Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Update on the Molecular Mechanisms Underlying the Effect of Cholecystokinin and Cholecystokinin-1 Receptor on the Formation of Cholesterol Gallstones

Author(s): Helen H. Wang, Piero Portincasa and David Q.-H. Wang*

Volume 26, Issue 19, 2019

Page: [3407 - 3423] Pages: 17

DOI: 10.2174/0929867324666170619104801

Price: $65

Abstract

Cholecystokinin (CCK) is an important neuro-intestinal peptide hormone produced by the enteroendocrine I-cells in the upper part of small intestine. Protein- and fat-enriched food plays an important role in triggering CCK secretion from the intestine. Carbohydrates stimulate only small amounts of CCK release. The CCK-1 receptor (CCK-1R) is largely localized in the gallbladder, sphincter of Oddi, pancreas, small intestine, gastric mucosa, and pyloric sphincter, where it is responsible for CCK to regulate multiple digestive processes including gallbladder contraction, pancreatic secretion, small intestinal transit, and gastric emptying. Accumulated evidence clearly demonstrates that CCK regulates gallbladder and small intestinal motility through CCK-1R signaling cascade and the effect of CCK-1R on small intestinal transit is a physiological response for regulating intestinal cholesterol absorption. Disruption of the Cck or the Cck-1r gene in mice significantly increases the formation of cholesterol gallstones by disrupting gallbladder emptying and biliary cholesterol metabolism, as well as promoting intestinal absorption of cholesterol. Abnormalities in gallbladder motility function in response to exogenously administered CCK are found primarily in patients with cholesterol gallstones. Patients with pigment gallstones display an intermediate degree of gallbladder motility defect without gallbladder inflammation and enlarged fasting gallbladder. Dysfunctional gallbladder contractility has been found under several conditions such as pregnancy, obesity, diabetes, celiac disease, and total parenteral nutrition although gallstones are not observed. The gallbladder-specific CCK-1R-selective agonist may lead to an efficacious novel way for preventing gallstone formation by promoting gallbladder emptying, particularly for pregnant women and subjects with dysfunctional gallbladder motility function such as celiac patients, as well as patients with total parenteral nutrition.

Keywords: Bile salt, biliary sludge, cholesterol crystallization, gallbladder motility, lithogenic bile, Cholecystokinin (CCK).

[1]
Chandra, R.; Liddle, R.A. Cholecystokinin. Curr. Opin. Endocrinol. Diabetes Obes., 2007, 14(1), 63-67.
[http://dx.doi.org/10.1097/MED.0b013e3280122850] [PMID: 17940422]
[2]
Ivy, A.C.; Oldberg, E. A hormone mechanism for gallbladder contraction and evacuation. Am. J. Physiol., 1928, 86, 599-613.
[http://dx.doi.org/10.1152/ajplegacy.1928.86.3.599]
[3]
Schjoldager, B.T. Role of CCK in gallbladder function. Ann. N. Y. Acad. Sci., 1994, 713, 207-218.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb44067.x] [PMID: 8185161]
[4]
Spiegelman, B.M.; Flier, J.S. Obesity and the regulation of energy balance. Cell, 2001, 104(4), 531-543.
[http://dx.doi.org/10.1016/S0092-8674(01)00240-9] [PMID: 11239410]
[5]
Badman, M.K.; Flier, J.S. The gut and energy balance: visceral allies in the obesity wars. Science, 2005, 307(5717), 1909-1914.
[http://dx.doi.org/10.1126/science.1109951] [PMID: 15790843]
[6]
Guyenet, S.J.; Schwartz, M.W. Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J. Clin. Endocrinol. Metab., 2012, 97(3), 745-755.
[http://dx.doi.org/10.1210/jc.2011-2525] [PMID: 22238401]
[7]
Martínez-González, M.A.; Bes-Rastrollo, M. Nut consumption, weight gain and obesity: epidemiological evidence. Nutr. Metab. Cardiovasc. Dis., 2011, 21(Suppl. 1), S40-S45.
[http://dx.doi.org/10.1016/j.numecd.2010.11.005] [PMID: 21216574]
[8]
Portincasa, P.; Moschetta, A.; Palasciano, G. Cholesterol gallstone disease. Lancet, 2006, 368(9531), 230-239.
[http://dx.doi.org/10.1016/S0140-6736(06)69044-2] [PMID: 16844493]
[9]
Portincasa, P.; Di Ciaula, A.; Baldassarre, G.; Palmieri, V.; Gentile, A.; Cimmino, A.; Palasciano, G. Gallbladder motor function in gallstone patients: sonographic and in vitro studies on the role of gallstones, smooth muscle function and gallbladder wall inflammation. J. Hepatol., 1994, 21(3), 430-440.
[http://dx.doi.org/10.1016/S0168-8278(05)80324-1] [PMID: 7836714]
[10]
Low-Beer, T.S.; Harvey, R.F.; Davies, E.R.; Read, A.F. Abnormalities of serum cholecystokinin and gallbladder emptying in celiac disease. N. Engl. J. Med., 1975, 292(18), 961-963.
[http://dx.doi.org/10.1056/NEJM197505012921807] [PMID: 1117928]
[11]
Maton, P.N.; Selden, A.C.; Fitzpatrick, M.L.; Chadwick, V.S. Defective gallbladder emptying and cholecystokinin release in celiac disease. Reversal by gluten-free diet. Gastroenterology, 1985, 88(2), 391-396.
[http://dx.doi.org/10.1016/0016-5085(85)90497-4] [PMID: 3965328]
[12]
Hopman, W.P.; Rosenbusch, G.; Hectors, M.P.; Jansen, J.B. Effect of predigested fat on intestinal stimulation of plasma cholecystokinin and gall bladder motility in coeliac disease. Gut, 1995, 36(1), 17-21.
[http://dx.doi.org/10.1136/gut.36.1.17] [PMID: 7890230]
[13]
Fraquelli, M.; Bardella, M.T.; Peracchi, M.; Cesana, B.M.; Bianchi, P.A.; Conte, D. Gallbladder emptying and somatostatin and cholecystokinin plasma levels in celiac disease. Am. J. Gastroenterol., 1999, 94(7), 1866-1870.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01221.x] [PMID: 10406250]
[14]
Brown, A.M.; Bradshaw, M.J.; Richardson, R.; Wheeler, J.G.; Harvey, R.F. Pathogenesis of the impaired gall bladder contraction of coeliac disease. Gut, 1987, 28(11), 1426-1432.
[http://dx.doi.org/10.1136/gut.28.11.1426] [PMID: 3428667]
[15]
Sjölund, K.; Alumets, J.; Berg, N.O.; Håkanson, R.; Sundler, F. Duodenal endocrine cells in adult coeliac disease. Gut, 1979, 20(7), 547-552.
[http://dx.doi.org/10.1136/gut.20.7.547] [PMID: 385455]
[16]
Low-Beer, T.S.; Heaton, K.W.; Heaton, S.T.; Read, A.E. Gallbladder inertia and sluggish enterohepatic circulation of bile-salts in coeliac disease. Lancet, 1971, 1(7707), 991-994.
[http://dx.doi.org/10.1016/S0140-6736(71)91387-0] [PMID: 4102454]
[17]
Portincasa, P.; Di Ciaula, A.; Wang, H.H.; Palasciano, G.; van Erpecum, K.J.; Moschetta, A.; Wang, D.Q. Coordinate regulation of gallbladder motor function in the gut-liver axis. Hepatology, 2008, 47(6), 2112-2126.
[http://dx.doi.org/10.1002/hep.22204] [PMID: 18506897]
[18]
Ivy, A.C.; Oldberg, E. A hormone mechanism for gallbladder contraction and evacuation. Am. J. Physiol., 1928, 86, 559-613.
[http://dx.doi.org/10.1152/ajplegacy.1928.86.3.599]
[19]
Liddle, R.A.; Goldfine, I.D.; Rosen, M.S.; Taplitz, R.A.; Williams, J.A. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest., 1985, 75(4), 1144-1152.
[http://dx.doi.org/10.1172/JCI111809] [PMID: 2580857]
[20]
Wank, S.A.; Harkins, R.; Jensen, R.T.; Shapira, H.; de Weerth, A.; Slattery, T. Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc. Natl. Acad. Sci. USA, 1992, 89(7), 3125-3129.
[http://dx.doi.org/10.1073/pnas.89.7.3125] [PMID: 1313582]
[21]
Kopin, A.S.; Lee, Y.M.; McBride, E.W.; Miller, L.J.; Lu, M.; Lin, H.Y.; Kolakowski, L.F. Jr.; Beinborn, M. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc. Natl. Acad. Sci. USA, 1992, 89(8), 3605-3609.
[http://dx.doi.org/10.1073/pnas.89.8.3605] [PMID: 1373504]
[22]
Liddle, R.A. Gastrointestinal hormones and neurotransmitters. In: Sleisenger and Fordtran’s gastrointestinal and liver disease.Edited by: Feldman, M.; Friedman, L.S.; Brandt, L. Philadelphia: Elsevier Saunders. 2010, 3-19.
[http://dx.doi.org/10.1016/B978-1-4160-6189-2.00001-9]
[23]
Martínez, M.A.; Lajas, A.I.; Yago, M.D.; Redondo, P.C.; Granados, M.P.; González, A.; Rosado, J.A.; Martínez-Victoria, E.; Mañas, M.; Pariente, J.A. Dietary virgin olive oil enhances secretagogue-evoked calcium signaling in rat pancreatic acinar cells. Nutrition, 2004, 20(6), 536-541.
[http://dx.doi.org/10.1016/j.nut.2004.03.018] [PMID: 15165616]
[24]
Liddle, R.A. Regulation of cholecystokinin secretion by intraluminal releasing factors. Am. J. Physiol., 1995, 269(3 Pt 1), G319-G327.
[PMID: 7573441]
[25]
Wang, Y.; Chandra, R.; Samsa, L.A.; Gooch, B.; Fee, B.E.; Cook, J.M.; Vigna, S.R.; Grant, A.O.; Liddle, R.A. Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 300(4), G528-G537.
[http://dx.doi.org/10.1152/ajpgi.00387.2010] [PMID: 21183662]
[26]
Wang, Y.; Prpic, V.; Green, G.M.; Reeve, J.R., Jr; Liddle, R.A. Luminal CCK-releasing factor stimulates CCK release from human intestinal endocrine and STC-1 cells. Am. J. Physiol. Gastrointest. Liver Physiol., 2002, 282(1), G16-G22.
[http://dx.doi.org/10.1152/ajpgi.2002.282.1.G16] [PMID: 11751153]
[27]
Ohta, H.; Guan, D.; Tawil, T.; Liddle, R.A.; Green, G.M. Regulation of plasma cholecystokinin levels by bile and bile acids in the rat. Gastroenterology, 1990, 99(3), 819-825.
[http://dx.doi.org/10.1016/0016-5085(90)90974-6] [PMID: 2379784]
[28]
Maton, P.N.; Selden, A.C.; Chadwick, V.S. Differential distribution of molecular forms of cholecystokinin in human and porcine small intestinal mucosa. Regul. Pept., 1984, 8(1), 9-19.
[http://dx.doi.org/10.1016/0167-0115(84)90024-7] [PMID: 6718767]
[29]
Noble, F.; Roques, B.P. CCK-B receptor: chemistry, molecular biology, biochemistry and pharmacology. Prog. Neurobiol., 1999, 58(4), 349-379.
[http://dx.doi.org/10.1016/S0301-0082(98)00090-2] [PMID: 10368033]
[30]
Maton, P.N.; Selden, A.C.; FitzPatrick, M.L.; Chadwick, V.S. Infusion of cholecystokinin octapeptide in man: relation between plasma cholecystokinin concentrations and gallbladder emptying rates. Eur. J. Clin. Invest., 1984, 14(1), 37-41.
[http://dx.doi.org/10.1111/j.1365-2362.1984.tb00701.x] [PMID: 6321196]
[31]
Rehfeld, J.F.; Friis-Hansen, L.; Goetze, J.P.; Hansen, T.V. The biology of cholecystokinin and gastrin peptides. Curr. Top. Med. Chem., 2007, 7(12), 1154-1165.
[http://dx.doi.org/10.2174/156802607780960483] [PMID: 17584137]
[32]
Rehfeld, J.F.; Larsson, L.I.; Goltermann, N.R.; Schwartz, T.W.; Holst, J.J.; Jensen, S.L.; Morley, J.S. Neural regulation of pancreatic hormone secretion by the C-terminal tetrapeptide of CCK. Nature, 1980, 284(5751), 33-38.
[http://dx.doi.org/10.1038/284033a0] [PMID: 6101907]
[33]
Wang, D.Q.; Neuschwander-Tetri, B.A.; Portincasa, P. The Biliary System., 2012.
[http://dx.doi.org/10.4199/C00051ED1V01Y201202ISP033]
[34]
Meilstrup, J.W.; Hopper, K.D.; Thieme, G.A. Imaging of gallbladder variants. AJR Am. J. Roentgenol., 1991, 157(6), 1205-1208.
[http://dx.doi.org/10.2214/ajr.157.6.1950867] [PMID: 1950867]
[35]
Carey, M.C.; Hernell, O. Digestion and absorption of fat. Semin. Gastrointest. Dis., 1992, 3, 189-208.
[36]
Hofmann, A.F.; Hagey, L.R. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell. Mol. Life Sci., 2008, 65(16), 2461-2483.
[http://dx.doi.org/10.1007/s00018-008-7568-6] [PMID: 18488143]
[37]
Hofmann, A.F. Bile Acids and the Enterohepatic Circulation. In: The Liver: Biology and Pathobiology; Irwin M. Arias , Ed.; John Wiley & Sons, Ltd., 2009; pp. 290-304.
[http://dx.doi.org/10.1002/9780470747919.ch20]
[38]
Hay, D.W.; Carey, M.C. Chemical species of lipids in bile. Hepatology, 1990, 12(3 Pt 2), 6S-14S.
[PMID: 2210659]
[39]
Wang, D.Q. Regulation of intestinal cholesterol absorption. Annu. Rev. Physiol., 2007, 69, 221-248.
[http://dx.doi.org/10.1146/annurev.physiol.69.031905.160725] [PMID: 17002594]
[40]
Chandra, R.; Liddle, R.A. Recent advances in pancreatic endocrine and exocrine secretion. Curr. Opin. Gastroenterol., 2011, 27(5), 439-443.
[http://dx.doi.org/10.1097/MOG.0b013e328349e2e1] [PMID: 21778879]
[41]
Chen, D.; Nylander, A.G.; Rehfeld, J.F.; Axelson, J.; Ihse, I.; Håkanson, R. Does vagotomy affect the growth of the pancreas in the rat? Scand. J. Gastroenterol., 1992, 27(7), 606-608.
[http://dx.doi.org/10.3109/00365529209000126] [PMID: 1641588]
[42]
Chu, M.; Borch, K.; Lilja, I.; Blomqvist, L.; Rehfeld, J.F.; Ihse, I. Endogenous hypercholecystokininemia model in the hamster: trophic effect on the exocrine pancreas. Pancreas, 1992, 7(2), 220-225.
[http://dx.doi.org/10.1097/00006676-199203000-00014] [PMID: 1553371]
[43]
Shetzline, M.A.; Liddle, R.A. Neurohumoral control of the exocrine pancreas. Curr. Opin. Gastroenterol., 1999, 15(5), 380-384.
[http://dx.doi.org/10.1097/00001574-199909000-00002] [PMID: 17023977]
[44]
Wang, H.H.; Liu, M.; Portincasa, P. Lack of endogenous cholecystokinin promotes cholelithogenesis in mice. Neurogastroenterol. Motil., 2015.
[PMID: 26604077]
[45]
Wang, D.Q.; Schmitz, F.; Kopin, A.S.; Carey, M.C. Targeted disruption of the murine cholecystokinin-1 receptor promotes intestinal cholesterol absorption and susceptibility to cholesterol cholelithiasis. J. Clin. Invest., 2004, 114(4), 521-528.
[http://dx.doi.org/10.1172/JCI16801] [PMID: 15314689]
[46]
Wang, H.H.; Portincasa, P.; Wang, D.Q. The cholecystokinin-1 receptor antagonist devazepide increases cholesterol cholelithogenesis in mice. Eur. J. Clin. Invest., 2016, 46(2), 158-169.
[http://dx.doi.org/10.1111/eci.12580] [PMID: 26683129]
[47]
Behar, J.; Lee, K.Y.; Thompson, W.R.; Biancani, P. Gallbladder contraction in patients with pigment and cholesterol stones. Gastroenterology, 1989, 97(6), 1479-1484.
[http://dx.doi.org/10.1016/0016-5085(89)90392-2] [PMID: 2583414]
[48]
Pomeranz, I.S.; Shaffer, E.A. Abnormal gallbladder emptying in a subgroup of patients with gallstones. Gastroenterology, 1985, 88(3), 787-791.
[http://dx.doi.org/10.1016/0016-5085(85)90152-0] [PMID: 3967810]
[49]
Portincasa, P.; Di Ciaula, A.; Vendemiale, G.; Palmieri, V.; Moschetta, A.; Vanberge-Henegouwen, G.P.; Palasciano, G. Gallbladder motility and cholesterol crystallization in bile from patients with pigment and cholesterol gallstones. Eur. J. Clin. Invest., 2000, 30(4), 317-324.
[http://dx.doi.org/10.1046/j.1365-2362.2000.00639.x] [PMID: 10759880]
[50]
Wang, H.H.; Portincasa, P.; Wang, D.Q. Molecular pathophysiology and physical chemistry of cholesterol gallstones. Front. Biosci., 2008, 13, 401-423.
[http://dx.doi.org/10.2741/2688] [PMID: 17981556]
[51]
Stampfer, M.J.; Maclure, K.M.; Colditz, G.A.; Manson, J.E.; Willett, W.C. Risk of symptomatic gallstones in women with severe obesity. Am. J. Clin. Nutr., 1992, 55(3), 652-658.
[http://dx.doi.org/10.1093/ajcn/55.3.652] [PMID: 1550039]
[52]
Kodama, H.; Kono, S.; Todoroki, I.; Honjo, S.; Sakurai, Y.; Wakabayashi, K.; Nishiwaki, M.; Hamada, H.; Nishikawa, H.; Koga, H.; Ogawa, S.; Nakagawa, K. Gallstone disease risk in relation to body mass index and waist-to-hip ratio in Japanese men. Int. J. Obes. Relat. Metab. Disord., 1999, 23(2), 211-216.
[http://dx.doi.org/10.1038/sj.ijo.0800781] [PMID: 10078858]
[53]
Vezina, W.C.; Paradis, R.L.; Grace, D.M.; Zimmer, R.A.; Lamont, D.D.; Rycroft, K.M.; King, M.E.; Hutton, L.C.; Chey, W.Y. Increased volume and decreased emptying of the gallbladder in large (morbidly obese, tall normal, and muscular normal) people. Gastroenterology, 1990, 98(4), 1000-1007.
[http://dx.doi.org/10.1016/0016-5085(90)90025-V] [PMID: 2179026]
[54]
Haber, G.B.; Heaton, K.W. Lipid composition of bile in diabetics and obesity-matched controls. Gut, 1979, 20(6), 518-522.
[http://dx.doi.org/10.1136/gut.20.6.518] [PMID: 468079]
[55]
Pitt, H.A.; King, W., III; Mann, L.L.; Roslyn, J.J.; Berquist, W.E.; Ament, M.E.; DenBesten, L. Increased risk of cholelithiasis with prolonged total parenteral nutrition. Am. J. Surg., 1983, 145(1), 106-112.
[http://dx.doi.org/10.1016/0002-9610(83)90175-7] [PMID: 6401411]
[56]
Roslyn, J.J.; Pitt, H.A.; Mann, L.L.; Ament, M.E.; DenBesten, L. Gallbladder disease in patients on long-term parenteral nutrition. Gastroenterology, 1983, 84(1), 148-154.
[PMID: 6401182]
[57]
Ko, C.W.; Beresford, S.A.; Schulte, S.J.; Matsumoto, A.M.; Lee, S.P. Incidence, natural history, and risk factors for biliary sludge and stones during pregnancy. Hepatology, 2005, 41(2), 359-365.
[http://dx.doi.org/10.1002/hep.20534] [PMID: 15660385]
[58]
LaMorte, W.W.; Schoetz, D.J., Jr; Birkett, D.H.; Williams, L.F., Jr The role of the gallbladder in the pathogenesis of cholesterol gallstones. Gastroenterology, 1979, 77(3), 580-592.
[http://dx.doi.org/10.1016/0016-5085(79)90027-1] [PMID: 456853]
[59]
Spengler, U.; Sackmann, M.; Sauerbruch, T.; Holl, J.; Paumgartner, G. Gallbladder motility before and after extracorporeal shock-wave lithotripsy. Gastroenterology, 1989, 96(3), 860-863.
[http://dx.doi.org/10.1016/0016-5085(89)90913-X] [PMID: 2914646]
[60]
Schneider, H.; Sänger, P.; Hanisch, E. In vitro effects of cholecystokinin fragments on human gallbladders. Evidence for an altered CCK-receptor structure in a subgroup of patients with gallstones. J. Hepatol., 1997, 26(5), 1063-1068.
[http://dx.doi.org/10.1016/S0168-8278(97)80115-8] [PMID: 9186837]
[61]
Yu, P.; Chen, Q.; Harnett, K.M.; Amaral, J.; Biancani, P.; Behar, J. Direct G protein activation reverses impaired CCK signaling in human gallbladders with cholesterol stones. Am. J. Physiol., 1995, 269(5 Pt 1), G659-G665.
[http://dx.doi.org/10.1152/ajpgi.1995.269.5.G659] [PMID: 7491956]
[62]
Yu, P.; Chen, Q.; Xiao, Z.; Harnett, K.; Biancani, P.; Behar, J. Signal transduction pathways mediating CCK-induced gallbladder muscle contraction. Am. J. Physiol., 1998, 275(2), G203-G211.
[http://dx.doi.org/[DOI: 10.1152/ajpgi.1998.275.2.G203] [PMID: 9688646]
[63]
Yu, P.; De Petris, G.; Biancani, P.; Amaral, J.; Behar, J. Cholecystokinin-coupled intracellular signaling in human gallbladder muscle. Gastroenterology, 1994, 106(3), 763-770.
[http://dx.doi.org/10.1016/0016-5085(94)90713-7] [PMID: 8119547]
[64]
Yu, P.; Harnett, K.M.; Biancani, P.; De Petris, G.; Behar, J. Interaction between signal transduction pathways contributing to gallbladder tonic contraction. Am. J. Physiol., 1993, 265(6 Pt 1), G1082-G1089.
[http://dx.doi.org/10.1152/ajpgi.1993.265.6.G1082] [PMID: 8279559]
[65]
Wang, H.H.; Portincasa, P.; Liu, M.; Tso, P.; Samuelson, L.C.; Wang, D.Q. Effect of gallbladder hypomotility on cholesterol crystallization and growth in CCK-deficient mice. Biochim. Biophys. Acta, 2010, 1801(2), 138-146.
[http://dx.doi.org/10.1016/j.bbalip.2009.10.003] [PMID: 19836465]
[66]
Marks, J.W.; Bonorris, G.G.; Albers, G.; Schoenfield, L.J. The sequence of biliary events preceding the formation of gallstones in humans. Gastroenterology, 1992, 103(2), 566-570.
[http://dx.doi.org/10.1016/0016-5085(92)90848-S] [PMID: 1634075]
[67]
Shiffman, M.L.; Sugerman, H.J.; Kellum, J.M.; Brewer, W.H.; Moore, E.W. Gallstone formation after rapid weight loss: a prospective study in patients undergoing gastric bypass surgery for treatment of morbid obesity. Am. J. Gastroenterol., 1991, 86(8), 1000-1005.
[PMID: 1858735]
[68]
Broomfield, P.H.; Chopra, R.; Sheinbaum, R.C.; Bonorris, G.G.; Silverman, A.; Schoenfield, L.J.; Marks, J.W. Effects of ursodeoxycholic acid and aspirin on the formation of lithogenic bile and gallstones during loss of weight. N. Engl. J. Med., 1988, 319(24), 1567-1572.
[http://dx.doi.org/10.1056/NEJM198812153192403] [PMID: 3200265]
[69]
Wang, D.Q.; Paigen, B.; Carey, M.C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: physical-chemistry of gallbladder bile. J. Lipid Res., 1997, 38(7), 1395-1411.
[PMID: 9254065]
[70]
Lee, S.P.; LaMont, J.T.; Carey, M.C. Role of gallbladder mucus hypersecretion in the evolution of cholesterol gallstones. J. Clin. Invest., 1981, 67(6), 1712-1723.
[http://dx.doi.org/10.1172/JCI110209] [PMID: 7240416]
[71]
Holzbach, R.T.; Corbusier, C.; Marsh, M.; Naito, H.K. The process of cholesterol cholelithiasis induced by diet in the prairie dog: a physicochemical characterization. J. Lab. Clin. Med., 1976, 87(6), 987-998.
[PMID: 180214]
[72]
Mazer, N.A.; Carey, M.C. Quasi-elastic light-scattering studies of aqueous biliary lipid systems. Cholesterol solubilization and precipitation in model bile solutions. Biochemistry, 1983, 22(2), 426-442.
[http://dx.doi.org/10.1021/bi00271a029] [PMID: 6824637]
[73]
Halpern, Z.; Dudley, M.A.; Lynn, M.P.; Nader, J.M.; Breuer, A.C.; Holzbach, R.T. Vesicle aggregation in model systems of supersaturated bile: relation to crystal nucleation and lipid composition of the vesicular phase. J. Lipid Res., 1986, 27(3), 295-306.
[PMID: 3734627]
[74]
Halpern, Z.; Dudley, M.A.; Kibe, A.; Lynn, M.P.; Breuer, A.C.; Holzbach, R.T. Rapid vesicle formation and aggregation in abnormal human biles. A time-lapse video-enhanced contrast microscopy study. Gastroenterology, 1986, 90(4), 875-885.
[http://dx.doi.org/10.1016/0016-5085(86)90863-2] [PMID: 3949117]
[75]
Konikoff, F.M.; Chung, D.S.; Donovan, J.M.; Small, D.M.; Carey, M.C. Filamentous, helical, and tubular microstructures during cholesterol crystallization from bile. Evidence that cholesterol does not nucleate classic monohydrate plates. J. Clin. Invest., 1992, 90(3), 1155-1160.
[http://dx.doi.org/10.1172/JCI115935] [PMID: 1522223]
[76]
Wang, D.Q.; Carey, M.C. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J. Lipid Res., 1996, 37(3), 606-630.
[PMID: 8728323]
[77]
Wang, D.Q.; Carey, M.C. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: identical pathways to corresponding model biles with three predominating sequences. J. Lipid Res., 1996, 37(12), 2539-2549.
[PMID: 9017506]
[78]
Neiderhiser, D.H.; Harmon, C.K.; Roth, H.P. Absorption of cholesterol by the gallbladder. J. Lipid Res., 1976, 17(2), 117-124.
[PMID: 775005]
[79]
Ginanni Corradini, S.; Ripani, C.; Della Guardia, P.; Giovannelli, L.; Elisei, W.; Cantafora, A.; Codacci Pisanelli, M.; Tebala, G.D.; Nuzzo, G.; Corsi, A.; Attili, A.F.; Capocaccia, L.; Ziparo, V. The human gallbladder increases cholesterol solubility in bile by differential lipid absorption: a study using a new in vitro model of isolated intra-arterially perfused gallbladder. Hepatology, 1998, 28(2), 314-322.
[http://dx.doi.org/10.1002/hep.510280205] [PMID: 9695992]
[80]
Lee, S.P.; Nicholls, J.F. Nature and composition of biliary sludge. Gastroenterology, 1986, 90(3), 677-686.
[http://dx.doi.org/10.1016/0016-5085(86)91123-6] [PMID: 3943697]
[81]
Lee, S.P.; Maher, K.; Nicholls, J.F. Origin and fate of biliary sludge. Gastroenterology, 1988, 94(1), 170-176.
[http://dx.doi.org/10.1016/0016-5085(88)90626-9] [PMID: 3275565]
[82]
Levy, P.F.; Smith, B.F.; LaMont, J.T. Human gallbladder mucin accelerates nucleation of cholesterol in artificial bile. Gastroenterology, 1984, 87(2), 270-275.
[http://dx.doi.org/10.1016/0016-5085(84)90700-5] [PMID: 6428962]
[83]
Afdhal, N.H.; Niu, N.; Gantz, D.; Small, D.M.; Smith, B.F. Bovine gallbladder mucin accelerates cholesterol monohydrate crystal growth in model bile. Gastroenterology, 1993, 104(5), 1515-1523.
[http://dx.doi.org/10.1016/0016-5085(93)90364-I] [PMID: 8482463]
[84]
Pemsingh, R.S.; MacPherson, B.R.; Scott, G.W. Mucus hypersecretion in the gallbladder epithelium of ground squirrels fed a lithogenic diet for the induction of cholesterol gallstones. Hepatology, 1987, 7(6), 1267-1271.
[http://dx.doi.org/10.1002/hep.1840070615] [PMID: 3679091]
[85]
Womack, N.A. The development of gallstones. Surg. Gynecol. Obstet., 1971, 133(6), 937-945.
[PMID: 5117390]
[86]
Pearson, J.P.; Foster, S.N. Mucus glycoprotein content of human cholesterol gallstones. Digestion, 1987, 36(3), 132-140.
[http://dx.doi.org/10.1159/000199410] [PMID: 3596075]
[87]
Toor, E.W.; Evans, D.F.; Cussler, E.L. Cholesterol monohydrate growth in model bile solutions. Proc. Natl. Acad. Sci. USA, 1978, 75(12), 6230-6234.
[http://dx.doi.org/10.1073/pnas.75.12.6230] [PMID: 282639]
[88]
Portincasa, P.; Venneman, N.G.; Moschetta, A.; van den Berg, A.; Palasciano, G.; vanBerge-Henegouwen, G.P.; van Erpecum, K.J. Quantitation of cholesterol crystallization from supersaturated model bile. J. Lipid Res., 2002, 43(4), 604-610.
[PMID: 11907143]
[89]
Sitzmann, J.V.; Pitt, H.A.; Steinborn, P.A.; Pasha, Z.R.; Sanders, R.C. Cholecystokinin prevents parenteral nutrition induced biliary sludge in humans. Surg. Gynecol. Obstet., 1990, 170(1), 25-31.
[PMID: 2104681]
[90]
Kopin, A.S.; Mathes, W.F.; McBride, E.W.; Nguyen, M.; Al-Haider, W.; Schmitz, F.; Bonner-Weir, S.; Kanarek, R.; Beinborn, M. The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J. Clin. Invest., 1999, 103(3), 383-391.
[http://dx.doi.org/10.1172/JCI4901] [PMID: 9927499]
[91]
Wang, D.Q.; Lammert, F.; Cohen, D.E.; Paigen, B.; Carey, M.C. Cholic acid aids absorption, biliary secretion, and phase transitions of cholesterol in murine cholelithogenesis. Am. J. Physiol., 1999, 276(3), G751-G760.
[PMID: 10070053]
[92]
Wang, D.Q.; Cohen, D.E. Absorption and Excretion of Cholesterol and Other Sterols. In: Lipidology in the Treatment and Prevention of Cardiovascular Disease (Clinical Lipidology: A Companion to Braunwald’s Heart Disease); Ballantyne, C.M., Ed.; Elsevier Inc.: Philadelphia, 2008; pp. 26-44.
[http://dx.doi.org/10.1016/B978-141605469-6.50007-X]
[93]
Wang, T.Y.; Liu, M.; Portincasa, P.; Wang, D.Q. New insights into the molecular mechanism of intestinal fatty acid absorption. Eur. J. Clin. Invest., 2013, 43(11), 1203-1223.
[http://dx.doi.org/10.1111/eci.12161] [PMID: 24102389]
[94]
Ponz de Leon, M.; Iori, R.; Barbolini, G.; Pompei, G.; Zaniol, P.; Carulli, N. Influence of small-bowel transit time on dietary cholesterol absorption in human beings. N. Engl. J. Med., 1982, 307(2), 102-103.
[http://dx.doi.org/10.1056/NEJM198207083070207] [PMID: 7088036]
[95]
Wang, D.Q.; Carey, M.C. Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies. J. Lipid Res., 2003, 44(5), 1042-1059.
[http://dx.doi.org/10.1194/jlr.D200041-JLR200] [PMID: 12588946]
[96]
Wang, D.Q.; Paigen, B.; Carey, M.C. Genetic factors at the enterocyte level account for variations in intestinal cholesterol absorption efficiency among inbred strains of mice. J. Lipid Res., 2001, 42(11), 1820-1830.
[PMID: 11714851]
[97]
Duan, L.P.; Wang, H.H.; Wang, D.Q. Cholesterol absorption is mainly regulated by the jejunal and ileal ATP-binding cassette sterol efflux transporters ABCg5 and ABCg8 in mice. J. Lipid Res., 2004, 45(7), 1312-1323.
[http://dx.doi.org/10.1194/jlr.M400030-JLR200] [PMID: 15102882]
[98]
Wang, D.Q.; Zhang, L.; Wang, H.H. High cholesterol absorption efficiency and rapid biliary secretion of chylomicron remnant cholesterol enhance cholelithogenesis in gallstone-susceptible mice. Biochim. Biophys. Acta, 2005, 1733(1), 90-99.
[http://dx.doi.org/10.1016/j.bbalip.2004.12.005] [PMID: 15749059]
[99]
Heaton, K.W.; Emmett, P.M.; Symes, C.L.; Braddon, F.E. An explanation for gallstones in normal-weight women: slow intestinal transit. Lancet, 1993, 341(8836), 8-10.
[http://dx.doi.org/10.1016/0140-6736(93)92479-D] [PMID: 8093323]
[100]
Marcus, S.N.; Heaton, K.W. Intestinal transit, deoxycholic acid and the cholesterol saturation of bile-three inter-related factors. Gut, 1986, 27(5), 550-558.
[http://dx.doi.org/10.1136/gut.27.5.550] [PMID: 3699564]
[101]
Shoda, J.; He, B.F.; Tanaka, N.; Matsuzaki, Y.; Osuga, T.; Yamamori, S.; Miyazaki, H.; Sjövall, J. Increase of deoxycholate in supersaturated bile of patients with cholesterol gallstone disease and its correlation with de novo syntheses of cholesterol and bile acids in liver, gallbladder emptying, and small intestinal transit. Hepatology, 1995, 21(5), 1291-1302.
[http://dx.doi.org/10.1016/0270-9139(95)90050-0] [PMID: 7737634]
[102]
Thomas, L.A.; Veysey, M.J.; Murphy, G.M.; Russell-Jones, D.; French, G.L.; Wass, J.A.; Dowling, R.H. Octreotide induced prolongation of colonic transit increases faecal anaerobic bacteria, bile acid metabolising enzymes, and serum deoxycholic acid in patients with acromegaly. Gut, 2005, 54(5), 630-635.
[http://dx.doi.org/10.1136/gut.2003.028431] [PMID: 15831907]
[103]
Azzaroli, F.; Mazzella, G.; Mazzeo, C.; Simoni, P.; Festi, D.; Colecchia, A.; Montagnani, M.; Martino, C.; Villanova, N.; Roda, A.; Roda, E. Sluggish small bowel motility is involved in determining increased biliary deoxycholic acid in cholesterol gallstone patients. Am. J. Gastroenterol., 1999, 94(9), 2453-2459.
[http://dx.doi.org/10.1111/j.1572-0241.1999.01375.x] [PMID: 10484008]
[104]
Pereira, S.P.; Bain, I.M.; Kumar, D.; Dowling, R.H. Bile composition in inflammatory bowel disease: ileal disease and colectomy, but not colitis, induce lithogenic bile. Aliment. Pharmacol. Ther., 2003, 17(7), 923-933.
[http://dx.doi.org/10.1046/j.1365-2036.2003.01529.x] [PMID: 12656695]
[105]
Low-Beer, T.S.; Nutter, S. Colonic bacterial activity, biliary cholesterol saturation, and pathogenesis of gallstones. Lancet, 1978, 2(8099), 1063-1065.
[http://dx.doi.org/10.1016/S0140-6736(78)91800-7] [PMID: 82084]
[106]
Thomas, L.A.; Veysey, M.J.; Bathgate, T.; King, A.; French, G.; Smeeton, N.C.; Murphy, G.M.; Dowling, R.H. Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology, 2000, 119(3), 806-815.
[http://dx.doi.org/10.1053/gast.2000.16495] [PMID: 10982775]
[107]
Wang, D.Q.; Tazuma, S.; Cohen, D.E.; Carey, M.C. Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstone-susceptible mouse. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(3), G494-G502.
[http://dx.doi.org/10.1152/ajpgi.00156.2003] [PMID: 12748061]
[108]
Chen, Q.; Chitinavis, V.; Xiao, Z.; Yu, P.; Oh, S.; Biancani, P.; Behar, J. Impaired G protein function in gallbladder muscle from progesterone-treated guinea pigs. Am. J. Physiol., 1998, 274(2), G283-G289.
[PMID: 9486181]
[109]
Chen, Q.; Amaral, J.; Biancani, P.; Behar, J. Excess membrane cholesterol alters human gallbladder muscle contractility and membrane fluidity. Gastroenterology, 1999, 116(3), 678-685.
[http://dx.doi.org/10.1016/S0016-5085(99)70190-3] [PMID: 10029627]
[110]
Suzuki, S.; Takiguchi, S.; Sato, N.; Kanai, S.; Kawanami, T.; Yoshida, Y.; Miyasaka, K.; Takata, Y.; Funakoshi, A.; Noda, T. Importance of CCK-A receptor for gallbladder contraction and pancreatic secretion: a study in CCK-A receptor knockout mice. Jpn. J. Physiol., 2001, 51(5), 585-590.
[http://dx.doi.org/10.2170/jjphysiol.51.585] [PMID: 11734079]
[111]
Shaffer, E.A. Abnormalities in gallbladder function in cholesterol gallstone disease: bile and blood, mucosa and muscle--the list lengthens. Gastroenterology, 1992, 102(5), 1808-1812.
[http://dx.doi.org/10.1016/0016-5085(92)91749-T] [PMID: 1568595]
[112]
Wang, D.Q.; Afdhal, N.H. Gallstone Disease. In: Sleisenger and Fordtran’s Gastrointestinal and Liver Disease; Feldman, M.; Friedman, L.S.; Brandt, L., Eds.; Elsevier Inc.: Philadelphia, 2014; pp. 1100-1133.
[113]
Green, P.H.; Cellier, C. Celiac disease. N. Engl. J. Med., 2007, 357(17), 1731-1743.
[http://dx.doi.org/10.1056/NEJMra071600] [PMID: 17960014]
[114]
Calam, J.; Ellis, A.; Dockray, G.J. Identification and measurement of molecular variants of cholecystokinin in duodenal mucosa and plasma. Diminished concentrations in patients with celiac disease. J. Clin. Invest., 1982, 69(1), 218-225.
[http://dx.doi.org/10.1172/JCI110433] [PMID: 7033291]
[115]
Masclee, A.A.; Jansen, J.B.; Driessen, W.M.; Geuskens, L.M.; Lamers, C.B. Gallbladder sensitivity to cholecystokinin in coeliac disease. Correlation of gallbladder contraction with plasma cholecystokinin-like immunoreactivity during infusion of cerulein. Scand. J. Gastroenterol., 1991, 26(12), 1279-1284.
[http://dx.doi.org/10.3109/00365529108998625] [PMID: 1763298]
[116]
Kelly, C.P. Celiac Disease. In: Sleisenger and Fordtran’s Gastrointestinal and Liver Disease; Feldman, M.; Friedman, L.S.; Brandt, L.J., Eds.; Elsevier Inc., 2014; pp. 1849-1872.
[117]
Miller, L.J.; Holicky, E.L.; Ulrich, C.D.; Wieben, E.D. Abnormal processing of the human cholecystokinin receptor gene in association with gallstones and obesity. Gastroenterology, 1995, 109(4), 1375-1380.
[http://dx.doi.org/10.1016/0016-5085(95)90601-0] [PMID: 7557108]
[118]
Nardone, G.; Ferber, I.A.; Miller, L.J. The integrity of the cholecystokinin receptor gene in gallbladder disease and obesity. Hepatology, 1995, 22(6), 1751-1753.
[PMID: 7489984]
[119]
Lammert, F.; Gurusamy, K.; Ko, C.W.; Miquel, J.F.; Méndez-Sánchez, N.; Portincasa, P.; van Erpecum, K.J.; van Laarhoven, C.J.; Wang, D.Q. Gallstones. Nat. Rev. Dis. Primers, 2016, 2, 16024.
[http://dx.doi.org/10.1038/nrdp.2016.24] [PMID: 27121416]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy