Abstract
Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.
Keywords: Aptamer, gene therapy, miRNA, RNAi, cancer, hepatocellular carcinoma.
Current Gene Therapy
Title:Aptamer-Mediated Cancer Gene Therapy
Volume: 15 Issue: 2
Author(s): Dongxi Xiang, Sarah Shigdar, Greg Qiao, Shu-Feng Zhou, Yong Li, Ming Q. Wei, Liang Qiao, Hadi Al. Shamaileh, Yimin Zhu, Conglong Zheng, Chunwen Pu and Wei Duan
Affiliation:
Keywords: Aptamer, gene therapy, miRNA, RNAi, cancer, hepatocellular carcinoma.
Abstract: Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.
Export Options
About this article
Cite this article as:
Xiang Dongxi, Shigdar Sarah, Qiao Greg, Zhou Shu-Feng, Li Yong, Wei Q. Ming, Qiao Liang, Shamaileh Al. Hadi, Zhu Yimin, Zheng Conglong, Pu Chunwen and Duan Wei, Aptamer-Mediated Cancer Gene Therapy, Current Gene Therapy 2015; 15 (2) . https://dx.doi.org/10.2174/1566523214666141224095105
DOI https://dx.doi.org/10.2174/1566523214666141224095105 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Ceramide: Therapeutic Potential in Combination Therapy for Cancer Treatment
Current Drug Metabolism Combined Cancer Therapy with Non-Conventional Drugs: All Roads Lead to AMPK
Mini-Reviews in Medicinal Chemistry Pioglitazone Prevents Smoking Carcinogen-Induced Lung Tumor Development in Mice
Current Cancer Drug Targets Antineoplastic Activity of Monocrotaline Against Hepatocellular Carcinoma
Anti-Cancer Agents in Medicinal Chemistry Rho Kinase and Angiogenesis
Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Discontinued) Arsenic-exposed Keratinocytes Exhibit Differential microRNAs Expression Profile; Potential Implication of miR-21, miR-200a and miR-141 in Melanoma Pathway
Clinical Cancer Drugs Cystathionine β-synthase Induces Multidrug Resistance and Metastasis in Hepatocellular Carcinoma
Current Molecular Medicine Drug Therapy of Neuropathic Pain: Current Developments and Future Perspectives
Current Drug Targets Development and Assessment of Conventional and Targeted Drug Combinations for Use in the Treatment of Aggressive Breast Cancers
Current Cancer Drug Targets GC-analysis, and Antioxidant, Anti-inflammatory, and Anticancer Activities of Some Extracts and Fractions of <i>Linum usitatissimum</i>
Current Bioactive Compounds The Epigenetic Origin of Aneuploidy
Current Genomics Can Systems Biology Understand Pathway Activation? Gene Expression Signatures as Surrogate Markers for Understanding the Complexity of Pathway Activation
Current Genomics New Vascular Disrupting Agents in Upper Gastrointestinal Malignancies
Current Medicinal Chemistry Treatment of Anaplastic Thyroid Cancer: Is there a Role for PPARγ Agonists?
Recent Patents on Endocrine, Metabolic & Immune Drug Discovery (Discontinued) The Role of Neuroendocrine Cells in Prostate Cancer: A Comprehensive Review of Current Literature and Subsequent Rationale to Broaden and Integrate Current Treatment Modalities
Current Medicinal Chemistry Carrier Deformability in Drug Delivery
Current Pharmaceutical Design Metallothionein as a Scavenger of Free Radicals - New Cardioprotective Therapeutic Agent or Initiator of Tumor Chemoresistance?
Current Drug Targets Anesthesia for Bronchoscopy
Current Pharmaceutical Design Psychotherapy Through Video Game to Target Illness Related Problematic Behaviors of Children with Brain Tumor
Current Medical Imaging New Insights in Drug-Induced Mitochondrial Toxicity
Current Pharmaceutical Design