[1]
World Health Organization. Annual TB Report 2017, 2017.
[2]
Płocinska, R.; Korycka-Machala, M.; Plocinski, P.; Dziadek, J. Mycobacterial DNA replication as a target for antituberculosis drug discovery. Curr. Top. Med. Chem., 2017, 17(19), 2129-2142.
[3]
Gorna, A.E.; Bowater, R.P.; Dziadek, J. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin. Sci. Lond. Engl, 2010, 119(5), 187-202.
[4]
Fu, L.M.; Fu-Liu, C.S. The gene expression data of Mycobacterium tuberculosis based on Affymetrix gene chips provide insight into regulatory and hypothetical genes. BMC Microbiol., 2007, 7(1), 37.
[5]
van der Veen, S.; Tang, C.M. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens. Nat. Rev. Microbiol., 2015, 13(2), 83-94.
[6]
Helt, S.S.; Thymark, M.; Harris, P.; Aagaard, C.; Dietrich, J.; Larsen, S.; Willemoes, M. Mechanism of dTTP inhibition of the bifunctional dCTP deaminase:dUTPase encoded by Mycobacterium tuberculosis. J. Mol. Biol., 2008, 376(2), 554-569.
[7]
Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol., 2003, 48(1), 77-84.
[8]
Pecsi, I.; Hirmondo, R.; Brown, A.C.; Lopata, A.; Parish, T.; Vertessy, B.G.; Tóth, J. The dUTPase enzyme is essential in Mycobacterium smegmatis. PLoS One, 2012, 7(5), e37461.
[9]
Dubnau, E.; Fontán, P.; Manganelli, R.; Soares-Appel, S.; Smith, I. Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect. Immun., 2002, 70(6), 2787-2795.
[10]
Chan, S.; Segelke, B.; Lekin, T.; Krupka, H.; Cho, U.S.; Kim, M-Y.; So, M.; Kim, C-Y.; Naranjo, C.M.; Rogers, Y.C.; Park, M.S.; Waldo, G.S.; Pashkov, I.; Cascio, D.; Perry, J.L.; Sawaya, M.R. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. J. Mol. Biol., 2004, 341(2), 503-517.
[11]
Varga, B.; Barabás, O.; Takács, E.; Nagy, N.; Nagy, P.; Vértessy, B.G. Active site of mycobacterial dUTPase: structural characteristics and a built-in sensor. Biochem. Biophys. Res. Commun., 2008, 373(1), 8-13.
[12]
Ramalho, T.C.; Caetano, M.S.; Josa, D.; Luz, G.P.; Freitas, E.A.; da Cunha, E.F. Molecular modeling of Mycobacterium tuberculosis dUTpase: docking and catalytic mechanism studies. J. Biomol. Struct. Dyn., 2011, 28(6), 907-917.
[13]
Schnöller, D.; Pénzes, C.B.; Horváti, K.; Bősze, S.; Hudecz, F.; Kiss, É. Membrane affinity of new antitubercular drug candidates using a phospholipid langmuir monolayer model and LB technique. Colloid Polym. Sci., 2011, 138, 131-137.
[14]
Horváti, K.; Bacsa, B.; Szabó, N.; Dávid, S.; Mező, G.; Grolmusz, V.; Vértessy, B.; Hudecz, F.; Bősze, S. Enhanced cellular uptake of a new, in silico identified antitubercular candidate by peptide conjugation. Bioconjug. Chem., 2012, 23(5), 900-907.
[15]
Kiss, É.; Gyulai, G.; Pénzes, C.B.; Idei, M.; Horváti, K.; Bacsa, B.; Bősze, S. Tuneable surface modification of PLGA nanoparticles carry-ing new antitubercular drug candidate. COLLOIDS Surf. -. Physicochem. Eng. Asp., 2014, 458, 178-186.
[16]
Horváti, K.; Bacsa, B.; Szabó, N.; Fodor, K.; Balka, G.; Rusvai, M.; Kiss, É.; Mező, G.; Grolmusz, V.; Vértessy, B.; Hudecz, F.; Bősze, S. Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Tuberculosis (Edinb.), 2015, 95(Suppl. 1), S207-S211.
[17]
Dutta, N.K.; Mehra, S.; Didier, P.J.; Roy, C.J.; Doyle, L.A.; Alvarez, X.; Ratterree, M.; Be, N.A.; Lamichhane, G.; Jain, S.K.; Lacey, M.R.; Lackner, A.A.; Kaushal, D. Genetic requirements for the survival of Tubercle Bacilli in primates. J. Infect. Dis., 2010, 201(11), 1743-1752.
[18]
Sassetti, C.M.; Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12989-12994.
[19]
Venkatesh, J.; Kumar, P.; Krishna, P.S.; Manjunath, R.; Varshney, U. Importance of uracil DNA glycosylase in Pseudomonas aeruginosa and Mycobacterium smegmatis, G+C-rich bacteria, in mutation prevention, tolerance to acidified nitrite, and endurance in mouse macrophages. J. Biol. Chem., 2003, 278(27), 24350-24358.
[20]
Kurthkoti, K.; Kumar, P.; Jain, R.; Varshney, U. Important role of the nucleotide excision repair pathway in Mycobacterium smegmatis in conferring protection against commonly encountered DNA-damaging agents. Microbiol. Read. Engl., 2008, 154(Pt 9), 2776-2785.
[21]
Malshetty, V.S.; Jain, R.; Srinath, T.; Kurthkoti, K.; Varshney, U. Synergistic effects of UdgB and Ung in mutation prevention and protection against commonly encountered DNA damaging agents in Mycobacterium smegmatis. Microbiol. Read. Engl., 2010, 156(Pt 3), 940-949.
[22]
Talaat, A.M.; Ward, S.K.; Wu, C-W.; Rondon, E.; Tavano, C.; Bannantine, J.P.; Lyons, R.; Johnston, S.A. Mycobacterial Bacilli are metabolically active during chronic tuberculosis in murine lungs: insights from genome-wide transcriptional profiling. J. Bacteriol., 2007, 189(11), 4265-4274.
[23]
Puri, R.V.; Singh, N.; Gupta, R.K.; Tyagi, A.K.; Endonuclease, I.V.; Endonuclease, I.V. Is the major apurinic/apyrimidinic endonuclease in Mycobacterium tuberculosis and is important for protection against oxidative damage. PLoS One, 2013, 8(8), e71535.
[24]
Wiid, I.; Grundlingh, R.; Bourn, W.; Bradley, G.; Harington, A.; Hoal-van Helden, E.G.; van Helden, P.O. (6)-alkylguanine-DNA alkyltransferase DNA repair in mycobacteria: pathogenic and non-pathogenic species differ. Tuberculosis (Edinb.), 2002, 82(2-3), 45-53.
[25]
Boshoff, H.I.; Myers, T.G.; Copp, B.R.; McNeil, M.R.; Wilson, M.A.; Barry, C.E., III The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. J. Biol. Chem., 2004, 279(38), 40174-40184.
[26]
Schnappinger, D.; Ehrt, S.; Voskuil, M.I.; Liu, Y.; Mangan, J.A.; Monahan, I.M.; Dolganov, G.; Efron, B.; Butcher, P.D.; Nathan, C.; Schoolnik, G.K. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med., 2003, 198(5), 693-704.
[27]
Durbach, S.I.; Springer, B.; Machowski, E.E.; North, R.J.; Papavinasasundaram, K.G.; Colston, M.J.; Böttger, E.C.; Mizrahi, V. DNA alkylation damage as a sensor of nitrosative stress in Mycobacterium tuberculosis. Infect. Immun., 2003, 71(2), 997-1000.
[28]
Wanner, R.M.; Castor, D.; Güthlein, C.; Böttger, E.C.; Springer, B.; Jiricny, J. The uracil DNA glycosylase UdgB of Mycobacterium smegmatis protects the organism from the mutagenic effects of cytosine and adenine deamination. J. Bacteriol., 2009, 191(20), 6312-6319.
[29]
Jain, R.; Kumar, P.; Varshney, U. A distinct role of formamidopyrimidine DNA glycosylase (MutM) in down-regulation of accumulation of G, C mutations and protection against oxidative stress in mycobacteria. DNA Repair (Amst.), 2007, 6(12), 1774-1785.
[30]
Kurthkoti, K.; Srinath, T.; Kumar, P.; Malshetty, V.S.; Sang, P.B.; Jain, R.; Manjunath, R.; Varshney, U. A distinct physiological role of MutY in mutation prevention in mycobacteria. Microbiol. Read. Engl., 2010, 156(Pt 1), 88-93.
[31]
Nouvel, L.X.; Kassa-Kelembho, E.; Dos Vultos, T.; Zandanga, G.; Rauzier, J.; Lafoz, C.; Martin, C.; Blazquez, J.; Talarmin, A.; Gicquel, B. Multidrug-resistant Mycobacterium tuberculosis, Bangui, Central African Republic. Emerg. Infect. Dis., 2006, 12(9), 1454-1456.
[32]
Ebrahimi-Rad, M.; Bifani, P.; Martin, C.; Kremer, K.; Samper, S.; Rauzier, J.; Kreiswirth, B.; Blazquez, J.; Jouan, M.; van Soolingen, D.; Gicquel, B. Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerg. Infect. Dis., 2003, 9(7), 838-845.
[33]
Olano, J.; López, B.; Reyes, A.; Lemos, M.P.; Correa, N.; Del Portillo, P.; Barrera, L.; Robledo, J.; Ritacco, V.; Zambrano, M.M. Mutations in DNA repair genes are associated with the Haarlem lineage of Mycobacterium tuberculosis independently of their antibiotic resistance. Tuberculosis (Edinb.), 2007, 87(6), 502-508.
[34]
Lari, N.; Rindi, L.; Bonanni, D.; Tortoli, E.; Garzelli, C. Mutations in mutT genes of Mycobacterium tuberculosis isolates of Beijing genotype. J. Med. Microbiol., 2006, 55(Pt 5), 599-603.
[35]
Houghton, J.; Townsend, C.; Williams, A.R.; Rodgers, A.; Rand, L.; Walker, K.B.; Böttger, E.C.; Springer, B.; Davis, E.O. Important role for Mycobacterium tuberculosis UvrD1 in pathogenesis and persistence apart from its function in nucleotide excision repair. J. Bacteriol., 2012, 194(11), 2916-2923.
[36]
Graham, J.E.; Clark-Curtiss, J.E. Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA, 1999, 96(20), 11554-11559.
[37]
Rossi, F.; Khanduja, J.S.; Bortoluzzi, A.; Houghton, J.; Sander, P.; Güthlein, C.; Davis, E.O.; Springer, B.; Böttger, E.C.; Relini, A.; Penco, A.; Muniyappa, K.; Rizzi, M. The biological and structural characterization of Mycobacterium tuberculosis UvrA provides novel insights into its mechanism of action. Nucleic Acids Res., 2011, 39(16), 7316-7328.
[38]
Darwin, K.H.; Nathan, C.F. Role for nucleotide excision repair in virulence of Mycobacterium tuberculosis. Infect. Immun., 2005, 73(8), 4581-4587.
[39]
Güthlein, C.; Wanner, R.M.; Sander, P.; Davis, E.O.; Bosshard, M.; Jiricny, J.; Böttger, E.C.; Springer, B. Characterization of the mycobacterial NER system reveals novel functions of the uvrD1 helicase. J. Bacteriol., 2009, 191(2), 555-562.
[40]
Lamichhane, G.; Zignol, M.; Blades, N.J.; Geiman, D.E.; Dougherty, A.; Grosset, J.; Broman, K.W.; Bishai, W.R. A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 7213-7218.
[41]
Griffin, J.E.; Gawronski, J.D.; Dejesus, M.A.; Ioerger, T.R.; Akerley, B.J.; Sassetti, C.M. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog., 2011, 7(9), e1002251.
[42]
Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc. Natl. Acad. Sci. USA, 2005, 102(23), 8327-8332.
[43]
Parulekar, R.S.; Barage, S.H.; Jalkute, C.B.; Dhanavade, M.J.; Fandilolu, P.M.; Sonawane, K.D. Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis. Protein J., 2013, 32(6), 467-476.
[44]
Sinha, K.M.; Stephanou, N.C.; Unciuleac, M-C.; Glickman, M.S.; Shuman, S. Domain requirements for DNA unwinding by mycobacterial UvrD2, an essential DNA helicase. Biochemistry, 2008, 47(36), 9355-9364.
[45]
Williams, A.; Güthlein, C.; Beresford, N.; Böttger, E.C.; Springer, B.; Davis, E.O. UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required. J. Bacteriol., 2011, 193(17), 4487-4494.
[46]
Kazarian, K.; Cassani, C.; Rizzi, M. Expression, purification and characterization of UvrD2 helicase from Mycobacterium tuberculosis. Protein Expr. Purif., 2010, 69(2), 215-218.
[47]
Mazloum, N.; Stegman, M.A.; Croteau, D.L.; Van Houten, B.; Kwon, N.S.; Ling, Y.; Dickinson, C.; Venugopal, A.; Towheed, M.A.; Nathan, C. Identification of a chemical that inhibits the mycobacterial UvrABC complex in nucleotide excision repair. Biochemistry, 2011, 50(8), 1329-1335.
[48]
Watkins, H.A.; Baker, E.N. Structural and functional characterization of an RNase HI domain from the bifunctional protein Rv2228c from Mycobacterium tuberculosis. J. Bacteriol., 2010, 192(11), 2878-2886.
[49]
Minias, A.E.; Brzostek, A.M.; Korycka-Machala, M.; Dziadek, B.; Minias, P.; Rajagopalan, M.; Madiraju, M.; Dziadek, J. RNase HI is essential for survival of Mycobacterium smegmatis. PLoS One, 2015, 10(5), e0126260.
[50]
Gupta, R.; Chatterjee, D.; Glickman, M.S.; Shuman, S. Division of labor among Mycobacterium smegmatis RNase H enzymes: RNase H1 activity of RnhA or RnhC is essential for growth whereas RnhB and RnhA guard against killing by hydrogen peroxide in stationary phase. Nucleic Acids Res., 2017, 45(1), 1-14.
[51]
Gupta, R.; Barkan, D.; Redelman-Sidi, G.; Shuman, S.; Glickman, M.S. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways. Mol. Microbiol., 2011, 79(2), 316-330.
[52]
Gupta, R.; Unciuleac, M-C.; Shuman, S.; Glickman, M.S. Homologous recombination mediated by the mycobacterial AdnAB helicase without end resection by the AdnAB nucleases. Nucleic Acids Res., 2017, 45(2), 762-774.
[53]
Waddell, S.J.; Stabler, R.A.; Laing, K.; Kremer, L.; Reynolds, R.C.; Besra, G.S. The use of microarray analysis to determine the gene expression profiles of Mycobacterium tuberculosis in response to anti-bacterial compounds. Tuberculosis (Edinb.), 2004, 84(3-4), 263-274.
[54]
Datta, S.; Prabu, M.M.; Vaze, M.B.; Ganesh, N.; Chandra, N.R.; Muniyappa, K.; Vijayan, M. Crystal structures of Mycobacterium tuberculosis RecA and its complex with ADP-AlF(4): implications for decreased ATPase activity and molecular aggregation. Nucleic Acids Res., 2000, 28(24), 4964-4973.
[55]
Chandran, A.V.; Prabu, J.R.; Nautiyal, A.; Patil, K.N.; Muniyappa, K.; Vijayan, M. Structural studies on Mycobacterium tuberculosis RecA: molecular plasticity and interspecies variability. J. Biosci., 2015, 40(1), 13-30.
[56]
Szulc-Kielbik, I.; Brzezinska, M.; Kielbik, M.; Brzostek, A.; Dziadek, J.; Kania, K.; Sulowska, Z.; Krupa, A.; Klink, M. Mycobacterium tuberculosis RecA is indispensable for inhibition of the mitogen-activated protein kinase-dependent bactericidal activity of THP-1-derived macrophages in vitro. FEBS J., 2015, 282(7), 1289-1306.
[57]
Brzostek, A.; Szulc, I.; Klink, M.; Brzezinska, M.; Sulowska, Z.; Dziadek, J. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis. PLoS One, 2014, 9(3), e92799.
[58]
Heaton, B.E.; Barkan, D.; Bongiorno, P.; Karakousis, P.C.; Glickman, M.S. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection. Infect. Immun., 2014, 82(8), 3177-3185.
[59]
Sander, P.; Papavinasasundaram, K.G.; Dick, T.; Stavropoulos, E.; Ellrott, K.; Springer, B.; Colston, M.J.; Böttger, E.C. Mycobacterium bovis BCG recA deletion mutant shows increased susceptibility to DNA-damaging agents but wild-type survival in a mouse infection model. Infect. Immun., 2001, 69(6), 3562-3568.
[60]
Mo, C.Y.; Manning, S.A.; Roggiani, M.; Culyba, M.J.; Samuels, A.N.; Sniegowski, P.D.; Goulian, M.; Kohli, R.M. Systematically altering bacterial SOS activity under stress reveals therapeutic strategies for potentiating antibiotics. MSphere, 2016, 1(4), 1.
[61]
Alam, M.K.; Alhhazmi, A.; DeCoteau, J.F.; Luo, Y.; Geyer, C.R. RecA inhibitors potentiate antibiotic activity and block evolution of antibiotic resistance. Cell Chem. Biol., 2016, 23(3), 381-391.
[62]
Nautiyal, A.; Patil, K.N.; Muniyappa, K. Suramin is a potent and selective inhibitor of Mycobacterium tuberculosis RecA protein and the SOS response: RecA as a potential target for antibacterial drug discovery. J. Antimicrob. Chemother., 2014, 69(7), 1834-1843.
[63]
Zhang, L.; Zheng, Y.; Callahan, B.; Belfort, M.; Liu, Y. Cisplatin inhibits protein splicing, suggesting inteins as therapeutic targets in mycobacteria. J. Biol. Chem., 2011, 286(2), 1277-1282.
[64]
Rienksma, R.A.; Suarez-Diez, M.; Mollenkopf, H-J.; Dolganov, G.M.; Dorhoi, A.; Schoolnik, G.K.; Martins Dos Santos, V.A.; Kaufmann, S.H.; Schaap, P.J.; Gengenbacher, M. Comprehensive insights into transcriptional adaptation of intracellular mycobacteria by microbe-enriched dual RNA sequencing. BMC Genomics, 2015, 16, 34.
[65]
Namouchi, A.; Gómez-Muñoz, M.; Frye, S.A.; Moen, L.V.; Rognes, T.; Tønjum, T.; Balasingham, S.V. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics, 2016, 17(1), 791.
[66]
Long, Q.; Du, Q.; Fu, T.; Drlica, K.; Zhao, X.; Xie, J. Involvement of Holliday junction resolvase in fluoroquinolone-mediated killing of Mycobacterium smegmatis. Antimicrob. Agents Chemother., 2015, 59(3), 1782-1785.
[67]
Prabu, J.R.; Thamotharan, S.; Khanduja, J.S.; Alipio, E.Z.; Kim, C-Y.; Waldo, G.S.; Terwilliger, T.C.; Segelke, B.; Lekin, T.; Toppani, D.; Hung, L-W.; Yu, M.; Bursey, E.; Muniyappa, K.; Chandra, N.R.; Vijayan, M. Structure of Mycobacterium tuberculosis RuvA, a protein involved in recombination. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun., 2006, 62(Pt 8), 731-734.
[68]
Prabu, J.R.; Thamotharan, S.; Khanduja, J.S.; Chandra, N.R.; Muniyappa, K.; Vijayan, M. Crystallographic and modelling studies on Mycobacterium tuberculosis RuvA Additional role of RuvB-binding domain and inter species variability. Biochim. Biophys. Acta, 2009, 1794(7), 1001-1009.
[69]
Glickman, M.S. Double-strand DNA break repair in mycobacteria. Microbiol. Spectr., 2014, 2(5), 2.
[70]
Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem., 2010, 79, 181-211.
[71]
Della, M.; Palmbos, P.L.; Tseng, H-M.; Tonkin, L.M.; Daley, J.M.; Topper, L.M.; Pitcher, R.S.; Tomkinson, A.E.; Wilson, T.E.; Doherty, A.J. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science, 2004, 306(5696), 683-685.
[72]
Weller, G.R.; Kysela, B.; Roy, R.; Tonkin, L.M.; Scanlan, E.; Della, M.; Devine, S.K.; Day, J.P.; Wilkinson, A.; d’Adda di Fagagna, F.; Devine, K.M.; Bowater, R.P.; Jeggo, P.A.; Jackson, S.P.; Doherty, A.J. Identification of a DNA nonhomologous end-joining complex in bacteria. Science, 2002, 297(5587), 1686-1689.
[73]
Korycka-Machala, M.; Brzostek, A.; Rozalska, S.; Rumijowska-Galewicz, A.; Dziedzic, R.; Bowater, R.; Dziadek, J. Distinct DNA repair pathways involving RecA and nonhomologous end joining in Mycobacterium smegmatis. FEMS Microbiol. Lett., 2006, 258(1), 83-91.
[74]
Pitcher, R.S.; Brissett, N.C.; Picher, A.J.; Andrade, P.; Juarez, R.; Thompson, D.; Fox, G.C.; Blanco, L.; Doherty, A.J. Structure and function of a mycobacterial NHEJ DNA repair polymerase. J. Mol. Biol., 2007, 366(2), 391-405.
[75]
Stephanou, N.C.; Gao, F.; Bongiorno, P.; Ehrt, S.; Schnappinger, D.; Shuman, S.; Glickman, M.S. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks. J. Bacteriol., 2007, 189(14), 5237-5246.
[76]
Bowater, R.; Doherty, A.J. Making ends meet: repairing breaks in bacterial DNA by non-homologous end-joining. PLoS Genet., 2006, 2(2), e8.
[77]
Weller, G.R.; Doherty, A.J. A family of DNA repair ligases in bacteria? FEBS Lett., 2001, 505(2), 340-342.
[78]
Akey, D.; Martins, A.; Aniukwu, J.; Glickman, M.S.; Shuman, S.; Berger, J.M. Crystal structure and nonhomologous end-joining function of the ligase component of Mycobacterium DNA ligase D. J. Biol. Chem., 2006, 281(19), 13412-13423.
[79]
Padiadpu, J.; Vashisht, R.; Chandra, N. Protein-protein interaction networks suggest different targets have different propensities for triggering drug resistance. Syst. Synth. Biol., 2010, 4(4), 311-322.
[80]
Ilina, E.N.; Shitikov, E.A.; Ikryannikova, L.N.; Alekseev, D.G.; Kamashev, D.E.; Malakhova, M.V.; Parfenova, T.V.; Afanas’ev, M.V.; Ischenko, D.S.; Bazaleev, N.A.; Smirnova, T.G.; Larionova, E.E.; Chernousova, L.N.; Beletsky, A.V.; Mardanov, A.V.; Ravin, N.V.; Skryabin, K.G.; Govorun, V.M. Comparative genomic analysis of Mycobacterium tuberculosis drug resistant strains from Russia. PLoS One, 2013, 8(2), e56577.
[81]
Raman, K.; Yeturu, K.; Chandra, N. targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst. Biol., 2008, 2, 109.
[82]
Gordhan, B.G.; Andersen, S.J.; De Meyer, A.R.; Mizrahi, V. Construction by homologous recombination and phenotypic characterization of a DNA polymerase domain polA mutant of Mycobacterium smegmatis. Gene, 1996, 178(1-2), 125-130.
[83]
Talaat, A.M.; Lyons, R.; Howard, S.T.; Johnston, S.A. The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc. Natl. Acad. Sci. USA, 2004, 101(13), 4602-4607.
[84]
Warner, D.F.; Ndwandwe, D.E.; Abrahams, G.L.; Kana, B.D.; Machowski, E.E.; Venclovas, C.; Mizrahi, V. Essential roles for imuA′- and imuB-encoded accessory factors in DnaE2-dependent mutagenesis in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 13093-13098.
[85]
Boshoff, H.I.; Reed, M.B.; Barry, C.E., III; Mizrahi, V. DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell, 2003, 113(2), 183-193.
[86]
Keren, I.; Minami, S.; Rubin, E.; Lewis, K. Characterization and transcriptome analysis of Mycobacterium tuberculosis persisters. MBio, 2011, 2(3), e00100-e00111.
[87]
Jadaun, A.; Sudhakar, D.R.; Subbarao, N.; Dixit, A. In silico screening for novel inhibitors of DNA polymerase III alpha subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv). PLoS One, 2015, 10(3), e0119760.
[88]
Gobec, S.; Plantan, I.; Mravljak, J.; Wilson, R.A.; Besra, G.S.; Kikelj, D. Phosphonate inhibitors of antigen 85C, a crucial enzyme involved in the biosynthesis of the Mycobacterium tuberculosis cell wall. Bioorg. Med. Chem. Lett., 2004, 14(13), 3559-3562.
[89]
Sriram, D.; Yogeeswari, P.; Srichakravarthy, N.; Bal, T.R. Synthesis of stavudine amino acid ester prodrugs with broad-spectrum chemotherapeutic properties for the effective treatment of HIV/AIDS. Bioorg. Med. Chem. Lett., 2004, 14(5), 1085-1087.
[90]
Chhabra, G.; Dixit, A.; Garg, C. L. DNA polymerase III α subunit from Mycobacterium tuberculosis H37Rv: Homology modeling and molecular docking of its inhibitor. Bioinformation, 2011, 6(2), 69-73.
[91]
Rock, J.M.; Lang, U.F.; Chase, M.R.; Ford, C.B.; Gerrick, E.R.; Gawande, R.; Coscolla, M.; Gagneux, S.; Fortune, S.M.; Lamers, M.H. DNA replication fidelity in Mycobacterium tuberculosis is mediated by an ancestral prokaryotic proofreader. Nat. Genet., 2015, 47(6), 677-681.
[92]
Castañeda-García, A.; Prieto, A.I.; Rodríguez-Beltrán, J.; Alonso, N.; Cantillon, D.; Costas, C.; Pérez-Lago, L.; Zegeye, E.D.; Herranz, M.; Plociński, P.; Tonjum, T.; García de Viedma, D.; Paget, M.; Waddell, S.J.; Rojas, A.M.; Doherty, A.J.; Blázquez, J. A non-canonical mismatch repair pathway in prokaryotes. Nat. Commun., 2017, 8, 14246.
[93]
Goodman, M.F. Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu. Rev. Biochem., 2002, 71, 17-50.
[94]
Karakousis, P.C.; Williams, E.P.; Bishai, W.R. Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J. Antimicrob. Chemother., 2008, 61(2), 323-331.
[95]
Kana, B.D.; Abrahams, G.L.; Sung, N.; Warner, D.F.; Gordhan, B.G.; Machowski, E.E.; Tsenova, L.; Sacchettini, J.C.; Stoker, N.G.; Kaplan, G.; Mizrahi, V. Role of the DinB homologs Rv1537 and Rv3056 in Mycobacterium tuberculosis. J. Bacteriol., 2010, 192(8), 2220-2227.
[96]
Ordonez, H.; Uson, M.L.; Shuman, S. Characterization of three mycobacterial DinB (DNA polymerase IV) paralogs highlights DinB2 as naturally adept at ribonucleotide incorporation. Nucleic Acids Res., 2014, 42(17), 11056-11070.
[97]
Ordonez, H.; Shuman, S. Mycobacterium smegmatis DinB2 misincorporates deoxyribonucleotides and ribonucleotides during templated synthesis and lesion bypass. Nucleic Acids Res., 2014, 42(20), 12722-12734.
[98]
Foti, J.J.; Devadoss, B.; Winkler, J.A.; Collins, J.J.; Walker, G.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. Science, 2012, 336(6079), 315-319.
[99]
Wilkinson, A.; Day, J.; Bowater, R. Bacterial DNA ligases. Mol. Microbiol., 2001, 40(6), 1241-1248.
[100]
Shuman, S. DNA ligases: progress and prospects. J. Biol. Chem., 2009, 284(26), 17365-17369.
[101]
Söderhäll, S.; Lindahl, T. DNA ligases of eukaryotes. FEBS Lett., 1976, 67(1), 1-8.
[102]
Sriskanda, V.; Moyer, R.W.; Shuman, S. NAD+-dependent DNA ligase encoded by a eukaryotic virus. J. Biol. Chem., 2001, 276(39), 36100-36109.
[103]
Khanam, T.; Ramachandran, R. Exploiting bacterial DNA repair systems as drug targets: a review of the current scenario with focus on mycobacteria. J. Indian Inst. Sci., 2014, 94(1), 149-168.
[104]
Lehman, I.R. DNA ligase: structure, mechanism, and function. Science, 1974, 186(4166), 790-797.
[105]
Gong, C.; Martins, A.; Bongiorno, P.; Glickman, M.; Shuman, S. Biochemical and genetic analysis of the four DNA ligases of mycobacteria. J. Biol. Chem., 2004, 279(20), 20594-20606.
[106]
Srivastava, S.K.; Dube, D.; Tewari, N.; Dwivedi, N.; Tripathi, R.P.; Ramachandran, R. Mycobacterium tuberculosis NAD+-dependent DNA ligase is selectively inhibited by glycosylamines compared with human DNA ligase I. Nucleic Acids Res., 2005, 33(22), 7090-7101.
[107]
Srivastava, S.K.; Tripathi, R.P.; Ramachandran, R. NAD+-dependent DNA Ligase (Rv3014c) from Mycobacterium tuberculosis. Crystal structure of the adenylation domain and identification of novel inhibitors. J. Biol. Chem., 2005, 280(34), 30273-30281.
[108]
Korycka-Machala, M.; Rychta, E.; Brzostek, A.; Sayer, H.R.; Rumijowska-Galewicz, A.; Bowater, R.P.; Dziadek, J. Evaluation of NAD(+) -dependent DNA ligase of mycobacteria as a potential target for antibiotics. Antimicrob. Agents Chemother., 2007, 51(8), 2888-2897.
[109]
Ciarrocchi, G.; MacPhee, D.G.; Deady, L.W.; Tilley, L. Specific inhibition of the eubacterial DNA ligase by arylamino compounds. Antimicrob. Agents Chemother., 1999, 43(11), 2766-2772.
[110]
Brötz-Oesterhelt, H.; Knezevic, I.; Bartel, S.; Lampe, T.; Warnecke-Eberz, U.; Ziegelbauer, K.; Häbich, D.; Labischinski, H. Specific and potent inhibition of NAD+-dependent DNA ligase by pyridochromanones. J. Biol. Chem., 2003, 278(41), 39435-39442.
[111]
Mills, S.D.; Eakin, A.E.; Buurman, E.T.; Newman, J.V.; Gao, N.; Huynh, H.; Johnson, K.D.; Lahiri, S.; Shapiro, A.B.; Walkup, G.K.; Yang, W.; Stokes, S.S. Novel bacterial NAD+-dependent DNA ligase inhibitors with broad-spectrum activity and antibacterial efficacy in vivo. Antimicrob. Agents Chemother., 2011, 55(3), 1088-1096.
[112]
Korycka-Machala, M.; Nowosielski, M.; Kuron, A.; Rykowski, S.; Olejniczak, A.; Hoffmann, M.; Dziadek, J. Naphthalimides
selectively inhibit the activity of bacterial, replicative
DNA ligases and display bactericidal effects against Tubercle bacilli, 2017, 22(1), pii: E154.
[113]
Dube, D.; Kukshal, V.; Srivastava, S.K.; Tripathi, R.P.; Ramachandran, R. NAD+-dependent DNA ligase (Rv3014c) from M. tuberculosis: Strategies for inhibitor design. Med. Chem. Res., 2008, 17(2-7), 189-198.