Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

General Review Article

Neuroimaging methods in Epilepsy of Temporal Origin

Author(s): Ioannis Tsougos*, Evanthia Kousi, Panagiotis Georgoulias, Eftychia Kapsalaki and Kostas N. Fountas

Volume 15, Issue 1, 2019

Page: [39 - 51] Pages: 13

DOI: 10.2174/1573405613666170622114920

Price: $65

Abstract

Background: Temporal Lobe Epilepsy (TLE) comprises the most common form of symptomatic refractory focal epilepsy in adults. Accurate lateralization and localization of the epileptogenic focus are a significant prerequisite for determining surgical candidacy once the patient has been deemed medically intractable. Structural MR imaging, clinical, electrophysiological, and neurophysiological data have an established role in the localization of the epileptogenic foci. Nevertheless, hippocampal sclerosis cannot be detected on MR images in more than 30% of patients with TLE, and the presurgical assessment remains controversial.

Discussion: In the last years, advanced MR imaging techniques, such as 1H-MRS, DWI, DTI, DSCI, and fMRI, may provide valuable additional information regarding the physiological and metabolic characterization of brain tissue. MR imaging has shifted towards functional and molecular imaging, thus, promising to improve the accuracy regarding the lateralization and the localization of the epileptogenic focus. Additionally, nuclear medicine studies, such as SPECT and PET imaging modalities, have become an asset for the decoding of brain function and activity, and can be diagnostically helpful as well, since they provide valuable data regarding the altered metabolic activity of the seizure foci.

Conclusion: Overall, advanced MRI, SPECT, and PET imaging techniques are increasingly becoming an essential part of TLE diagnostics, when the epileptogenic area is not identified on structural MRI or when structural MRI, clinical, and electrophysiological findings are not in concordance.

Keywords: Diffusion tensor imaging, epilepsy, functional MRI, MR spectroscopy, PET, SPECT, temporal.

Graphical Abstract

[1]
Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46(4): 470-2.
[2]
Shorvon SD. The etiologic classification of epilepsy. Epilepsia 2011; 52(6): 1052-7.
[3]
Choueiri RN, Fayad MN, Farah A, Mikati MA. Classification of epilepsy syndromes and role of genetic factors. Pediatr Neurol 2001; 24(1): 37-43.
[4]
Herman S. Intractable Epilepsy: Relapsing, remitting, or progressive? Epilepsy Curr 2010; 10(6): 146-8.
[5]
Cendes F, Sakamoto AC, Spreafico R, Bingaman W, Becker AJ. Epilepsies associated with hippocampal sclerosis. Acta Neuropathol 2014; 128(1): 21-37.
[6]
Hajek M, Dezortova M, Krsek P. (1)H MR spectroscopy in epilepsy. Eur J Radiol 2008; 67: 258-67.
[7]
Lai V, Mak HK, Yung AW, Ho AW, Hung KN. Neuroimaging techniques in epilepsy. Hong Kong Med J 2010; 16: 292-8.
[8]
Pillai JJ, Hessler RB, Allison JD, Park YD, Lee MR, Lavin T. Advanced MR imaging of cortical dysplasia with or without neoplasm: a report of two cases. AJNR Am J Neuroradiol 2002; 23: 1686-91.
[9]
Kousi E, Tsougos I, Eftychia K. In: Fountas K, Ed Proton magnetic resonance spectroscopy of the central nervous system Novel frontiers of advanced neuroimaging. InTech 2013; pp. 19-50.
[10]
Soares DP, Law M. Magnetic resonance spectroscopy of the brain: review of metabolites and clinical applications. Clin Radiol 2009; 64: 12-21.
[11]
Sibtain NA, Howe FA, Saunders DE. The clinical value of proton magnetic resonance spectroscopy in adult brain tumours. Clin Radiol 2007; 62: 109-19.
[12]
de Graaf RA. . In vivo NMR spectroscopy: Principles and techniques (2nded) Wiley 2007
[13]
Lin A, Ross BD, Harris K, Wong W. Efficacy of proton magnetic resonance spectroscopy in neurological diagnosis and neurotherapeutic decision making. NeuroRx 2005; 2: 197-214.
[14]
Hammen T, Hildebrandt M, Stadlbauer A, et al. Non-invasive detection of hippocampal sclerosis: correlation between metabolite alterations detected by 1H-MRS and neuropathology. NMR Biomed 2008; 21: 545-52.
[15]
Cohen-Gadol AA, Pan JW, Kim JH, Spencer DD, Hetherington HH. Mesial temporal lobe epilepsy: A proton magnetic resonance spectroscopy study and a histopathological analysis. J Neurosurg 2004; 101: 613-20.
[16]
Hajek M, Krsek P, Dezortova M, et al. 1H MR spectroscopy in histopathological subgroups of mesial temporal lobe epilepsy. Eur Radiol 2009; 19: 400-8.
[17]
Chernov MF, Ochiai T, Ono Y, et al. Role of proton magnetic resonance spectroscopy in preoperative evaluation of patients with mesial temporal lobe epilepsy. J Neurol Sci 2009; 285: 212-9.
[18]
Chernov M, Yamane F, Ochiai T, et al. Proton MRS in temporal lobe epilepsy. J Jpn Epil Soc 2004; 22: 29-30.
[19]
Leite RA, Otaduy MC, Silva GE, Ferreira ML, Aragao Mde F. Diagnostic methods for extra-temporal neocortical focal epilepsies: Present and future. Arq Neuropsiquiatr 2010; 68: 119-26.
[20]
Moffett JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA. N-Acetylas¬partate in the CNS: From neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81: 89-131.
[21]
Doelken MT, Stefan H, Pauli E, et al. (1)H-MRS profile in MRI positive-versus MRI negative patients with temporal lobe epilepsy. Seizure 2008; 17: 490-7.
[22]
Wellard RM, Briellmann RS, Prichard JW, Syngeniotis A, Jackson GD. Myoinositol abnormalities in temporal lobe epilepsy. Epilepsia 2003; 44: 815-21.
[23]
Winston GP. The physical and biological basis of quantitative parameters derived from diffusion MRI. Quant Imaging Med Surg 2012; 2(4): 254-65.
[24]
O’Brien TJ, David EP, Kilpatrick CJ, Desmond P, Tress B. Contrast enhanced perfusion and diffusion MRI accurately lateralize temporal lobe epilepsy: A pilot study. J Clin Neurosci 2007; 14: 841-9.
[25]
Diehl B, Najm I, Ruggieri P, et al. Postictal diffusion weighted imaging for the localization of focal epileptic areas in temporal lobe epilepsy. Epilepsia 2001; 42: 21-8.
[26]
Yoo SY, Chang KH, Song IN, et al. Apparent diffusion coefficient value of the hippocampus in patients with hippocampal sclerosis and in healthy volunteers. AJNR Am J Neuroradiol 2002; 23: 809-12.
[27]
Hakyemez B, Erdogan C, Yildiz H, Ercan I, Parlak M. Apparent diffusion coefficient measurements in the hippocampus and amygdala of patients with temporal lobe seizures and in healthy volunteers. Epilepsy Behav 2005; 6: 250-6.
[28]
Arfanakis K, Hermann B, Rogers B, et al. Diffusion tensor MRI in temporal lobe epilepsy. Magn Reson Imaging 2002; 20: 511-9.
[29]
Haris M, Gupta RK, Husain N, et al. Measurement of DTI metrics in hemorrhagic brain lesions: Possible implication in MRI interpretation. J Magn Reson Imaging 2006; 24: 1259-68.
[30]
Oh JB, Lee SK, Kim KK, Song IC, Chang KH. Role of immediate postictal diffusion-weighted MRI in localizing epileptogenic foci of mesial temporal lobe epilepsy and non-lesional neocortical epilepsy. Seizure 2004; 13: 509-16.
[31]
Londono A, Castillo M, Lee YZ, Smith K. Apparent diffusion coefficient measurements in the hippocampi in patients with temporal lobe seizures. AJNR Neuroradiol 2003; 24: 1582-6.
[32]
Le Bihan D, Mami I. Diffusion magnetic resonance imaging: What water tells us about biological tissues. PLoS Biol 2015; 13(7): e1002203.
[33]
Sundgren PC. Diffusion tensor imaging of the brain: Background and review of clinical applications. Imaging Decisions MRI 2005; 9: 2-15.
[34]
Ilana J. Bennett, David J. Madden, et al Age-Related Differences in Multiple Measures of White Matter Integrity: A diffusion tensor imaging study of healthy aging. Hum Brain Mapp 2010; 31(3): 378-90.
[35]
Mukherjee P, Berman JI, Chung SW, Hess CP, Henry RG. Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings. Am J Neuroradiol 2008; 29(4): 632-41.
[36]
Kimiwada T, Juhász C, Makki M, et al. Hippocampal and thalamic diffusion abnormalities in children with temporal lobe epilepsy. Epilepsia 2006; 47: 167-75.
[37]
Thivard L, Lehéricy S, Krainik A, et al. Diffusion tensor imaging in medial temporal lobe epilepsy with hippocampal sclerosis. Neuroimage 2005; 28: 682-90.
[38]
Keller SS, Ahrens T, Mohammadi S, et al. Voxel-based statistical analysis of fractional anisotropy and mean diffusivity in patients with unilateral temporal lobe epilepsy of unknown cause. J Neuroimaging 2013; 23: 352-9.
[39]
Gross DW. Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia 2011; 52(Suppl. 4): 32-4.
[40]
Salmenpera TM, Simister RJ, Bartlett P, et al. High-resolution diffusion tensor imaging of the hippocampus in temporal lobe epilepsy. Epilepsy Res 2006; 71: 102-6.
[41]
Kim CH, Koo BB, Chung CK, Lee JM, Kim JS, Lee SK. Thalamic changes in temporal lobe epilepsy with and without hippocampal sclerosis: a diffusion tensor imaging study. Epilepsy Res 2010; 90: 21-7.
[42]
Concha L, Beaulieu C, Collins DL, Gross DW. White-matter diffusion abnormalities in temporal-lobe epilepsy with and without mesial temporal sclerosis. J Neurol Neurosurg Psychiatry 2009; 80: 312-9.
[43]
Labate A, Cherubini A, Tripepi G, et al. White matter abnormalities differentiate severe from benign temporal lobe epilepsy. Epilepsia 2015; 56(7): 1109-16.
[44]
Hermann B, Seidenberg M, Bell B, et al. Extratemporal quantitative MR volumetrics and neuropsychological status in temporal lobe epilepsy. J Int Neuropsychol Soc 2003; 9: 353-62.
[45]
Seidenberg M, Kelly KG, Parrish J, Geary E, Dow C, et al. Ipsilateral and contralateral MRI volumetric abnormalities in chronic unilateral temporal lobe epilepsy and their clinical correlates. Epilepsia 2005; 46: 420-30.
[46]
Yogarajah M, Focke NK, Bonelli SB, et al. The structural plasticity of white matter networks following anterior temporal lobe resection. Brain 2010; 133: 2348-64.
[47]
Powell HW, Parker GJ, Alexander DC, et al. MR tractography predicts visual field defects following temporal lobe resection. Neurology 2005; 65: 596-9.
[48]
Yamamoto T, Yamada K, Nishimura T, Kinoshita S. Tractography to depict three layers of visual field trajectories to the calcarine gyri. Am J Ophthalmol 2005; 140: 781-5.
[49]
Chen X, Weigel D, Ganslandt O, Buchfelder M, Nimsky C. Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. Neuroimage 2009; 45: 286-97.
[50]
Wu RH, Bruening R, Noachtar S, et al. MR measurement of regional relative cerebral blood volume in epilepsy. J Magn Reson Imaging 1999; 9: 435-40.
[51]
Placidi F, Floris R, Bozzao A, et al. Dynamic susceptibility contrast (DSC) MRI and interictal epileptiform activity in cryptogenic partial epilepsy. Epilepsia 2002; 43: 1515-21.
[52]
Leonhardt G, de Greiff A, Weber J, et al. Brain perfusion following single seizures. Epilepsia 2005; 46: 1943-9.
[53]
Xing W, Wang X, Xie F, Liao W. Application of dynamic susceptibility contrast-enhanced perfusion in temporal lobe epilepsy. Acta Radiol 2013; 54: 107-12.
[54]
Ogawa S, Lee T-M, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 1990; 87: 9868-72.
[55]
Karsten Krakow. In: fMRI of Epilepsy. Functional MRI basic principles and clinical applications. Springer 2006; pp. 315-41.
[56]
Chandrasekharan K, Bejoy T. Clinical applications of functional MRI in epilepsy. Indian J Radiol Imaging 2008; 18(3): 210-7.
[57]
Faro SH, Mohamed FB. Functional MRI: Basic principles and clinical applications. Springer 2006.
[58]
Baxendale S. The role of functional MRI in the presurgical investigation of temporal lobe epilepsy patients: A clinical perspective and review. J Clin Exp Neuropsychol 2002; 24: 664-76.
[59]
Duncan J. The current status of neuroimaging for epilepsy. Curr Opin Neurol 2009; 22: 179-84.
[60]
Mechanic-Hamilton D, Korczykowski M, Yushkevich PA, et al. Hippocampal volumetry and functional MRI of memory in temporal lobe epilepsy. Epilepsy Behav 2009; 16: 128-38.
[61]
Morgan VL, Sonmezturk HH, Gore JC, Abou-Khalil B. Lateralization of temporal lobe epilepsy using resting functional magnetic resonance imaging connectivity of hippocampal networks. Epilepsia 2012; 53: 1628-35.
[62]
Zeng H, Pizarro R, Nair VA, La C, Prabhakaran V. Altered regional homogeneity in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Epilepsia 2013; 54: 658-66.
[63]
Bonelli SB, Powell RH, Yogarajah M, et al. Imaging memory in temporal lobe epilepsy: Predicting the effects of temporal lobe resection. Brain 2010; 133: 1186-99.
[64]
Frings L, Wagner K, Halsband U, et al. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res 2008; 78: 161-70.
[65]
Powell HW, Richardson MP, Symms MR, et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J Neurol Neurosurg Psychiatry 2008; 79: 686-93.
[66]
Binder JR, Sabsevitz DS, Swanson SJ, et al. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia 2008; 49: 137-94.
[67]
Banks SJ, Szilkas V, Sodums DJ, Jones-Gotman M. fMRI of verbal and non-verbal memory processes in healthy and epileptogenic temporal lobes. Epilepsy Behav 2012; 25: 42-9.
[68]
Szaflarski JP, Gloss D, Binder JR, et al. Practice guideline summary: Use of fMRI in the presurgical evaluation of patients with epilepsy: Report of the guideline development, dissemination, and implementation subcommittee of the American academy of neurology. Neurology 2017; 88(4): 395-402.
[69]
Limotai C, Mirsattari SM. Role of functional MRI in presurgical evaluation of memory function in temporal lobe epilepsy. Epilepsy Res Treat 2012; 2012: 1-12.
[70]
Widjaja E, Raybaud C. Advances in neuroimaging in patients with epilepsy. Neurosurg Focus 2008; 25: E3.
[71]
Mansouri A, Fallah A, Valiante TA. Determining surgical candidacy in temporal lobe epilepsy. Epilepsy Res Treat 2012; 706917.
[72]
O’Brien TJ, So EL, Mullan BP, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 1998; 50: 445-54.
[73]
Jayalakshmi S, Sudhakar P, Panigrahi M. Role of single photon emission computed tomography in epilepsy. Int J Mol Imaging 2011; 2011: 803920.
[74]
Marques LH, Ferraz-Filho JR, Lins-Filho ML, et al. Interictal SPECT in the presurgical evaluation in epileptic patients with normal MRI or bilateral mesial temporal sclerosis. Arq Neuropsiquiatr 2009; 67: 639-42.
[75]
Kim S, Mountz JM. SPECT imaging of Epilepsy: An overview and comparison with F-18 FDG PET. Int J Mol Imaging 2011; 2011: 813028.
[76]
Cascino G. Neuroimaging in Epilepsy. In: Wheless J, Willmore J, Brumback R.Advanced therapy in epilepsy People’s medical publishing house. Shelton, Connecticut Chapter 8, 2009; p. 49.
[77]
Jafari-Khouzania K, Elisevichb K, Karvelisa KC. Soltanian- Zadeha H. Quantitative multi-compartmental SPECT image analysis for lateralization of temporal lobe epilepsy. Epilepsy Res 2011; 95: 35-50.
[78]
Hwang SI, Kim JH, Park SW, et al. Comparative analysis of MR imaging, positron emission tomography, and ictal single-photon emission CT in patients with neocortical epilepsy. AJNR Am J Neuroradiol 2001; 22: 937-46.
[79]
Spanaki MV, Spencer SS, Corsi M, et al. Sensitivity and specificity of quantitative difference SPECT analysis in seizure localization. J Nucl Med 1999; 40: 730-6.
[80]
Velasco TR, Wichert-Ana L, Leite JP, et al. Accuracy of ictal SPECT in mesial temporal lobe epilepsy with bilateral interictal spikes. Neurology 2002; 59: 266-71.
[81]
Cho JW, Honga SB, Lee JH, et al. Contralateral hyperperfusion and ipsilateral hypoperfusion by ictal SPECT in patients with mesial temporal lobe epilepsy. Epilepsy Res 2010; 88: 247-54.
[82]
Lee HW, Hong SB, Tae WS. Opposite ictal perfusion patterns of subtracted SPECT. Hyperperfusion and hypoperfusion. Brain 2000; 123: 2150-9.
[83]
O’Brien TJ, So EL, Mullan BP, et al. Subtraction periictal SPECT is predictive of extratemporal epilepsy surgery outcome. Neurology 2000; 55: 1668-77.
[84]
Sulc V1, Stykel S, Hanson DP, et al. Statistical SPECT processing in MRI-negative epilepsy surgery. Neurology 2014; 18; 82(11): 932-9.
[85]
Warwick J. Brain imaging with SPECT and PET. Contin Med Educ 2013; 31: 307-9.
[86]
Lee HW, Hong SB, Tae WS. Opposite ictal perfusion patterns of subtracted SPECT. Hyperperfusion and hypoperfusion. Brain 2000; 123: 2150-9.
[87]
Sager S, Asa S, Uslu L, Halac M. Unilateral thalamic hypometabolism on FDG brain PET in patient with temporal lobe epilepsy. Indian J Nucl Med 2011; 26: 94-5.
[88]
Gok B, Jallo G, Hayeri R, Wahl R, Aygun N. The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 2012; 55: 541-50.
[89]
Dupont S, Semah F, Clémenceau S, et al. Accurate prediction of postoperative outcome in mesial temporal lobe epilepsy: A study using positron emission tomography with 18fluorodeoxyglucose. Arch Neurol 2000; 57: 1331-6.
[90]
Lamusuo S, Jutila L, Ylinen A, et al. [18F]FDG-PET reveals temporal hypometabolism in patients with temporal lobe epilepsy even when quantitative MRI and histopathological analysis show only mild hippocampal damage. Arch Neurol 2001; 58(6): 933-9.
[91]
Carne RP, O’Brien TJ, Kilpatrick CJ, et al. MRI negative PET-positive temporal lobe epilepsy: A distinct surgically remediable syndrome. Brain 2004; 127: 2276-85.
[92]
Knowlton RC, Laxer KD, Klein G, et al. In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy. Neurology 2001; 57: 118-90.
[93]
Struck AF, Hall LT, Floberg JM, Perlman SB, Dulli DA. Surgical decision making in temporal lobe epilepsy: A comparison of [18F] FDG PET, MRI, and EEG. Epilepsy Behav 2011; 22: 293-7.
[94]
LoPinto-Khoury C, Sperling MR, Skidmore C, et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia 2012; 53: 342-8.
[95]
Sarikaya I. PET studies in epilepsy. Am J Nucl Med Mol Imaging 2015; 5(5): 416-30.
[96]
Salanova V, Markand O, Worth R. Temporal lobe epilepsy: Analysis of patients with dual pathology. Acta Neurol Scand 2004; 109: 126-31.
[97]
Juhasz C, Nagy F, Watson C, et al. Glucose and [11C] flumazenil positron emission tomography abnormalities of thalamic nuclei in temporal lobe epilepsy. Neurology 1999; 53: 2037-45.
[98]
Muzik O, da Silva EA, Juhasz C, et al. Intracranial EEG versus flumazenil and glucose PET in children with extratemporal lobe epilepsy. Neurology 2000; 54: 171-9.
[99]
Koepp MJ, Hand KS, Labbe C, et al. In vivo [11C] flumazenil-PET correlates with ex vivo [3H] flumazenil autoradiography in hippocampal sclerosis. Ann Neurol 1998; 43: 618-26.
[100]
Chugani HT, Kumar A, Muzik O. GABA(A) receptor imaging with positron emission tomography in the human newborn: A unique binding pattern. Pediatr Neurol 2013; 48(6): 459-62.
[101]
Talairach J, Bancaud J, Szikla G, et al. Approche nouvelle de la neurochirugie de l’epilepsie. Méthodologie stérérotaxique et résultats thérapeutiques. Neurochirurgie 1974; 20(Suppl. 1): 1-240.
[102]
Guenot M, Isnard J, Ryvlin P, et al. Neurophysiological monitoring for epilepsy surgery: the Talairach SEEG method. StereoElectroEncephaloGraphy. Indications, results, complications and therapeutic applications in a series of 100 consecutive cases. Stereotact Funct Neurosurg 2001; 77(1-4): 29-32.
[103]
David O, Blauwblomme T, Job AS, et al. Imaging the seizure onset zone with stereo-electroencephalography. Brain 2011; 134(Pt 10): 2898-911.
[104]
Binnie CD, Elwes R, Polkey C, Volans A. Utility of stereoelectroencephalography in preoperative assessment of temporal lobe epilepsy. J Neurol Neurosurg Psychiatry 1994; 57(1): 58-65.
[105]
Gonzalez-Martinez J, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: Early experience from a North American epilepsy center. Epilepsia 2013; 54(2): 323-30.
[106]
Serletis D, Bulacio J, Bingaman W, Najm I, González-Martínez J. The stereotactic approach for mapping epileptic networks: A prospective study of 200 patients. J Neurosurg 2014; 121(5): 1239-46.
[107]
M Cossu, F Cardinale, N Colombo, et al. Stereoelectroencephalography in the presurgical evaluation of children with drug-resistant focal epilepsy. J Neurosurg Pediatr 2005; 103(4): 333-43.
[108]
Cossu M, Schiariti M, Francione S, et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy in infancy and early childhood. J Neurosurg Pediatr 2012; 9(3): 290-300.
[109]
Enatsu R, Mikuni N. Invasive evaluations for Epilepsy surgery: A review of the literature. Neurol Med Chir (Tokyo) 2016; 56(5): 221-7.
[110]
Hedegärd E, Bjellvi J, Edelvik A, Rydenhag B, Flink R, Malmgren K. Complications to invasive epilepsy surgery workup with subdural and depth electrodes: A prospective population-based observational study. J Neurol Neurosurg Psychiatry 2014; 85(7): 716-20.
[111]
Mullin JP, Shriver M, Alomar S, et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia 2016; 57(3): 386-401.
[112]
Salamon N, Kung J, Shaw SJ, et al. (2008) FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 11;71(20): 1594-601
[113]
Fernández S, Donaire A, Serès E, et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res 2015; 111: 1-9.
[114]
Coan AC, Campos BM, Beltramini GC, Yasuda CL, Covolan RJ, Cendes F. Distinct functional and structural MRI abnormalities in mesial temporal lobe epilepsy with and without hippocampal sclerosis. Epilepsia 2014; 55(8): 1187-96.
[115]
Coan AC, Kubota B, Bergo FP, Campos BM, Cendes F. 3T MRI quantification of hippocampal volume and signal in mesial temporal lobe epilepsy improves detection of hippocampal sclerosis. AJNR Am J Neuroradiol 2014; 35(1): 77-83.
[116]
Mumoli L, Labate A, Vasta R, et al. Detection of hippocampal atrophy in patients with temporal lobe epilepsy: A 3-Tesla MRI shape. Epilepsy Behav 2013; 28(3): 489-93.
[117]
Vasta R, Caligiuri M, Labate A, et al. 3-T magnetic resonance imaging simultaneous automated multimodal approach improves detection of ambiguous visual hippocampal sclerosis. Eur J Neurol 2015; 22(4): 725-e47.
[118]
Labate A, Cerasa A, Mumoli L, et al. Neuro-anatomical differences among epileptic and non-epileptic déjà-vu. Cortex 2015; 64: 1-7.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy