[1]
Singh, D.; McMillan, J.M.; Kabanov, A.V.; Sokolsky-Papkov, M.; Gendelman, H.E. Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond.), 2014, 9, 501-516.
[2]
Gendelmana, H.E.; Anantharam, V.; Bronich, T.; Ghaisas, S.; Jin, H.; Kanthasamy, A.G.; Liua, X.; McMillan, J.; Mosley, R.L.; Narasimhan, B.; Mallapragada, S.K. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine, 2015, 11, 751-767.
[3]
Moghimi, S.M.; Hunter, A.C.; Murray, J.C. Nanomedicine: current status and future prospects. FASEB J., 2005, 19, 311-330.
[4]
Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Current concepts nanomedicine. New . Engl. J. Med., 2010, 363, 2434-2443.
[5]
Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Intl. Ed. Engl., 2009, 48, 60-103.
[6]
Mahmoudi, M.; Stroeve, P.; Milani, A.S.; Arbab, A. Superparamagnetic iron oxide nanoparticles for biomedical applications; Nova Science Publishers, Inc.: New York, 2010.
[7]
Ronca, S.E.; Dineley, K.T.; Paessler, S. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol., 2016, 7, 959.
[8]
Wagner, V.; Dullaart, A.; Bock, A.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol., 2006, 10, 1211-1217.
[9]
Busquets, M.A.; Sabaté, R.; Estelrich, J. Potential applications of magnetic particles to detect and treat Alzheimer’s disease. Nanoscale Res. Let., 2014, 9, 538-548.
[10]
Poole, C.P. Introduction to Nanotechnology; John Wiley & Sons: Hoboken, New Jersey, 2003.
[11]
Crozals, G.D.; Bonnet, R.; Farre, C.; Chaix, C. Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today, 2016, 11, 435-463.
[12]
Chhikara, B.S. Prospects of applied nanomedicine, Appl.
Nanomed.,, 2016, 1, Pi-Pii.
[13]
Farokhzad, O.C.; Langer, R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv. Drug Deliver. Rev., 2006, 58, 1456-1459.
[14]
Gendelman, H.; Mosley, L.; Boska, M.D.; McMillan, J. The promise of nanoneuromedicine. Nanomedicine, 2014, 9, 171-176.
[15]
Singh, R. Geetanjali; Sharma, N. Monoamine oxidase inhibitors for neurological disorders: A review. Chem. Biol. Lett., 2014, 1, 33-39.
[16]
Butler, C. Neurological syndromes which can be mistaken for psychiatric conditions. J. Neurol. Neurosurg. Psychiatry, 2005, 76, i31-i38.
[17]
Kanwar, J.R.; Sun, X.; Punj, V.; Sriramoju, B.; Mohan, R.R.; Zhou, S.F.; Chauhan, A.; Kanwar, R.K. Nanoparticles in the treatment and diagnosis of neurological disorders: Untamed dragon with fire power to heal. Nanomedicine., 2012, 8, 399-414.
[18]
Przedborski, S.; Vila, M.; Lewis, V.J. Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111, 3-10.
[19]
Tanner, C.M. Epidemiology of parkinson’s disease. Neurol. Clin., 1992, 10, 317-329.
[20]
Sulkava, R.; Haltia, M.; Paetau, A.; Wikstrom, J.; Palo, J. Accuracy of clinical diagnosis in primary degenerative dementia: Correlation with neuropathological findings. J. Neurol. Neurosurg. Psychiatry, 1983, 46, 9-13.
[21]
Palmer, A.M.; Francis, P.T. Alzheimer disease: From acetylcholine to β-amyloid. Neurodegeneration, 1996, 5, 379-380.
[22]
Palmer, A.M. Neurochemical studies of alzheimer disease. Neurodegeneration, 1996, 5, 381-391.
[23]
Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006, 443, 780-786.
[24]
Tanner, C.M.; Ottman, R.; Goldman, S.M.; Ellenberg, J.; Chan, P.; Mayeux, R.; Langston, J.W. Parkinson disease in twins: An etiologic study. JAMA, 1999, 281, 341-346.
[25]
Kurtland, L.T. Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends Neurosci., 1988, 11, 51-54.
[26]
Przedborski, S.; Vila, M. MPTP: A review of its mechanisms of neurotoxicity. Clin. Neurosci. Res., 2001, 1, 407-418.
[27]
Alam, M.I.; Beg, S.; Samad, A.; Baboota, S.; Kohli, K.; Ali, J.; Ahuja, A.; Akbar, M. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci., 2010, 40, 385-403.
[28]
Wang, H.; Chen, X. Applications for site-directed molecular imaging agents coupled with drug delivery potential. Exp Opin. Drug Deliv., 2009, 6, 745-768.
[29]
Lopac, S.K.; Torres, M.P.; Wilson, W.J.H.; Wannemuehler, M.J.; Narasimhan, B. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 91, 938-947.
[30]
Torres, M.P.; Vogel, B.M.; Narasimhan, B.; Mallapragada, S.K. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms. J. Biomed. Mater. Res. A, 2006, 76, 102-110.
[31]
Mallapragada, S.K.; Brenza, T.M.; McMillanb, J.M.; Narasimhan, B.; Sakaguchi, D.S.; Sharmaa, A.D.; Zbarska, S.; Gendelman, H.E. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. Nanomed. Nanotechnol. Biol. Med., 2015, 11, 715-729.
[32]
Katzman, R. The prevalence and malignancy of alzheimer disease: A major killer. Arch. Neurol., 1976, 33, 217-218.
[33]
Hurd, M.D.; Martorell, P.; Delavande, A.; Mullen, K.J.; Langa, K.M. Monetary costs of dementia in the United States. New . Engl. J. Med., 2013, 368, 1326-1334.
[34]
Saraceno, C.; Musardo, S.; Marcello, E.; Pelucchi, S.; DiLuca, M. Modeling alzheimer’s disease: From past to future. Pharmacology, 2013, 4, 1-22.
[35]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 2002, 297, 353-356.
[36]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[37]
Fazil, M.; Baboota, S.S.; Sahni, J.K.; Ali, J. Nanotherapeutics for Alzheimer’s disease (AD): Past, present and future. J. Drug Targeting., 2012, 20, 97-113.
[38]
Begley, D.J. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol. Ther., 2004, 104, 29-45.
[39]
Gabathuler, R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol. Dis., 2010, 37, 48-57.
[40]
Roney, C.; Kulkarni, P.; Arora, V.; Antich, P.; Bonte, F.; Wu, A.; Mallikarjuana, N.N.; Manohar, S.; Liang, H.F.; Kulkarni, A.R.; Sung, H.W.; Sairam, M.; Aminabhavi, T.M. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J. Control. Release, 2005, 108, 193-214.
[41]
Tanifum, E.A.; Dasgupta, I.; Srivastava, M.; Bhavane, R.C.; Sun, L.; Berridge, J.; Pourgarzham, H.; Kamath, R.; Espinosa, G.; Cook, S.C.; Eriksen, J.L.; Annapragada, A. Intravenous delivery of targeted liposomes to amyloid-beta pathology in APP/PSEN1 transgenic mice. PLoS One, 2012, 7, e48515.
[42]
Laurent, S.; Ejtehadi, M.R.; Rezaei, M.; Kehoe, P.G.; Mahmoudi, M. Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer’s disease. RSC Adv., 2012, 2, 5008-5033.
[43]
Fei, L.; Perrett, S. Effect of nanoparticles on protein folding and fibrillogenesis. Int. J. Mol. Sci., 2009, 10, 646-655.
[44]
Anker, J.N.; Hall, W.P.; Lyandres, O.; Shah, N.C.; Zhao, J.; Duyne, R.P.V. Biosensing with plasmonic nanosensors. Nat. Mater., 2008, 7, 442-453.
[45]
Thakur, G.; Micic, M.; Yang, Y.; Li, W.; Movia, D.; Giordani, S.; Zhang, H.; Leblanc, R.M. Conjugated quantum dots inhibit the amyloid β (1-42) fibrillation process. Int. J. Alz Dis., 2011, 2011, 1-15.
[46]
Pankhurst, Q.A.; Hautot, D.; Kahn, N.; Dobson, J. Increase levels of magnetic iron compounds in Alzheimer’s disease. J. Alz Dis., 2008, 13, 49-52.
[47]
Wadghiri, Y.Z.; Sigurdsson, E.M. Sadowski, M.; Elliott, J.I.; Li, Y.Scholtzova, H.; Tang, C.Y.; Aguinaldo, G.; Pappolla, M.; Duff, K.; Wisniewski, T.; Turnbull, D.H. Detection of alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med., 2003, 50, 293-302.
[48]
Yang, J.; Wadghiri, Y.Z.; Hoang, D.M.; Tsui, W.; Sun, Y.; Chung, E.; Li, Y.; Wang, A.; de Leon, M.; Wisniewski, T. Detection of amyloid plaques targeted by USPIO-Aβ1-42 in Alzheimer’s disease transgenic mice using magnetic resonance microimaging. Neuroimage, 2011, 55, 1600-1609.
[49]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386, 896-912.
[50]
Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord., 2013, 28, 311-318.
[51]
Ragothaman, M.; Govindappa, S.T.; Rattihalli, R.; Subbakrishna, D.K.; Muthane, U.B. Direct cost of managing Parkinson’s disease in india: Concerns in a developing country. Mov. Disord., 2006, 21, 1755-1758.
[52]
Verhagen, M.L.; Del, D.P.; LePoole, K.; Konitsiotis, S.; Fang, J.; Chase, T.N. Amantadine for levodopa-induced dyskinesias. A 1-year follow-up study. Arch. Neurol., 1999, 56, 1383-1386.
[53]
Przuntek, H.; Muller, T. Clinical efficacy of budipine in Parkinson’s disease. J. Neural Transm. Suppl., 1999, 56, 75-82.
[54]
Linazasoro, G. Potential applications of nanotechnologies to Parkinson’s disease therapy. Parkinsonism Relat. Disord., 2008, 14, 383-392.
[55]
Pillay, S.; Pillay, V.; Choonara, Y.E.; Naidoo, D.; Khan, R.A.; du Toit, L.C.; Ndesendo, V.M.; Modi, G.; Danckwerts, M.P.; Iyuke, S.E. Design, biometric simulation and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain. Int. J. Pharm., 2009, 382, 277-290.
[56]
Trapani, A.; De, G.E.; Cafagna, D.; Denora, N.; Agrimi, G.; Cassano, T.; Gaetani, S.; Cuomo, V.; Trapani, G. Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery. Int. J. Pharm., 2011, 419, 296-307.
[57]
De, G.E.; Trapani, A.; Cafagna, D.; Sabbatini, L.; Cometa, S. Dopamine loaded chitosan nanoparticles: Formulation and analytical characterization. Anal. Bioanal. Chem., 2011, 400, 1997-2002.
[58]
Rashed, E.R.; Abd-El-Rehim, H.A.; El-Ghazaly, M.A. Potential efficacy of dopamine loaded-PVP/PAA nanogel in experimental models of Parkinsonism: Possible disease modifying activity. J. Biomed. Mater. Res. A, 2015, 103, 1713-1720.
[59]
Adhikary, R.R.; Sandbhor, P.; Banerjee, R. Nanotechnology platforms in parkinson’s disease. ADMET DMPK, 2015, 3, 155-181.
[60]
Kurzatkowska, K.; Dolusic, E.; Dehaen, W.; Sieroń-Stołtny, K.; Sieroń, A.; Radecka, H. Gold electrode incorporating corrole as an ion-channel mimetic sensor for determination of dopamine. Anal. Chem., 2009, 81, 7397-7405.
[61]
Tashkhourian, J.; Hormozi Nezhad, M.R.; Khodavesi, J.; Javadi, S. Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J. Electroanal. Chem., 2009, 633, 85-91.
[62]
Yue, H.Y.; Huang, S.; Chang, J.; Heo, C.; Yao, F.; Adhikari, S.; Gunes, F.; Liu, L.C.; Lee, T.H.; Oh, E.S.; Li, B.; Zhang, J.J.; Huy, T.Q.; Luan, N.V.; Lee, Y.H. ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of parkinson’s disease. ACS Nano, 2014, 8, 1639-1646.
[63]
Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet, 2011, 377, 942-955.
[64]
Gendelman, H.E.; Mosley, R.L.; Boska, M.D.; McMillan, J. The promise of nanoneuromedicine. Nanomedicine, 2014, 9, 171-176.
[65]
Zoccolella, S.; Beghi, E.; Palagano, G.; Fraddosio, A.; Guerra, V.; Samarelli, V.; Lepore, V.; Simone, I.L.; Lamberti, P.; Serlenga, L.; Logroscino, G. Signs and symptoms at diagnosis of amyotrophic lateral sclerosis survival: A population-based study in southern Italy. Eur. J. Neurol., 2006, 13, 789-792.
[66]
Shaw, P.J. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J. Neurol. Neurosurg. Psychiatry, 2005, 76, 1046-1057.
[67]
Hong, S.; Choi, I.; Lee, S.; Yang, Y.I.; Kang, T.; Yi, J. Sensitive and colorimetric detection of the structural evolution of superoxide dismutase with gold nanoparticles. Anal. Chem., 2009, 81, 1378-1382.
[68]
Reddy, M.K.; Wu, L.; Kou, W.; Ghorpade, A.; Labhasetwar, V. Superoxide dismutase-loaded PLGA nanoparticles protect cultured human neurons under oxidative stress. Appl. Biochem. Biotechnol., 2008, 151, 565-577.
[69]
Ali, S.S.; Hardt, J.I.; Dugan, L.L. SOD activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomedicine., 2008, 4, 283-294.
[70]
Bondi, M.L.; Craparo, E.F.; Giammona, G.; Drago, F. Brain-targeted solid lipid nanoparticles containing riluzole: preparation, characterization and biodistribution. Nanomedicine., 2010, 5, 25-32.
[71]
Nath, A. Neuroinfectious diseases: A crisis in neurology and a call for action. JAMA Neurol., 2015, 72, 143-144.
[72]
Nath, A.; Tyler, K.L. Novel approaches and challenges to treatment of central nervous system viral infections. Ann. Neurol., 2013, 74, 412-422.
[73]
Wilson, M.; Tyler, K.L. Emerging diagnostic and therapeutic tools for central nervous system infections. JAMA Neurol., 2016, 73, 1389-1390.
[74]
Millichap, J.J.; Epstein, L.G. Emerging subspecialties in neurology: Neuroinfectious diseases. Neurology, 2009, 73, e14-e15.
[75]
Klein, R.S.; Garber, C.; Howard, N. Infectious immunity in the central nervous system and brain function. Nat. Immunol., 2017, 18, 132-141.
[76]
Ronca, S.E.; Dineley, K.T.; Paessler, S. Neurological sequelae resulting from encephalitic alphavirus infection. Front. Microbiol., 2016, 7, 959.
[77]
McMillan, J.; Batrakova, E.; Gendelman, H.E. Cell delivery of therapeutic nanoparticles. Prog. Mol. Biol. Transl. Sci., 2011, 104, 563-601.
[78]
Liu, L.; Xu, K.; Wang, H.; Tan, P.K.; Fan, W.; Venkatraman, S.S.; Li, L.; Yang, Y.Y. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol., 2009, 4, 457-463.
[79]
Wang, H.; Xu, K.; Liu, L.; Tan, J.P.; Chen, Y.; Li, Y.; Fan, W.; Wei, Z.; Sheng, J.; Yang, Y.Y.; Li, L. The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials, 2010, 31, 2874-2881.
[80]
Ullas, P.T.; Madhusudana, S.N.; Desai, A.; Sagar, B.K.; Jayamurugan, G.; Rajesh, Y.B.; Jayaraman, N. Enhancement of immunogenicity and efficacy of a plasmid DNA rabies vaccine by nanoformulation with a fourthgeneration amine-terminated poly(ether imine) dendrimer. Int. J. Nanomed., 2014, 9, 627-634.