.; Makino, M.; Kimura, Y.; Ikeuchi, T.; Sakaguchi, T.; Okamoto, T. Potent and selective inhibition of human immunodeficiency virus type 1 transcription by piperazinyloxoquinoline derivatives. Antimicrob. Agents Chemother., 1997, 41(6), 1250-1255.
[http://dx.doi.org/10.1128/AAC.41.6.1250] [PMID: 9174179]
[148]
Hagihara, M.; Kashiwase, H.; Katsube, T.; Kimura, T.; Komai, T.; Momota, K.; Ohmine, T.; Nishigaki, T.; Kimura, S.; Shimada, K. Synthesis and anti-HIV activity of arylpiperazinyl fluoroquinolones: a new class of anti-HIV agents. Bioorg. Med. Chem. Lett., 1999, 9(21), 3063-3068.
[http://dx.doi.org/10.1016/S0960-894X(99)00537-5] [PMID: 10560726]
[149]
Ohmine, T.; Katsube, T.; Tsuzaki, Y.; Kazui, M.; Kobayashi, N.; Komai, T.; Hagihara, M.; Nishigaki, T.; Iwamoto, A.; Kimura, T.; Kashiwase, H.; Yamashita, M. Anti-HIV-1 activities and pharmacokinetics of new arylpiperazinyl fluoroquinolones. Bioorg. Med. Chem. Lett., 2002, 12(5), 739-742.
[http://dx.doi.org/10.1016/S0960-894X(02)00003-3] [PMID: 11858992]
[150]
Stevens, M.; Balzarini, J.; Tabarrini, O.; Andrei, G.; Snoeck, R.; Cecchetti, V.; Fravolini, A.; De Clercq, E.; Pannecouque, C. Cell-dependent interference of a series of new 6-aminoquinolone derivatives with viral (HIV/CMV) transactivation. J. Antimicrob. Chemother., 2005, 56(5), 847-855.
[http://dx.doi.org/10.1093/jac/dki328] [PMID: 16150861]
[151]
Mercorelli, B.; Muratore, G.; Sinigalia, E.; Tabarrini, O.; Biasolo, M.A.; Cecchetti, V.; Palù, G.; Loregian, A. A 6-aminoquinolone compound, WC5, with potent and selective anti-human cytomegalovirus activity. Antimicrob. Agents Chemother., 2009, 53(1), 312-315.
[http://dx.doi.org/10.1128/AAC.00988-08] [PMID: 19015358]
[152]
Zolopa, A.R.; Berger, D.S.; Lampiris, H.; Zhong, L.; Chuck, S.L.; Enejosa, J.V.; Kearney, B.P.; Cheng, A.K. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV Type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. J. Infect. Dis., 2010, 201(6), 814-822.
[http://dx.doi.org/10.1086/650698] [PMID: 20146631]
[153]
Dayam, R.; Al-Mawsawi, L.Q.; Zawahir, Z.; Witvrouw, M.; Debyser, Z.; Neamati, N. Quinolone 3-carboxylic acid pharmacophore: design of second generation HIV-1 integrase inhibitors. J. Med. Chem., 2008, 51(5), 1136-1144.
[http://dx.doi.org/10.1021/jm070609b] [PMID: 18281931]
[154]
Figueroa-Valverde, L.; Diaz-Cedillo, F.; Camacho-Luis, A.; García-Cervera, E.; Pool-Gómez, E.; López-Ramos, M.; Sarabia-Alcocer, B.; May-Gil, I.; Sarao-Álvarez, A.; Ancona-Leon, G. Antimicrobial activity induced by a sulfathiazole derivative on Staphylococcus aureus, and Vibrio cholerae. Int. J. Pharm. Tech. Res., 2013, 5, 1247-1253.
[155]
Witvrouw, M.; Daelemans, D.; Pannecouque, C.; Neyts, J.; Andrei, G.; Snoeck, R.; Vandamme, A.M.; Balzarini, J.; Desmyter, J.; Baba, M.; De Clercq, E. Broad-spectrum antiviral activity and mechanism of antiviral action of the fluoroquinolone derivative K-12. Antivir. Chem. Chemother., 1998, 9(5), 403-411.
[http://dx.doi.org/10.1177/095632029800900504] [PMID: 9875393]
[156]
Abdullah, M.A.A.; Rehab, M. Abd El-Baky, R.M.; Hassan, H.A.; E.-S.M. N. Abdelhafez, E.-S.M.N.; Abuo-Rahma, G.E.-D.A. Fluoroquinolones as urease inhibitors: anti-proteus mirabilis activity and molecular docking studies. Afr. J. Microbiol. Res., 2016, 4, 81-84.
[157]
Sherertz, R.J.; Raad, I.I.; Belani, A.; Koo, L.C.; Rand, K.H.; Pickett, D.L.; Straub, S.A.; Fauerbach, L.L. Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J. Clin. Microbiol., 1990, 28(1), 76-82.
[PMID: 2405016]
[158]
Andriole, V.T. The quinolones: past, present, and future. Clin. Infect. Dis., 2005, 41(Suppl. 2), S113-S119.
[http://dx.doi.org/10.1086/428051] [PMID: 15942877]
[159]
Aldred, K.J.; Kerns, R.J.; Osheroff, N. Mechanism of quinolone action and resistance. Biochemistry, 2014, 53(10), 1565-1574.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[160]
Lomovskaya, O.; Warren, M.S.; Lee, A.; Galazzo, J.; Fronko, R.; Lee, M.; Blais, J.; Cho, D.; Chamberland, S.; Renau, T.; Leger, R.; Hecker, S.; Watkins, W.; Hoshino, K.; Ishida, H.; Lee, V.J. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother., 2001, 45(1), 105-116.
[http://dx.doi.org/10.1128/AAC.45.1.105-116.2001] [PMID: 11120952]
[161]
Lomovskaya, O.; Watkins, W. Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotechnol., 2001, 3(2), 225-236.
[PMID: 11321578]
[162]
Seral, C.; Carryn, S.; Tulkens, P.M.; Van Bambeke, F. Influence of P-glycoprotein and MRP efflux pump inhibitors on the intracellular activity of azithromycin and ciprofloxacin in macrophages infected by Listeria monocytogenes or Staphylococcus aureus. J. Antimicrob. Chemother., 2003, 51(5), 1167-1173.
[http://dx.doi.org/10.1093/jac/dkg223] [PMID: 12697643]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy