Abstract
Emerging evidence has shown that microRNAs (miRNAs) can act as oncogenes in the initiation and progression of leukemia and lymphoma. Aberrant expression of oncogenic miRNAs, including miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223 promotes leukemogenesis through increasing the leukemic stem/progenitor cell population, promoting cell proliferation, blocking cell differentiation, and diminishing cell apoptosis. In addition, abnormal expression of oncogenic miRNAs, such as miR-155, miR-17-92, the miR15a/16-1 cluster, miR21, miR34a, and miR125b has been implicated in lymphomagenesis. Notably, miR- 155 and miR-17-92 profoundly changed the gene expression signatures and signal transduction pathways in various hematopoietic cells, and triggered leukemogenesis and lymphomagenesis. Therefore, miRNAs play an important role in the genesis of leukemia and lymphoma. Accordingly, oncogenic miRNAs may serve as diagnostic and prognostic factors for patients with leukemia or lymphoma, and could be used as targets for novel anti-leukemia and anti-lymphoma drug discovery.
Current Pharmaceutical Design
Title:Oncogenic MicroRNAs in the Genesis of Leukemia and Lymphoma
Volume: 20 Issue: 33
Author(s): Yanyan Pan, Mei Meng, Gaochuan Zhang, Hongyan Han and Quansheng Zhou
Affiliation:
Keywords: miRNA, leukemia, lymphoma, oncogene, cancer.
Abstract: Emerging evidence has shown that microRNAs (miRNAs) can act as oncogenes in the initiation and progression of leukemia and lymphoma. Aberrant expression of oncogenic miRNAs, including miR-155, miR-17-92, miR-21, miR-125b, miR-93, miR-143-p3, miR-196b, and miR-223 promotes leukemogenesis through increasing the leukemic stem/progenitor cell population, promoting cell proliferation, blocking cell differentiation, and diminishing cell apoptosis. In addition, abnormal expression of oncogenic miRNAs, such as miR-155, miR-17-92, the miR15a/16-1 cluster, miR21, miR34a, and miR125b has been implicated in lymphomagenesis. Notably, miR- 155 and miR-17-92 profoundly changed the gene expression signatures and signal transduction pathways in various hematopoietic cells, and triggered leukemogenesis and lymphomagenesis. Therefore, miRNAs play an important role in the genesis of leukemia and lymphoma. Accordingly, oncogenic miRNAs may serve as diagnostic and prognostic factors for patients with leukemia or lymphoma, and could be used as targets for novel anti-leukemia and anti-lymphoma drug discovery.
Export Options
About this article
Cite this article as:
Pan Yanyan, Meng Mei, Zhang Gaochuan, Han Hongyan and Zhou Quansheng, Oncogenic MicroRNAs in the Genesis of Leukemia and Lymphoma, Current Pharmaceutical Design 2014; 20 (33) . https://dx.doi.org/10.2174/1381612820666140128211724
DOI https://dx.doi.org/10.2174/1381612820666140128211724 |
Print ISSN 1381-6128 |
Publisher Name Bentham Science Publisher |
Online ISSN 1873-4286 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Resveratrol and Its Analogues: Promising Antitumor Agents
Anti-Cancer Agents in Medicinal Chemistry Overcoming the Blood-Brain Barrier for Chemotherapy: Limitations, Challenges and Rising Problems
Anti-Cancer Agents in Medicinal Chemistry Natural and Induced Antibody Polyreactivity
Anti-Cancer Agents in Medicinal Chemistry Progresses in TCM Metal-Based Antitumour Agents
Anti-Cancer Agents in Medicinal Chemistry Therapeutic microRNA Delivery Strategies with Special Emphasis on Cancer Therapy and Tumorigenesis: Current Trends and Future Challenges
Current Drug Metabolism Pitfalls and Solutions for the Validation of Novel Drugs in Animal Models of Disease
Current Immunology Reviews (Discontinued) Src Kinase Inhibitors: An Update on Patented Compounds
Current Medicinal Chemistry The Role of Glycogen Synthase Kinase-3β in Normal Haematopoiesis, Angiogenesis and Leukaemia
Current Medicinal Chemistry Membrane Tyrosine Kinase Receptors Kit and FLT3 are an Important Targets for the Therapy of Acute Myeloid Leukemia
Current Cancer Therapy Reviews Treatment for Radiation-Induced Pulmonary Late Effects: Spoiled for Choice or Looking in the Wrong Direction?
Current Drug Targets Anticancer Effect of Amygdalin (Vitamin B-17) on Hepatocellular Carcinoma Cell Line (HepG2) in the Presence and Absence of Zinc
Anti-Cancer Agents in Medicinal Chemistry Patent Selections
Recent Patents on Anti-Cancer Drug Discovery Applications and Limitations of Genetically Modified Mouse Models in Drug Discovery and Development
Current Drug Metabolism Surgical Strategies for Fertility Preservation in Women with Cancer
Current Women`s Health Reviews Antineoplastic Activity of an Old Natural Antidiabetic Biguanide on the Human Thyroid Carcinoma Cell Line
Anti-Cancer Agents in Medicinal Chemistry Fluoroquinolones Prophylaxis of Bacterial Infections in Neutropenic Patients: Time to Re-Evaluate
Current Cancer Therapy Reviews Natural Products: A Rich Source of Antiviral Drug Lead Candidates for the Management of COVID-19
Current Pharmaceutical Design Immunotoxins Constructed with Ribosome-Inactivating Proteins and their Enhancers: A Lethal Cocktail with Tumor Specific Efficacy
Current Pharmaceutical Design Molecular Modeling Based Synthesis and Evaluation of <i>In vitro</i> Anticancer Activity of Indolyl Chalcones
Current Topics in Medicinal Chemistry Historical Spice as a Future Drug: Therapeutic Potential of Piperlongumine
Current Pharmaceutical Design