Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

DNA Double Strand Breaks Repair Inhibitors: Relevance as Potential New Anticancer Therapeutics

Author(s): Paulina Kopa, Anna Macieja, Grzegorz Galita, Zbigniew J. Witczak* and Tomasz Poplawski

Volume 26, Issue 8, 2019

Page: [1483 - 1493] Pages: 11

DOI: 10.2174/0929867325666180214113154

Price: $65

Abstract

DNA double-strand breaks are considered one of the most lethal forms of DNA damage. Many effective anticancer therapeutic approaches used chemical and physical methods to generate DNA double-strand breaks in the cancer cells. They include: IR and drugs which mimetic its action, topoisomerase poisons, some alkylating agents or drugs which affected DNA replication process. On the other hand, cancer cells are mostly characterized by highly effective systems of DNA damage repair. There are two main DNA repair pathways used to fix double-strand breaks: NHEJ and HRR. Their activity leads to a decreased effect of chemotherapy. Targeting directly or indirectly the DNA double-strand breaks response by inhibitors seems to be an exciting option for anticancer therapy and is a part of novel trends that arise after the clinical success of PARP inhibitors. These trends will provide great opportunities for the development of DNA repair inhibitors as new potential anticancer drugs. The main objective of this article is to address these new promising advances.

Keywords: Double-strand breaks repair, DNA double-strand breaks, homologous recombination, non-homologous end joining, anti-cancer therapy, inhibitors.

[1]
Khanna, K.K.; Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet., 2001, 27(3), 247-254.
[2]
Daley, J.M.; Niu, H.; Miller, A.S.; Sung, P. Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst.), 2015, 32, 66-74.
[3]
Becker, R.; Ritter, A.; Eichhorn, U.; Lips, J.; Bertram, B.; Wiessler, M.; Zdzienicka, M.Z.; Kaina, B. Induction of DNA breaks and apoptosis in crosslink-hypersensitive V79 cells by the cytostatic drug beta-D-glucosyl-ifosfamide mustard. Br. J. Cancer, 2002, 86(1), 130-135.
[4]
Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res., 2000, 256(1), 42-49.
[5]
Saraswathy, M.; Gong, S. Different strategies to overcome multidrug resistance in cancer. Biotechnol. Adv., 2013, 31(8), 1397-1407.
[6]
Gaudin, D.; Yielding, K.L. Response of a “resistant” plasmacytoma to alkylating agents and x-ray in combination with the “excision” repair inhibitors caffeine and chloroquine. Proc. Soc. Exp. Biol. Med., 1969, 131(4), 1413-1416.
[7]
Sarkaria, J.N.; Busby, E.C.; Tibbetts, R.S.; Roos, P.; Taya, Y.; Karnitz, L.M.; Abraham, R.T. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res., 1999, 59(17), 4375-4382.
[8]
Blasina, A.; Price, B.D.; Turenne, G.A.; McGowan, C.H. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol., 1999, 9(19), 1135-1138.
[9]
Porcelli, L.; Quatrale, A.E.; Mantuano, P.; Silvestris, N.; Brunetti, A.E.; Calvert, H.; Paradiso, A.; Azzariti, A. Synthetic lethality to overcome cancer drug resistance. Curr. Med. Chem., 2012, 19(23), 3858-3873.
[10]
Davar, D.; Beumer, J.H.; Hamieh, L.; Tawbi, H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem., 2012, 19(23), 3907-3921.
[11]
Eastman, A.; Barry, M.A. The origins of DNA breaks: a consequence of DNA damage, DNA repair, or apoptosis? Cancer Invest., 1992, 10(3), 229-240.
[12]
Hoeijmakers, J.H. DNA damage, aging, and cancer. N. Engl. J. Med., 2009, 361(15), 1475-1485.
[13]
Mavragani, IV; Nikitaki, Z; Souli, MP; Aziz, A; Nowsheen, S Aziz, K Complex DNA Damage: A Route to Radiation- Induced Genomic Instability and Carcinogenesis 2017.
[14]
Gospodinov, A.; Herceg, Z. Chromatin structure in double strand break repair. DNA Repair (Amst.), 2013, 12(10), 800-810.
[15]
Pfeiffer, P.; Goedecke, W.; Obe, G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis, 2000, 15(4), 289-302.
[16]
Mehta, A.; Haber, J.E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol., 2014, 6(9), a016428.
[17]
Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E.W.; Greulich, K.O.; Cardoso, M.C.; Rapp, A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res., 2012, 40(20), 10263-10273.
[18]
Tsai, J-Y.; Chen, F-H.; Hsieh, T-Y.; Hsiao, Y-Y. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions. J. Radiat. Res. (Tokyo), 2015, 56(4), 691-699.
[19]
Pastwa, E.; Neumann, R.D.; Winters, T.A. DNA Double-Strand Break Repair Pathway Choice and Cancer. DNA Repair, 2014, 19, 169-175.
[20]
Blasiak, J. DNA-Damaging Anticancer Drugs - A Perspective for DNA Repair- Oriented Therapy. Curr. Med. Chem., 2017, 24(15), 1488-1503.
[21]
Aparicio, T.; Baer, R.; Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst.), 2014, 19, 169-175.
[22]
Jasin, M.; Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol., 2013, 5(11), a012740.
[23]
Iarovaia, O.V.; Rubtsov, M.; Ioudinkova, E.; Tsfasman, T.; Razin, S.V.; Vassetzky, Y.S. Dynamics of double strand breaks and chromosomal translocations. Mol. Cancer, 2014, 13, 249.
[24]
Kakarougkas, A.; Jeggo, P.A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol., 2014, 87(1035), 20130685.
[25]
Symington, L.S. End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb. Perspect. Biol., 2014, 6(8), 6.
[26]
Nimonkar, A.V.; Genschel, J.; Kinoshita, E.; Polaczek, P.; Campbell, J.L.; Wyman, C.; Modrich, P.; Kowalczykowski, S.C. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev., 2011, 25(4), 350-362.
[27]
Symington, L.S.; Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet., 2011, 45, 247-271.
[28]
Garcia, V.; Phelps, S.E.; Gray, S.; Neale, M.J. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature, 2011, 479(7372), 241-244.
[29]
Holthausen, J.T.; van Loenhout, M.T.; Sanchez, H.; Ristic, D.; van Rossum-Fikkert, S.E.; Modesti, M.; Dekker, C.; Kanaar, R.; Wyman, C. Effect of the BRCA2 CTRD domain on RAD51 filaments analyzed by an ensemble of single molecule techniques. Nucleic Acids Res., 2011, 39(15), 6558-6567.
[30]
Jensen, R.B.; Carreira, A.; Kowalczykowski, S.C. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature, 2010, 467(7316), 678-683.
[31]
Brandsma, I.; Gent, D.C. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr., 2012, 3(1), 9.
[32]
Ivanov, E.L.; Sugawara, N.; Fishman-Lobell, J.; Haber, J.E. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics, 1996, 142(3), 693-704.
[33]
Sung, P.; Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol., 2006, 7(10), 739-750.
[34]
Swuec, P.; Costa, A. Molecular mechanism of double Holliday junction dissolution. Cell Biosci., 2014, 4, 36.
[35]
Bzymek, M.; Thayer, N.H.; Oh, S.D.; Kleckner, N.; Hunter, N. Double Holliday junctions are intermediates of DNA break repair. Nature, 2010, 464(7290), 937-941.
[36]
Donnianni, R.A.; Symington, L.S. Break-induced replication occurs by conservative DNA synthesis. Proc. Natl. Acad. Sci. USA, 2013, 110(33), 13475-13480.
[37]
Larsen, N.B.; Hickson, I.D.; Rec, Q.; Rec, Q. Helicases: Conserved Guardians of Genomic Integrity. Adv. Exp. Med. Biol., 2013, 767, 161-184.
[38]
Shrivastav, M.; De Haro, L.P.; Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res., 2008, 18(1), 134-147.
[39]
Wechsler, T.; Newman, S.; West, S.C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature, 2011, 471(7340), 642-646.
[40]
Li, X.; Heyer, W-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res., 2008, 18(1), 99-113.
[41]
Krejci, L.; Altmannova, V.; Spirek, M.; Zhao, X. Homologous recombination and its regulation. Nucleic Acids Res., 2012, 40(13), 5795-5818.
[42]
Davis, A.J.; Chen, D.J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res., 2013, 2(3), 130-143.
[43]
Mari, P-O.; Florea, B.I.; Persengiev, S.P.; Verkaik, N.S.; Brüggenwirth, H.T.; Modesti, M.; Giglia-Mari, G.; Bezstarosti, K.; Demmers, J.A.; Luider, T.M.; Houtsmuller, A.B.; van Gent, D.C. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18597-18602.
[44]
Yano, K.; Morotomi-Yano, K.; Adachi, N.; Akiyama, H. Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway. J. Radiat. Res. (Tokyo), 2009, 50(2), 97-108.
[45]
Meek, K.; Douglas, P.; Cui, X.; Ding, Q.; Lees-Miller, S.P. trans Autophosphorylation at DNA-dependent protein kinase’s two major autophosphorylation site clusters facilitates end processing but not end joining. Mol. Cell. Biol., 2007, 27(10), 3881-3890.
[46]
Neal, J.A.; Meek, K. Choosing the right path: does DNA-PK help make the decision? Mutat. Res., 2011, 711(1-2), 73-86.
[47]
Bernstein, N.K.; Williams, R.S.; Rakovszky, M.L.; Cui, D.; Green, R.; Karimi-Busheri, F.; Mani, R.S.; Galicia, S.; Koch, C.A.; Cass, C.E.; Durocher, D.; Weinfeld, M.; Glover, J.N. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol. Cell, 2005, 17(5), 657-670.
[48]
Bernstein, N.K.; Hammel, M.; Mani, R.S.; Weinfeld, M.; Pelikan, M.; Tainer, J.A.; Glover, J.N. Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, Polynucleotide Kinase. Nucleic Acids Res., 2009, 37(18), 6161-6173.
[49]
Povirk, L.F.; Zhou, T.; Zhou, R.; Cowan, M.J.; Yannone, S.M. Processing of 3′-phosphoglycolate-terminated DNA double strand breaks by Artemis nuclease. J. Biol. Chem., 2007, 282(6), 3547-3558.
[50]
Hammel, M.; Rey, M.; Yu, Y.; Mani, R.S.; Classen, S.; Liu, M.; Pique, M.E.; Fang, S.; Mahaney, B.L.; Weinfeld, M.; Schriemer, D.C.; Lees-Miller, S.P.; Tainer, J.A. XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J. Biol. Chem., 2011, 286(37), 32638-32650.
[51]
Ahnesorg, P.; Smith, P.; Jackson, S.P. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell, 2006, 124(2), 301-313.
[52]
Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem., 2010, 79, 181-211.
[53]
Popławski, T.; Stoczyńska, E.; Błasiak, J. [Non-homologous DNA end joining--new proteins, new functions, new mechanisms]. Postepy Biochem., 2009, 55(1), 36-45. [Non-homologous DNA end joining--new proteins, new functions, new mechanisms].
[54]
Chiruvella, K.K.; Liang, Z.; Wilson, T.E. Repair of double-strand breaks by end joining. Cold Spring Harb. Perspect. Biol., 2013, 5(5), a012757.
[55]
Della-Maria, J.; Zhou, Y.; Tsai, M-S.; Kuhnlein, J.; Carney, J.P.; Paull, T.T.; Tomkinson, A.E. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J. Biol. Chem., 2011, 286(39), 33845-33853.
[56]
Simsek, D.; Brunet, E.; Wong, S.Y.; Katyal, S.; Gao, Y.; McKinnon, P.J.; Lou, J.; Zhang, L.; Li, J.; Rebar, E.J.; Gregory, P.D.; Holmes, M.C.; Jasin, M. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet., 2011, 7(6), e1002080.
[57]
Simsek, D.; Jasin, M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol., 2010, 17(4), 410-416.
[58]
Wang, H.; Perrault, A.R.; Takeda, Y.; Qin, W.; Wang, H.; Iliakis, G. Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res., 2003, 31(18), 5377-5388.
[59]
Corneo, B.; Wendland, R.L.; Deriano, L.; Cui, X.; Klein, I.A.; Wong, S-Y.; Arnal, S.; Holub, A.J.; Weller, G.R.; Pancake, B.A.; Shah, S.; Brandt, V.L.; Meek, K.; Roth, D.B. Rag mutations reveal robust alternative end joining. Nature, 2007, 449(7161), 483-486.
[60]
Grabarz, A.; Barascu, A.; Guirouilh-Barbat, J.; Lopez, B.S. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am. J. Cancer Res., 2012, 2(3), 249-268.
[61]
Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem., 1998, 273(10), 5858-5868.
[62]
Polo, S.E.; Jackson, S.P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev., 2011, 25(5), 409-433.
[63]
Goodarzi, A.A.; Noon, A.T.; Deckbar, D.; Ziv, Y.; Shiloh, Y.; Löbrich, M.; Jeggo, P.A. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell, 2008, 31(2), 167-177.
[64]
Tanaka, T.; Huang, X.; Halicka, H.D.; Zhao, H.; Traganos, F.; Albino, A.P.; Dai, W.; Darzynkiewicz, Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A, 2007, 71(9), 648-661.
[65]
Jazayeri, A.; Falck, J.; Lukas, C.; Bartek, J.; Smith, G.C.; Lukas, J.; Jackson, S.P. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol., 2006, 8(1), 37-45.
[66]
Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev., 2001, 15(17), 2177-2196.
[67]
Daley, J.M.; Sung, P. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol. Cell. Biol., 2014, 34(8), 1380-1388.
[68]
Jilani, A.; Ramotar, D.; Slack, C.; Ong, C.; Yang, X.M.; Scherer, S.W.; Lasko, D.D. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem., 1999, 274(34), 24176-24186.
[69]
Roberts, S.A.; Strande, N.; Burkhalter, M.D.; Strom, C.; Havener, J.M.; Hasty, P.; Ramsden, D.A. Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends. Nature, 2010, 464(7292), 1214-1217.
[70]
Cortes Ledesma, F.; El Khamisy, S.F.; Zuma, M.C.; Osborn, K.; Caldecott, K.W. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature, 2009, 461(7264), 674-678.
[71]
Kanno, S.; Kuzuoka, H.; Sasao, S.; Hong, Z.; Lan, L.; Nakajima, S.; Yasui, A. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses. EMBO J., 2007, 26(8), 2094-2103.
[72]
Kadyk, L.C.; Hartwell, L.H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics, 1992, 132(2), 387-402.
[73]
Takata, M.; Sasaki, M.S.; Sonoda, E.; Morrison, C.; Hashimoto, M.; Utsumi, H.; Yamaguchi-Iwai, Y.; Shinohara, A.; Takeda, S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J., 1998, 17(18), 5497-5508.
[74]
Cao, L.; Xu, X.; Bunting, S.F.; Liu, J.; Wang, R-H.; Cao, L.L.; Wu, J.J.; Peng, T-N.; Chen, J.; Nussenzweig, A.; Deng, C-X.; Finkel, T. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol. Cell, 2009, 35(4), 534-541.
[75]
Bunting, S.F.; Callén, E.; Wong, N.; Chen, H-T.; Polato, F.; Gunn, A.; Bothmer, A.; Feldhahn, N.; Fernandez-Capetillo, O.; Cao, L.; Xu, X.; Deng, C-X.; Finkel, T.; Nussenzweig, M.; Stark, J.M.; Nussenzweig, A. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell, 2010, 141(2), 243-254.
[76]
Bothmer, A.; Robbiani, D.F.; Di Virgilio, M.; Bunting, S.F.; Klein, I.A.; Feldhahn, N.; Barlow, J.; Chen, H-T.; Bosque, D.; Callen, E.; Nussenzweig, A.; Nussenzweig, M.C. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol. Cell, 2011, 42(3), 319-329.
[77]
Hashizume, R.; Fukuda, M.; Maeda, I.; Nishikawa, H.; Oyake, D.; Yabuki, Y.; Ogata, H.; Ohta, T. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem., 2001, 276(18), 14537-14540.
[78]
Kalb, R.; Mallery, D.L.; Larkin, C.; Huang, J.T.; Hiom, K. BRCA1 is a histone-H2A-specific ubiquitin ligase. Cell Reports, 2014, 8(4), 999-1005.
[79]
Tomimatsu, N.; Mukherjee, B.; Catherine Hardebeck, M.; Ilcheva, M.; Vanessa Camacho, C.; Louise Harris, J.; Porteus, M.; Llorente, B.; Khanna, K.K.; Burma, S. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat. Commun., 2014, 5, 3561.
[80]
Huen, M.S.; Sy, S.M.; Chen, J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat. Rev. Mol. Cell Biol., 2010, 11(2), 138-148.
[81]
Zhang, F.; Ma, J.; Wu, J.; Ye, L.; Cai, H.; Xia, B.; Yu, X. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr. Biol., 2009, 19(6), 524-529.
[82]
Chen, L.; Nievera, C.J.; Lee, A.Y.; Wu, X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J. Biol. Chem., 2008, 283(12), 7713-7720.
[83]
Kurashige, T.; Shimamura, M.; Nagayama, Y. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cystein. Journal of radiation research, 2016, 57, 312-317.
[84]
Abramenkovs, A.; Stenerlöw, B. Measurement of DNA-Dependent Protein Kinase Phosphorylation Using Flow Cytometry Provides a Reliable Estimate of DNA Repair Capacity, 2017, 188, 597-604.
[85]
Møller, P. The comet assay: Ready for 30 more years. Mutagenesis, 2018.
[86]
Enciso, M.; Sarasa, J.; Agarwal, A.; Fernández, J.L.; Gosálvez, J. A two-tailed Comet assay for assessing DNA damage in spermatozoa. Reproductive biomedicine online, 2009, 18, 609-616.
[87]
Du, J; Shang, J; Chen, F; Zhang, Y; Yin, N; Xie, T A CRISPR/Cas9-based screening for non-homologous end joining inhibitors reveals ouabain and penfluridol as radiosensitizers 2017.
[88]
Chen, X.; Zhong, S.; Zhu, X.; Dziegielewska, B.; Ellenberger, T.; Wilson, G.M. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res., 2008, 68, 3169-3177.
[89]
Budke, B.; Logan, H.L.; Kalin, J.H.; Zelivianskaia, A.S.; Cameron McGuire, W.; Miller, L.L.; Stark, J.M.; Kozikowski, A.P.; Bishop, D.K.; Connell, P.P. RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res., 2012, 40(15), 7347-7357.
[90]
Waterson, A.G.; Kennedy, J.P.; Patrone, J.D.; Pelz, N.F.; Feldkamp, M.D.; Frank, A.O.; Vangamudi, B.; Souza-Fagundes, E.M.; Rossanese, O.W.; Chazin, W.J.; Fesik, S.W. Diphenylpyrazoles as replication protein a inhibitors. ACS Med. Chem. Lett., 2014, 6(2), 140-145.
[91]
Budke, B.; Kalin, J.H.; Pawlowski, M.; Zelivianskaia, A.S.; Wu, M.; Kozikowski, A.P.; Connell, P.P. An optimized RAD51 inhibitor that disrupts homologous recombination without requiring Michael acceptor reactivity. J. Med. Chem., 2013, 56(1), 254-263.
[92]
Glanzer, J.G.; Liu, S.; Wang, L.; Mosel, A.; Peng, A.; Oakley, G.G. RPA inhibition increases replication stress and suppresses tumor growth. Cancer Res., 2014, 74(18), 5165-5172.
[93]
Stachelek, G.C.; Peterson-Roth, E.; Liu, Y.; Fernandez, R.J., III; Pike, L.R.; Qian, J.M.; Abriola, L.; Hoyer, D.; Hungerford, W.; Merkel, J.; Glazer, P.M. YU238259 Is a Novel Inhibitor of Homology-Dependent DNA Repair That Exhibits Synthetic Lethality and Radiosensitization in Repair-Deficient Tumors. Mol. Cancer Res., 2015, 13(10), 1389-1397.
[94]
Freschauf, G.K.; Karimi-Busheri, F.; Ulaczyk-Lesanko, A.; Mereniuk, T.R.; Ahrens, A.; Koshy, J.M.; Rasouli-Nia, A.; Pasarj, P.; Holmes, C.F.; Rininsland, F.; Hall, D.G.; Weinfeld, M. Identification of a small molecule inhibitor of the human DNA repair enzyme polynucleotide kinase/phosphatase. Cancer Res., 2009, 69(19), 7739-7746.
[95]
Freschauf, G.K.; Mani, R.S.; Mereniuk, T.R.; Fanta, M.; Virgen, C.A.; Dianov, G.L.; Grassot, J-M.; Hall, D.G.; Weinfeld, M. Mechanism of action of an imidopiperidine inhibitor of human polynucleotide kinase/phosphatase. J. Biol. Chem., 2010, 285(4), 2351-2360.
[96]
Zereshkian, A.; Leyton, J.V.; Cai, Z.; Bergstrom, D.; Weinfeld, M.; Reilly, R.M. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates. Nucl. Med. Biol., 2014, 41(5), 377-383.
[97]
Jun, D.W.; Jeong, Y.S.; Kim, H.J.; Jeong, K-C.; Kim, S.; Lee, C-H. Characterization of DDRI-18 (3,3′-(1H,3‘H-5,5’-bibenzo[d]imidazole-2,2′-diyl)dianiline), a novel small molecule inhibitor modulating the DNA damage response. Br. J. Pharmacol., 2012, 167(1), 141-150.
[98]
Srivastava, M.; Nambiar, M.; Sharma, S.; Karki, S.S.; Goldsmith, G.; Hegde, M.; Kumar, S.; Pandey, M.; Singh, R.K.; Ray, P.; Natarajan, R.; Kelkar, M.; De, A.; Choudhary, B.; Raghavan, S.C. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell, 2012, 151(7), 1474-1487.
[99]
Greco, GE; Matsumoto, Y; Brooks, RC; Lu, Z; Lieber, MR; Tomkinson, AE SCR7 is neither a selective nor a potent inhibitor of human DNA ligase IV 2016, 43, 18-23.
[100]
Aravind, L; Walker, DR Koonin, EV Conserved domains in DNA repair proteins and evolution of repair systems 1999, 27, 1223-42.
[101]
Mortensen, D.S.; Perrin-Ninkovic, S.M.; Shevlin, G.; Elsner, J.; Zhao, J.; Whitefield, B.; Tehrani, L.; Sapienza, J.; Riggs, J.R.; Parnes, J.S.; Papa, P.; Packard, G.; Lee, B.G.; Harris, R.; Correa, M.; Bahmanyar, S.; Richardson, S.J.; Peng, S.X.; Leisten, J.; Khambatta, G.; Hickman, M.; Gamez, J.C.; Bisonette, R.R.; Apuy, J.; Cathers, B.E.; Canan, S.S.; Moghaddam, M.F.; Raymon, H.K.; Worland, P.; Narla, R.K.; Fultz, K.E.; Sankar, S. Optimization of a Series of Triazole Containing Mammalian Target of Rapamycin (mTOR) Kinase Inhibitors and the Discovery of CC-115. J. Med. Chem., 2015, 58(14), 5599-5608.
[102]
Pastwa, E.; Poplawski, T.; Lewandowska, U.; Somiari, S.B.; Blasiak, J.; Somiari, R.I. Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells. Int. J. Biochem. Cell Biol., 2014, 53, 423-431.
[103]
Rosenzweig, K.E.; Youmell, M.B.; Palayoor, S.T.; Price, B.D. Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin. Cancer Res., 1997, 3(7), 1149-1156.
[104]
Busby, E.C.; Leistritz, D.F.; Abraham, R.T.; Karnitz, L.M.; Sarkaria, J.N. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res., 2000, 60(8), 2108-2112.
[105]
Munck, J.M.; Batey, M.A.; Zhao, Y.; Jenkins, H.; Richardson, C.J.; Cano, C.; Tavecchio, M.; Barbeau, J.; Bardos, J.; Cornell, L.; Griffin, R.J.; Menear, K.; Slade, A.; Thommes, P.; Martin, N.M.; Newell, D.R.; Smith, G.C.; Curtin, N.J. Chemosensitization of cancer cells by KU-0060648, a dual inhibitor of DNA-PK and PI-3K. Mol. Cancer Ther., 2012, 11(8), 1789-1798.
[106]
Stockley, M.; Clegg, W.; Fontana, G.; Golding, B.T.; Martin, N.; Rigoreau, L.J.; Smith, G.C.; Griffin, R.J. Synthesis, crystal structure determination, and biological properties of the DNA-dependent protein kinase (DNA-PK) inhibitor 3-cyano-6-hydrazonomethyl-5-(4-pyridyl)pyrid-[1H]-2-one (OK-1035). Bioorg. Med. Chem. Lett., 2001, 11(21), 2837-2841.
[107]
Ismail, I.H.; Mårtensson, S.; Moshinsky, D.; Rice, A.; Tang, C.; Howlett, A.; McMahon, G.; Hammarsten, O. SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene, 2004, 23(4), 873-882.
[108]
Shawi, M.; Chu, T.W.; Martinez-Marignac, V.; Yu, Y.; Gryaznov, S.M.; Johnston, J.B.; Lees-Miller, S.P.; Assouline, S.E.; Autexier, C.; Aloyz, R. Telomerase contributes to fludarabine resistance in primary human leukemic lymphocytes. PLoS One, 2013, 8(7), e70428.
[109]
Willmore, E.; de Caux, S.; Sunter, N.J.; Tilby, M.J.; Jackson, G.H.; Austin, C.A.; Durkacz, B.W. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood, 2004, 103(12), 4659-4665.
[110]
Tavecchio, M.; Munck, J.M.; Cano, C.; Newell, D.R.; Curtin, N.J. Further characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, reveals potential cross-talk with homologous recombination. Cancer Chemother. Pharmacol., 2012, 69(1), 155-164.
[111]
Batey, M.A.; Zhao, Y.; Kyle, S.; Richardson, C.; Slade, A.; Martin, N.M.; Lau, A.; Newell, D.R.; Curtin, N.J. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol. Cancer Ther., 2013, 12(6), 959-967.
[112]
Ciszewski, W.M.; Tavecchio, M.; Dastych, J.; Curtin, N.J. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res. Treat., 2014, 143(1), 47-55.
[113]
Oliveira, N.G.; Castro, M.; Rodrigues, A.S.; Gil, O.M.; Toscano-Rico, J.M.; Rueff, J. DNA-PK inhibitor wortmannin enhances DNA damage induced by bleomycin in V79 Chinese hamster cells. Teratog. Carcinog. Mutagen., 2002, 22(5), 343-351.
[114]
Welker, M.E.; Kulik, G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg. Med. Chem., 2013, 21(14), 4063-4091.
[115]
Ebrahimi, S.; Hosseini, M.; Shahidsales, S.; Maftouh, M.; Ferns, G.A.; Ghayour-Mobarhan, M.; Hassanian, S.M.; Avan, A. Targeting the Akt/PI3K Signaling Pathway as a Potential Therapeutic Strategy for the Treatment of Pancreatic Cancer. Curr. Med. Chem., 2017, 24(13), 1321-1331.
[116]
Zask, A.; Kaplan, J.; Toral-Barza, L.; Hollander, I.; Young, M.; Tischler, M.; Gaydos, C.; Cinque, M.; Lucas, J.; Yu, K. Synthesis and structure-activity relationships of ring-opened 17-hydroxywortmannins: potent phosphoinositide 3-kinase inhibitors with improved properties and anticancer efficacy. J. Med. Chem., 2008, 51(5), 1319-1323.
[117]
Tian, X.; Lara, H.; Wagner, K.T.; Saripalli, S.; Hyder, S.N.; Foote, M.; Sethi, M.; Wang, E.; Caster, J.M.; Zhang, L.; Wang, A.Z. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery. Nanoscale, 2015, 7(47), 20211-20219.
[118]
Ma, D-L.; Liu, L-J.; Leung, K-H.; Chen, Y-T.; Zhong, H-J.; Chan, D.S-H. Antagonizing STAT3 dimerization with a rhodium(III) complex. Angewandte Chemie International Edition, 2014, 53, 9178-9182.
[119]
Liu, L-J.; He, B.; Miles, J.A.; Wang, W.; Mao, Z.; Che, W.I. Inhibition of the p53/hDM2 protein-protein interaction by cyclometallated iridium(III) compounds. Oncotarget, 2016, 7, 13965-13975.
[120]
Yang, C.; Wang, W.; Li, G-D.; Zhong, H-J.; Dong, Z-Z. Wong, C-Y Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Scientific reports, 2017, 7, 42860.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy