Abstract
Diabetic retinopathy is a major cause of vision impairment and blindness and represents a significant health burden throughout the world. There is considerable interest in developing new treatments that retard the progression of diabetic retinopathy from its early to proliferative stages. It could be argued that the absence of an ideal therapy for diabetic retinopathy comes from an incomplete understanding about the biochemical mechanisms that underlie this disease, and their precise impact on specific retinal cell populations. Findings from pre-clinical and clinical studies indicate that both the renin-angiotensin system (RAS) and advanced glycation end-products (AGEs) influence various aspects of diabetic retinopathy. Of interest is growing evidence of cross-talk between the RAS and AGEs pathways. This review will discuss the role of both the RAS and AGEs in diabetic retinopathy, and how the identification of interactions between the two pathways may have implications for the development of new treatment strategies.
Keywords: Advanced glycation end-products, diabetic retinopathy, glyoxolase I, renin-angiotensin system.