Abstract
Responses to oxidative stress are generally regulated by redox-responsive transcription factors (TFs). The abrupt variation in the partial pressure of oxygen (pO2) constitutes a regulatory mechanism. Such TFs forming an integral part of those putative pathways are hypoxia-inducible factor-1α(HIF)-1αand nuclear factor-κB (NF-κB), both are sufficiently tuned to govern such a specific response. Reactive species are produced during this transition and the antioxidant defense system controls their production. Oxidative stress occurs when there is imbalance between the production and removal of reactive species. Evidence exists showing that enhancement of the antioxidant defense system can reduce markers of oxidative stress. Recognition of reactive species and redox-mediated modifications as signals may open up a field of cell regulation via targeted control of TFs and hence can providea novel way of controlling diseases. This synopsis summates the major cutting-edge research work in the field of oxidative stress, and surgically identifies common and unique pathways involved with oxidative stress as means of regulatory elements governing TFs.
Keywords: Apoptosis, Anti-Inflammatory, Antioxidants, Cytokines, HIF-1, NF-κB, Oxidants, Oxidative stress, Oxyexcitation.