Abstract
Protein kinases are one of the most targeted protein families in current drug discovery pipelines. They are implicated in many oncological, inflammatory, CNS-related and other clinical indications. Virtual screening is a computational technique with a diverse set of available tools that has been shown many times to provide novel starting points for kinase-directed drug discovery. This review starts with a concise overview of the function, structural features and inhibitory mechanisms of protein kinases. In addition to briefly reviewing the practical aspects of structure-based virtual screenings, we discuss several case studies to illustrate the state of the art in the virtual screening for type I, type II, allosteric (type III-V) and covalent (type VI) kinase inhibitors. With this review, we strive to provide a summary of the latest advances in the structure-based discovery of novel kinase inhibitors, as well as a practical tool to anyone who wishes to embark on such an endeavor.
Keywords: Drug discovery, Kinase, Structure-based virtual screening, Inhibitor, Docking, DFG motif, Activation segment, hinge, Covalent docking.
Graphical Abstract