摘要
DNA双链断裂被认为是最致命的DNA损伤形式之一。许多有效的抗癌治疗方法使用化学和物理方法在癌细胞中产生DNA双链断裂。它们包括:IR和模拟其作用的药物,拓扑异构酶毒物,一些烷化剂或影响DNA复制过程的药物。另一方面,癌细胞的特征主要在于高效的DNA损伤修复系统。有两种主要的DNA修复途径用于修复双链断裂:NHEJ和HRR。他们的活动导致化疗效果下降。直接或间接靶向DNA双链断裂抑制剂的反应似乎是抗癌治疗的令人兴奋的选择,并且是PARP抑制剂临床成功后出现的新趋势的一部分。这些趋势将为DNA修复抑制剂的开发提供巨大的机会,作为新的潜在抗癌药物。本文的主要目的是解决这些新的有希望的进展。
关键词: 双链断裂修复,DNA双链断裂,同源重组,非同源末端连接,抗癌疗法,抑制剂。
[1]
Khanna, K.K.; Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet., 2001, 27(3), 247-254.
[2]
Daley, J.M.; Niu, H.; Miller, A.S.; Sung, P. Biochemical mechanism of DSB end resection and its regulation. DNA Repair (Amst.), 2015, 32, 66-74.
[3]
Becker, R.; Ritter, A.; Eichhorn, U.; Lips, J.; Bertram, B.; Wiessler, M.; Zdzienicka, M.Z.; Kaina, B. Induction of DNA breaks and apoptosis in crosslink-hypersensitive V79 cells by the cytostatic drug beta-D-glucosyl-ifosfamide mustard. Br. J. Cancer, 2002, 86(1), 130-135.
[4]
Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res., 2000, 256(1), 42-49.
[5]
Saraswathy, M.; Gong, S. Different strategies to overcome multidrug resistance in cancer. Biotechnol. Adv., 2013, 31(8), 1397-1407.
[6]
Gaudin, D.; Yielding, K.L. Response of a “resistant” plasmacytoma to alkylating agents and x-ray in combination with the “excision” repair inhibitors caffeine and chloroquine. Proc. Soc. Exp. Biol. Med., 1969, 131(4), 1413-1416.
[7]
Sarkaria, J.N.; Busby, E.C.; Tibbetts, R.S.; Roos, P.; Taya, Y.; Karnitz, L.M.; Abraham, R.T. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res., 1999, 59(17), 4375-4382.
[8]
Blasina, A.; Price, B.D.; Turenne, G.A.; McGowan, C.H. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol., 1999, 9(19), 1135-1138.
[9]
Porcelli, L.; Quatrale, A.E.; Mantuano, P.; Silvestris, N.; Brunetti, A.E.; Calvert, H.; Paradiso, A.; Azzariti, A. Synthetic lethality to overcome cancer drug resistance. Curr. Med. Chem., 2012, 19(23), 3858-3873.
[10]
Davar, D.; Beumer, J.H.; Hamieh, L.; Tawbi, H. Role of PARP inhibitors in cancer biology and therapy. Curr. Med. Chem., 2012, 19(23), 3907-3921.
[11]
Eastman, A.; Barry, M.A. The origins of DNA breaks: a consequence of DNA damage, DNA repair, or apoptosis? Cancer Invest., 1992, 10(3), 229-240.
[13]
Mavragani, IV; Nikitaki, Z; Souli, MP; Aziz, A; Nowsheen, S Aziz, K Complex DNA Damage: A Route to Radiation- Induced Genomic Instability and Carcinogenesis 2017.
[14]
Gospodinov, A.; Herceg, Z. Chromatin structure in double strand break repair. DNA Repair (Amst.), 2013, 12(10), 800-810.
[15]
Pfeiffer, P.; Goedecke, W.; Obe, G. Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis, 2000, 15(4), 289-302.
[16]
Mehta, A.; Haber, J.E. Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb. Perspect. Biol., 2014, 6(9), a016428.
[17]
Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E.W.; Greulich, K.O.; Cardoso, M.C.; Rapp, A. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages. Nucleic Acids Res., 2012, 40(20), 10263-10273.
[18]
Tsai, J-Y.; Chen, F-H.; Hsieh, T-Y.; Hsiao, Y-Y. Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions. J. Radiat. Res. (Tokyo), 2015, 56(4), 691-699.
[19]
Pastwa, E.; Neumann, R.D.; Winters, T.A. DNA Double-Strand Break Repair Pathway Choice and Cancer. DNA Repair, 2014, 19, 169-175.
[20]
Blasiak, J. DNA-Damaging Anticancer Drugs - A Perspective for DNA Repair- Oriented Therapy. Curr. Med. Chem., 2017, 24(15), 1488-1503.
[21]
Aparicio, T.; Baer, R.; Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA Repair (Amst.), 2014, 19, 169-175.
[22]
Jasin, M.; Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol., 2013, 5(11), a012740.
[23]
Iarovaia, O.V.; Rubtsov, M.; Ioudinkova, E.; Tsfasman, T.; Razin, S.V.; Vassetzky, Y.S. Dynamics of double strand breaks and chromosomal translocations. Mol. Cancer, 2014, 13, 249.
[24]
Kakarougkas, A.; Jeggo, P.A. DNA DSB repair pathway choice: an orchestrated handover mechanism. Br. J. Radiol., 2014, 87(1035), 20130685.
[25]
Symington, L.S. End resection at double-strand breaks: mechanism and regulation. Cold Spring Harb. Perspect. Biol., 2014, 6(8), 6.
[26]
Nimonkar, A.V.; Genschel, J.; Kinoshita, E.; Polaczek, P.; Campbell, J.L.; Wyman, C.; Modrich, P.; Kowalczykowski, S.C. BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev., 2011, 25(4), 350-362.
[27]
Symington, L.S.; Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet., 2011, 45, 247-271.
[28]
Garcia, V.; Phelps, S.E.; Gray, S.; Neale, M.J. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature, 2011, 479(7372), 241-244.
[29]
Holthausen, J.T.; van Loenhout, M.T.; Sanchez, H.; Ristic, D.; van Rossum-Fikkert, S.E.; Modesti, M.; Dekker, C.; Kanaar, R.; Wyman, C. Effect of the BRCA2 CTRD domain on RAD51 filaments analyzed by an ensemble of single molecule techniques. Nucleic Acids Res., 2011, 39(15), 6558-6567.
[30]
Jensen, R.B.; Carreira, A.; Kowalczykowski, S.C. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature, 2010, 467(7316), 678-683.
[31]
Brandsma, I.; Gent, D.C. Pathway choice in DNA double strand break repair: observations of a balancing act. Genome Integr., 2012, 3(1), 9.
[32]
Ivanov, E.L.; Sugawara, N.; Fishman-Lobell, J.; Haber, J.E. Genetic requirements for the single-strand annealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics, 1996, 142(3), 693-704.
[33]
Sung, P.; Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol., 2006, 7(10), 739-750.
[34]
Swuec, P.; Costa, A. Molecular mechanism of double Holliday junction dissolution. Cell Biosci., 2014, 4, 36.
[35]
Bzymek, M.; Thayer, N.H.; Oh, S.D.; Kleckner, N.; Hunter, N. Double Holliday junctions are intermediates of DNA break repair. Nature, 2010, 464(7290), 937-941.
[36]
Donnianni, R.A.; Symington, L.S. Break-induced replication occurs by conservative DNA synthesis. Proc. Natl. Acad. Sci. USA, 2013, 110(33), 13475-13480.
[37]
Larsen, N.B.; Hickson, I.D.; Rec, Q.; Rec, Q. Helicases: Conserved Guardians of Genomic Integrity. Adv. Exp. Med. Biol., 2013, 767, 161-184.
[38]
Shrivastav, M.; De Haro, L.P.; Nickoloff, J.A. Regulation of DNA double-strand break repair pathway choice. Cell Res., 2008, 18(1), 134-147.
[39]
Wechsler, T.; Newman, S.; West, S.C. Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature, 2011, 471(7340), 642-646.
[40]
Li, X.; Heyer, W-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res., 2008, 18(1), 99-113.
[41]
Krejci, L.; Altmannova, V.; Spirek, M.; Zhao, X. Homologous recombination and its regulation. Nucleic Acids Res., 2012, 40(13), 5795-5818.
[42]
Davis, A.J.; Chen, D.J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res., 2013, 2(3), 130-143.
[43]
Mari, P-O.; Florea, B.I.; Persengiev, S.P.; Verkaik, N.S.; Brüggenwirth, H.T.; Modesti, M.; Giglia-Mari, G.; Bezstarosti, K.; Demmers, J.A.; Luider, T.M.; Houtsmuller, A.B.; van Gent, D.C. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc. Natl. Acad. Sci. USA, 2006, 103(49), 18597-18602.
[44]
Yano, K.; Morotomi-Yano, K.; Adachi, N.; Akiyama, H. Molecular mechanism of protein assembly on DNA double-strand breaks in the non-homologous end-joining pathway. J. Radiat. Res. (Tokyo), 2009, 50(2), 97-108.
[45]
Meek, K.; Douglas, P.; Cui, X.; Ding, Q.; Lees-Miller, S.P. trans Autophosphorylation at DNA-dependent protein kinase’s two major autophosphorylation site clusters facilitates end processing but not end joining. Mol. Cell. Biol., 2007, 27(10), 3881-3890.
[46]
Neal, J.A.; Meek, K. Choosing the right path: does DNA-PK help make the decision? Mutat. Res., 2011, 711(1-2), 73-86.
[47]
Bernstein, N.K.; Williams, R.S.; Rakovszky, M.L.; Cui, D.; Green, R.; Karimi-Busheri, F.; Mani, R.S.; Galicia, S.; Koch, C.A.; Cass, C.E.; Durocher, D.; Weinfeld, M.; Glover, J.N. The molecular architecture of the mammalian DNA repair enzyme, polynucleotide kinase. Mol. Cell, 2005, 17(5), 657-670.
[48]
Bernstein, N.K.; Hammel, M.; Mani, R.S.; Weinfeld, M.; Pelikan, M.; Tainer, J.A.; Glover, J.N. Mechanism of DNA substrate recognition by the mammalian DNA repair enzyme, Polynucleotide Kinase. Nucleic Acids Res., 2009, 37(18), 6161-6173.
[49]
Povirk, L.F.; Zhou, T.; Zhou, R.; Cowan, M.J.; Yannone, S.M. Processing of 3′-phosphoglycolate-terminated DNA double strand breaks by Artemis nuclease. J. Biol. Chem., 2007, 282(6), 3547-3558.
[50]
Hammel, M.; Rey, M.; Yu, Y.; Mani, R.S.; Classen, S.; Liu, M.; Pique, M.E.; Fang, S.; Mahaney, B.L.; Weinfeld, M.; Schriemer, D.C.; Lees-Miller, S.P.; Tainer, J.A. XRCC4 protein interactions with XRCC4-like factor (XLF) create an extended grooved scaffold for DNA ligation and double strand break repair. J. Biol. Chem., 2011, 286(37), 32638-32650.
[51]
Ahnesorg, P.; Smith, P.; Jackson, S.P. XLF interacts with the XRCC4-DNA ligase IV complex to promote DNA nonhomologous end-joining. Cell, 2006, 124(2), 301-313.
[52]
Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem., 2010, 79, 181-211.
[53]
Popławski, T.; Stoczyńska, E.; Błasiak, J. [Non-homologous DNA end joining--new proteins, new functions, new mechanisms]. Postepy Biochem., 2009, 55(1), 36-45. [Non-homologous DNA end joining--new proteins, new functions, new mechanisms].
[54]
Chiruvella, K.K.; Liang, Z.; Wilson, T.E. Repair of double-strand breaks by end joining. Cold Spring Harb. Perspect. Biol., 2013, 5(5), a012757.
[55]
Della-Maria, J.; Zhou, Y.; Tsai, M-S.; Kuhnlein, J.; Carney, J.P.; Paull, T.T.; Tomkinson, A.E. Human Mre11/human Rad50/Nbs1 and DNA ligase IIIalpha/XRCC1 protein complexes act together in an alternative nonhomologous end joining pathway. J. Biol. Chem., 2011, 286(39), 33845-33853.
[56]
Simsek, D.; Brunet, E.; Wong, S.Y.; Katyal, S.; Gao, Y.; McKinnon, P.J.; Lou, J.; Zhang, L.; Li, J.; Rebar, E.J.; Gregory, P.D.; Holmes, M.C.; Jasin, M. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet., 2011, 7(6), e1002080.
[57]
Simsek, D.; Jasin, M. Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat. Struct. Mol. Biol., 2010, 17(4), 410-416.
[58]
Wang, H.; Perrault, A.R.; Takeda, Y.; Qin, W.; Wang, H.; Iliakis, G. Biochemical evidence for Ku-independent backup pathways of NHEJ. Nucleic Acids Res., 2003, 31(18), 5377-5388.
[59]
Corneo, B.; Wendland, R.L.; Deriano, L.; Cui, X.; Klein, I.A.; Wong, S-Y.; Arnal, S.; Holub, A.J.; Weller, G.R.; Pancake, B.A.; Shah, S.; Brandt, V.L.; Meek, K.; Roth, D.B. Rag mutations reveal robust alternative end joining. Nature, 2007, 449(7161), 483-486.
[60]
Grabarz, A.; Barascu, A.; Guirouilh-Barbat, J.; Lopez, B.S. Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am. J. Cancer Res., 2012, 2(3), 249-268.
[61]
Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem., 1998, 273(10), 5858-5868.
[62]
Polo, S.E.; Jackson, S.P. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev., 2011, 25(5), 409-433.
[63]
Goodarzi, A.A.; Noon, A.T.; Deckbar, D.; Ziv, Y.; Shiloh, Y.; Löbrich, M.; Jeggo, P.A. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell, 2008, 31(2), 167-177.
[64]
Tanaka, T.; Huang, X.; Halicka, H.D.; Zhao, H.; Traganos, F.; Albino, A.P.; Dai, W.; Darzynkiewicz, Z. Cytometry of ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents. Cytometry A, 2007, 71(9), 648-661.
[65]
Jazayeri, A.; Falck, J.; Lukas, C.; Bartek, J.; Smith, G.C.; Lukas, J.; Jackson, S.P. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol., 2006, 8(1), 37-45.
[66]
Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev., 2001, 15(17), 2177-2196.
[67]
Daley, J.M.; Sung, P. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks. Mol. Cell. Biol., 2014, 34(8), 1380-1388.
[68]
Jilani, A.; Ramotar, D.; Slack, C.; Ong, C.; Yang, X.M.; Scherer, S.W.; Lasko, D.D. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J. Biol. Chem., 1999, 274(34), 24176-24186.
[69]
Roberts, S.A.; Strande, N.; Burkhalter, M.D.; Strom, C.; Havener, J.M.; Hasty, P.; Ramsden, D.A. Ku is a 5′-dRP/AP lyase that excises nucleotide damage near broken ends. Nature, 2010, 464(7292), 1214-1217.
[70]
Cortes Ledesma, F.; El Khamisy, S.F.; Zuma, M.C.; Osborn, K.; Caldecott, K.W. A human 5′-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage. Nature, 2009, 461(7264), 674-678.
[71]
Kanno, S.; Kuzuoka, H.; Sasao, S.; Hong, Z.; Lan, L.; Nakajima, S.; Yasui, A. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses. EMBO J., 2007, 26(8), 2094-2103.
[72]
Kadyk, L.C.; Hartwell, L.H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics, 1992, 132(2), 387-402.
[73]
Takata, M.; Sasaki, M.S.; Sonoda, E.; Morrison, C.; Hashimoto, M.; Utsumi, H.; Yamaguchi-Iwai, Y.; Shinohara, A.; Takeda, S. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J., 1998, 17(18), 5497-5508.
[74]
Cao, L.; Xu, X.; Bunting, S.F.; Liu, J.; Wang, R-H.; Cao, L.L.; Wu, J.J.; Peng, T-N.; Chen, J.; Nussenzweig, A.; Deng, C-X.; Finkel, T. A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency. Mol. Cell, 2009, 35(4), 534-541.
[75]
Bunting, S.F.; Callén, E.; Wong, N.; Chen, H-T.; Polato, F.; Gunn, A.; Bothmer, A.; Feldhahn, N.; Fernandez-Capetillo, O.; Cao, L.; Xu, X.; Deng, C-X.; Finkel, T.; Nussenzweig, M.; Stark, J.M.; Nussenzweig, A. 53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks. Cell, 2010, 141(2), 243-254.
[76]
Bothmer, A.; Robbiani, D.F.; Di Virgilio, M.; Bunting, S.F.; Klein, I.A.; Feldhahn, N.; Barlow, J.; Chen, H-T.; Bosque, D.; Callen, E.; Nussenzweig, A.; Nussenzweig, M.C. Regulation of DNA end joining, resection, and immunoglobulin class switch recombination by 53BP1. Mol. Cell, 2011, 42(3), 319-329.
[77]
Hashizume, R.; Fukuda, M.; Maeda, I.; Nishikawa, H.; Oyake, D.; Yabuki, Y.; Ogata, H.; Ohta, T. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem., 2001, 276(18), 14537-14540.
[78]
Kalb, R.; Mallery, D.L.; Larkin, C.; Huang, J.T.; Hiom, K. BRCA1 is a histone-H2A-specific ubiquitin ligase. Cell Reports, 2014, 8(4), 999-1005.
[79]
Tomimatsu, N.; Mukherjee, B.; Catherine Hardebeck, M.; Ilcheva, M.; Vanessa Camacho, C.; Louise Harris, J.; Porteus, M.; Llorente, B.; Khanna, K.K.; Burma, S. Phosphorylation of EXO1 by CDKs 1 and 2 regulates DNA end resection and repair pathway choice. Nat. Commun., 2014, 5, 3561.
[80]
Huen, M.S.; Sy, S.M.; Chen, J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat. Rev. Mol. Cell Biol., 2010, 11(2), 138-148.
[81]
Zhang, F.; Ma, J.; Wu, J.; Ye, L.; Cai, H.; Xia, B.; Yu, X. PALB2 links BRCA1 and BRCA2 in the DNA-damage response. Curr. Biol., 2009, 19(6), 524-529.
[82]
Chen, L.; Nievera, C.J.; Lee, A.Y.; Wu, X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J. Biol. Chem., 2008, 283(12), 7713-7720.
[83]
Kurashige, T.; Shimamura, M.; Nagayama, Y. Differences in quantification of DNA double-strand breaks assessed by 53BP1/γH2AX focus formation assays and the comet assay in mammalian cells treated with irradiation and N-acetyl-L-cystein. Journal of radiation research, 2016, 57, 312-317.
[84]
Abramenkovs, A.; Stenerlöw, B. Measurement of DNA-Dependent Protein Kinase Phosphorylation Using Flow Cytometry Provides a Reliable Estimate of DNA Repair Capacity, 2017, 188, 597-604.
[86]
Enciso, M.; Sarasa, J.; Agarwal, A.; Fernández, J.L.; Gosálvez, J. A two-tailed Comet assay for assessing DNA damage in spermatozoa. Reproductive biomedicine online, 2009, 18, 609-616.
[87]
Du, J; Shang, J; Chen, F; Zhang, Y; Yin, N; Xie, T A CRISPR/Cas9-based screening for non-homologous end joining inhibitors reveals ouabain and penfluridol as radiosensitizers 2017.
[88]
Chen, X.; Zhong, S.; Zhu, X.; Dziegielewska, B.; Ellenberger, T.; Wilson, G.M. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res., 2008, 68, 3169-3177.
[89]
Budke, B.; Logan, H.L.; Kalin, J.H.; Zelivianskaia, A.S.; Cameron McGuire, W.; Miller, L.L.; Stark, J.M.; Kozikowski, A.P.; Bishop, D.K.; Connell, P.P. RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells. Nucleic Acids Res., 2012, 40(15), 7347-7357.
[90]
Waterson, A.G.; Kennedy, J.P.; Patrone, J.D.; Pelz, N.F.; Feldkamp, M.D.; Frank, A.O.; Vangamudi, B.; Souza-Fagundes, E.M.; Rossanese, O.W.; Chazin, W.J.; Fesik, S.W. Diphenylpyrazoles as replication protein a inhibitors. ACS Med. Chem. Lett., 2014, 6(2), 140-145.
[91]
Budke, B.; Kalin, J.H.; Pawlowski, M.; Zelivianskaia, A.S.; Wu, M.; Kozikowski, A.P.; Connell, P.P. An optimized RAD51 inhibitor that disrupts homologous recombination without requiring Michael acceptor reactivity. J. Med. Chem., 2013, 56(1), 254-263.
[92]
Glanzer, J.G.; Liu, S.; Wang, L.; Mosel, A.; Peng, A.; Oakley, G.G. RPA inhibition increases replication stress and suppresses tumor growth. Cancer Res., 2014, 74(18), 5165-5172.
[93]
Stachelek, G.C.; Peterson-Roth, E.; Liu, Y.; Fernandez, R.J., III; Pike, L.R.; Qian, J.M.; Abriola, L.; Hoyer, D.; Hungerford, W.; Merkel, J.; Glazer, P.M. YU238259 Is a Novel Inhibitor of Homology-Dependent DNA Repair That Exhibits Synthetic Lethality and Radiosensitization in Repair-Deficient Tumors. Mol. Cancer Res., 2015, 13(10), 1389-1397.
[94]
Freschauf, G.K.; Karimi-Busheri, F.; Ulaczyk-Lesanko, A.; Mereniuk, T.R.; Ahrens, A.; Koshy, J.M.; Rasouli-Nia, A.; Pasarj, P.; Holmes, C.F.; Rininsland, F.; Hall, D.G.; Weinfeld, M. Identification of a small molecule inhibitor of the human DNA repair enzyme polynucleotide kinase/phosphatase. Cancer Res., 2009, 69(19), 7739-7746.
[95]
Freschauf, G.K.; Mani, R.S.; Mereniuk, T.R.; Fanta, M.; Virgen, C.A.; Dianov, G.L.; Grassot, J-M.; Hall, D.G.; Weinfeld, M. Mechanism of action of an imidopiperidine inhibitor of human polynucleotide kinase/phosphatase. J. Biol. Chem., 2010, 285(4), 2351-2360.
[96]
Zereshkian, A.; Leyton, J.V.; Cai, Z.; Bergstrom, D.; Weinfeld, M.; Reilly, R.M. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates. Nucl. Med. Biol., 2014, 41(5), 377-383.
[97]
Jun, D.W.; Jeong, Y.S.; Kim, H.J.; Jeong, K-C.; Kim, S.; Lee, C-H. Characterization of DDRI-18 (3,3′-(1H,3‘H-5,5’-bibenzo[d]imidazole-2,2′-diyl)dianiline), a novel small molecule inhibitor modulating the DNA damage response. Br. J. Pharmacol., 2012, 167(1), 141-150.
[98]
Srivastava, M.; Nambiar, M.; Sharma, S.; Karki, S.S.; Goldsmith, G.; Hegde, M.; Kumar, S.; Pandey, M.; Singh, R.K.; Ray, P.; Natarajan, R.; Kelkar, M.; De, A.; Choudhary, B.; Raghavan, S.C. An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell, 2012, 151(7), 1474-1487.
[99]
Greco, GE; Matsumoto, Y; Brooks, RC; Lu, Z; Lieber, MR; Tomkinson, AE SCR7 is neither a selective nor a potent inhibitor
of human DNA ligase IV 2016, 43, 18-23.
[100]
Aravind, L; Walker, DR Koonin, EV Conserved domains
in DNA repair proteins and evolution of repair systems 1999, 27, 1223-42.
[101]
Mortensen, D.S.; Perrin-Ninkovic, S.M.; Shevlin, G.; Elsner, J.; Zhao, J.; Whitefield, B.; Tehrani, L.; Sapienza, J.; Riggs, J.R.; Parnes, J.S.; Papa, P.; Packard, G.; Lee, B.G.; Harris, R.; Correa, M.; Bahmanyar, S.; Richardson, S.J.; Peng, S.X.; Leisten, J.; Khambatta, G.; Hickman, M.; Gamez, J.C.; Bisonette, R.R.; Apuy, J.; Cathers, B.E.; Canan, S.S.; Moghaddam, M.F.; Raymon, H.K.; Worland, P.; Narla, R.K.; Fultz, K.E.; Sankar, S. Optimization of a Series of Triazole Containing Mammalian Target of Rapamycin (mTOR) Kinase Inhibitors and the Discovery of CC-115. J. Med. Chem., 2015, 58(14), 5599-5608.
[102]
Pastwa, E.; Poplawski, T.; Lewandowska, U.; Somiari, S.B.; Blasiak, J.; Somiari, R.I. Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells. Int. J. Biochem. Cell Biol., 2014, 53, 423-431.
[103]
Rosenzweig, K.E.; Youmell, M.B.; Palayoor, S.T.; Price, B.D. Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin. Cancer Res., 1997, 3(7), 1149-1156.
[104]
Busby, E.C.; Leistritz, D.F.; Abraham, R.T.; Karnitz, L.M.; Sarkaria, J.N. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res., 2000, 60(8), 2108-2112.
[105]
Munck, J.M.; Batey, M.A.; Zhao, Y.; Jenkins, H.; Richardson, C.J.; Cano, C.; Tavecchio, M.; Barbeau, J.; Bardos, J.; Cornell, L.; Griffin, R.J.; Menear, K.; Slade, A.; Thommes, P.; Martin, N.M.; Newell, D.R.; Smith, G.C.; Curtin, N.J. Chemosensitization of cancer cells by KU-0060648, a dual inhibitor of DNA-PK and PI-3K. Mol. Cancer Ther., 2012, 11(8), 1789-1798.
[106]
Stockley, M.; Clegg, W.; Fontana, G.; Golding, B.T.; Martin, N.; Rigoreau, L.J.; Smith, G.C.; Griffin, R.J. Synthesis, crystal structure determination, and biological properties of the DNA-dependent protein kinase (DNA-PK) inhibitor 3-cyano-6-hydrazonomethyl-5-(4-pyridyl)pyrid-[1H]-2-one (OK-1035). Bioorg. Med. Chem. Lett., 2001, 11(21), 2837-2841.
[107]
Ismail, I.H.; Mårtensson, S.; Moshinsky, D.; Rice, A.; Tang, C.; Howlett, A.; McMahon, G.; Hammarsten, O. SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene, 2004, 23(4), 873-882.
[108]
Shawi, M.; Chu, T.W.; Martinez-Marignac, V.; Yu, Y.; Gryaznov, S.M.; Johnston, J.B.; Lees-Miller, S.P.; Assouline, S.E.; Autexier, C.; Aloyz, R. Telomerase contributes to fludarabine resistance in primary human leukemic lymphocytes. PLoS One, 2013, 8(7), e70428.
[109]
Willmore, E.; de Caux, S.; Sunter, N.J.; Tilby, M.J.; Jackson, G.H.; Austin, C.A.; Durkacz, B.W. A novel DNA-dependent protein kinase inhibitor, NU7026, potentiates the cytotoxicity of topoisomerase II poisons used in the treatment of leukemia. Blood, 2004, 103(12), 4659-4665.
[110]
Tavecchio, M.; Munck, J.M.; Cano, C.; Newell, D.R.; Curtin, N.J. Further characterisation of the cellular activity of the DNA-PK inhibitor, NU7441, reveals potential cross-talk with homologous recombination. Cancer Chemother. Pharmacol., 2012, 69(1), 155-164.
[111]
Batey, M.A.; Zhao, Y.; Kyle, S.; Richardson, C.; Slade, A.; Martin, N.M.; Lau, A.; Newell, D.R.; Curtin, N.J. Preclinical evaluation of a novel ATM inhibitor, KU59403, in vitro and in vivo in p53 functional and dysfunctional models of human cancer. Mol. Cancer Ther., 2013, 12(6), 959-967.
[112]
Ciszewski, W.M.; Tavecchio, M.; Dastych, J.; Curtin, N.J. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res. Treat., 2014, 143(1), 47-55.
[113]
Oliveira, N.G.; Castro, M.; Rodrigues, A.S.; Gil, O.M.; Toscano-Rico, J.M.; Rueff, J. DNA-PK inhibitor wortmannin enhances DNA damage induced by bleomycin in V79 Chinese hamster cells. Teratog. Carcinog. Mutagen., 2002, 22(5), 343-351.
[114]
Welker, M.E.; Kulik, G. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Bioorg. Med. Chem., 2013, 21(14), 4063-4091.
[115]
Ebrahimi, S.; Hosseini, M.; Shahidsales, S.; Maftouh, M.; Ferns, G.A.; Ghayour-Mobarhan, M.; Hassanian, S.M.; Avan, A. Targeting the Akt/PI3K Signaling Pathway as a Potential Therapeutic Strategy for the Treatment of Pancreatic Cancer. Curr. Med. Chem., 2017, 24(13), 1321-1331.
[116]
Zask, A.; Kaplan, J.; Toral-Barza, L.; Hollander, I.; Young, M.; Tischler, M.; Gaydos, C.; Cinque, M.; Lucas, J.; Yu, K. Synthesis and structure-activity relationships of ring-opened 17-hydroxywortmannins: potent phosphoinositide 3-kinase inhibitors with improved properties and anticancer efficacy. J. Med. Chem., 2008, 51(5), 1319-1323.
[117]
Tian, X.; Lara, H.; Wagner, K.T.; Saripalli, S.; Hyder, S.N.; Foote, M.; Sethi, M.; Wang, E.; Caster, J.M.; Zhang, L.; Wang, A.Z. Improving DNA double-strand repair inhibitor KU55933 therapeutic index in cancer radiotherapy using nanoparticle drug delivery. Nanoscale, 2015, 7(47), 20211-20219.
[118]
Ma, D-L.; Liu, L-J.; Leung, K-H.; Chen, Y-T.; Zhong, H-J.; Chan, D.S-H. Antagonizing STAT3 dimerization with a rhodium(III) complex. Angewandte Chemie International Edition, 2014, 53, 9178-9182.