Abstract
Suppression of tau protein expression has been shown to improve behavioral deficits in mouse models of tauopathies, offering an attractive therapeutic approach. Experimentally this had been achieved by switching off the promoters controlling the transgenic human tau gene (MAPT), which is not possible in human patients. The aim of the present study was therefore to evaluate the effectiveness of small interfering RNAs (siRNAs) and their cerebral delivery to suppress human tau expression in vivo, which might be a therapeutic option for human tauopathies. We used primary cortical neurons of transgenic mice expressing P301S-mutated human tau and Lund human mesencephalic (LUHMES) cells to validate the suppressive effect of siRNA in vitro. For measuring the effect in vivo, we stereotactically injected siRNA into the brains of P301S mice to reveal the suppression of tau by immunochemistry (AT180, MC1, and CP13 antibodies). We found that the Accell™ SMART pool siRNA against MAPT can effectively suppress tau expression in vitro and in vivo without a specific delivery agent. The siRNA showed a moderate distribution in the hippocampus of mice after single injection. NeuN, GFAP, Iba-1, MHC II immunoreactivities and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed neither signs of neurotoxicity or neuroinflammation nor apoptosis when MAPT siRNA is present in the hippocampus. Our data suggest that siRNA against MAPT can serve as a potential tool for gene therapy in tauopathies.
Keywords: FTDP-17-tau, in vitro, in vivo, P301S MAPT transgenic mouse, RNAi, siRNA tauopathy.
Current Gene Therapy
Title:Tau Silencing by siRNA in the P301S Mouse Model of Tauopathy
Volume: 14 Issue: 5
Author(s): Hong Xu, Thomas W. Rosler, Thomas Carlsson, Anderson de Andrade, Ondrej Fiala, Matthias Hollerhage, Wolfgang H. Oertel, Michel Goedert, Achim Aigner and Gunter U. Hoglinger
Affiliation:
Keywords: FTDP-17-tau, in vitro, in vivo, P301S MAPT transgenic mouse, RNAi, siRNA tauopathy.
Abstract: Suppression of tau protein expression has been shown to improve behavioral deficits in mouse models of tauopathies, offering an attractive therapeutic approach. Experimentally this had been achieved by switching off the promoters controlling the transgenic human tau gene (MAPT), which is not possible in human patients. The aim of the present study was therefore to evaluate the effectiveness of small interfering RNAs (siRNAs) and their cerebral delivery to suppress human tau expression in vivo, which might be a therapeutic option for human tauopathies. We used primary cortical neurons of transgenic mice expressing P301S-mutated human tau and Lund human mesencephalic (LUHMES) cells to validate the suppressive effect of siRNA in vitro. For measuring the effect in vivo, we stereotactically injected siRNA into the brains of P301S mice to reveal the suppression of tau by immunochemistry (AT180, MC1, and CP13 antibodies). We found that the Accell™ SMART pool siRNA against MAPT can effectively suppress tau expression in vitro and in vivo without a specific delivery agent. The siRNA showed a moderate distribution in the hippocampus of mice after single injection. NeuN, GFAP, Iba-1, MHC II immunoreactivities and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay showed neither signs of neurotoxicity or neuroinflammation nor apoptosis when MAPT siRNA is present in the hippocampus. Our data suggest that siRNA against MAPT can serve as a potential tool for gene therapy in tauopathies.
Export Options
About this article
Cite this article as:
Xu Hong, Rosler W. Thomas, Carlsson Thomas, Andrade de Anderson, Fiala Ondrej, Hollerhage Matthias, Oertel H. Wolfgang, Goedert Michel, Aigner Achim and Hoglinger U. Gunter, Tau Silencing by siRNA in the P301S Mouse Model of Tauopathy, Current Gene Therapy 2014; 14 (5) . https://dx.doi.org/10.2174/156652321405140926160602
DOI https://dx.doi.org/10.2174/156652321405140926160602 |
Print ISSN 1566-5232 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5631 |
Call for Papers in Thematic Issues
Programmed Cell Death Genes in Oncology: Pioneering Therapeutic and Diagnostic Frontiers (BMS-CGT-2024-HT-45)
Programmed Cell Death (PCD) is recognized as a pivotal biological mechanism with far-reaching effects in the realm of cancer therapy. This complex process encompasses a variety of cell death modalities, including apoptosis, autophagic cell death, pyroptosis, and ferroptosis, each of which contributes to the intricate landscape of cancer development and ...read more
Related Journals
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Synthesis and Anticonvulsant activity of Fluorinated Cyclic Enaminones
Letters in Drug Design & Discovery CB1 Cannabinoid Receptors and their Associated Proteins
Current Medicinal Chemistry Dietary Flavonoids Interaction with CREB-BDNF Pathway: An Unconventional Approach for Comprehensive Management of Epilepsy
Current Neuropharmacology Scopolamine and Depression: A Role for Muscarinic Antagonism?
CNS & Neurological Disorders - Drug Targets Emerging Roles of Cysteine Cathepsins in Disease and their Potential as Drug Targets
Current Pharmaceutical Design ABC Transporters in Neurological Disorders: An Important Gateway for Botanical Compounds Mediated Neuro-Therapeutics
Current Topics in Medicinal Chemistry Quantitative Molecular Imaging of Neuronal Nicotinic Acetylcholine Receptors in the Human Brain with A-85380 Radiotracers
Current Medical Imaging Preliminary Evaluation of Anticonvulsant Activity of Some Aminoalkanol and Amino Acid Cinnamic Acid Derivatives
Letters in Drug Design & Discovery Synthesis and Evaluation of Schiff Bases for Anticonvulsant and Behavioral Depressant Properties
Central Nervous System Agents in Medicinal Chemistry Biological Evaluation of Imidazobenzoxazines, Imidazobenzoxazin-5-ones and Imidazobenzoxazin-5-thiones as Sodium Channel Blockers
Letters in Drug Design & Discovery Cellular and Network Mechanisms Underlying Memory Impairment Induced by Amyloid β Protein
Protein & Peptide Letters Neurodegenerative Diseases of the Retina and Potential for Protection and Recovery
Current Neuropharmacology The Prophylactic Use of Antiepileptic Drugs in Patients Scheduled for Neurosurgery
Current Pharmaceutical Design Acne in the Adult
Mini-Reviews in Medicinal Chemistry Genetic Variation of Chromosome 1q42: Etiologic Mechanism of Congenital Disorders of Neuronal Migration and Synaptogenesis
Current Psychiatry Reviews Polyphenols Beyond Barriers: A Glimpse into the Brain
Current Neuropharmacology The Double Roles of the Prostaglandin E<sub>2</sub> EP2 Receptor in Intracerebral Hemorrhage
Current Drug Targets An Update on GABA Analogs for CNS Drug Discovery
Recent Patents on CNS Drug Discovery (Discontinued) (Section B: Integrated Function of Drug Transporters In Vivo) Drug Transport at the Blood-Brain Barrier and the Choroid Plexus
Current Drug Metabolism Environment, Physical Activity, and Neurogenesis: Implications for Prevention and Treatment of Alzhemiers Disease
Current Alzheimer Research